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Abstract: Numerous alteration detection methods are designed based on image transformation
algorithms and divergence of bi-temporal images. In the process of feature transformation, pseudo
variant information caused by complex external factors will be highlighted. As a result, the error of
divergence between the two images will be further enhanced. In this paper, we propose to fuse the
variability of Deep Neural Networks’ (DNNs) structure flexibly with various detection algorithms
for bi-temporal multispectral/hyperspectral imagery alteration detection. Specifically, the novel
Dual-path Partial Recurrent Networks (D-PRNs) was proposed to project more accurate and effective
deep features. The Unsupervised Slow Feature Analysis (USFA), Iteratively Reweighted Multivariate
Alteration Detection (IRMAD), and Principal Component Analysis (PCA) were then utilized, respec-
tively, with the proposed D-PRNs, to generate two groups of transformed features corresponding to
the bi-temporal remote sensing images. We next employed the Chi-square distance to compute the
divergence between two groups of transformed features and, thus, obtain the Alteration Intensity
Map. Finally, threshold algorithms K-means and Otsu were, respectively, applied to transform the Al-
teration Intensity Map into Binary Alteration Map. Experiments were conducted on two bi-temporal
remote sensing image datasets, and the testing results proved that the proposed alteration detection
model using D-PRNs outperformed the state-of-the-art alteration detection model.

Keywords: Unsupervised Slow Feature Analysis (USFA); Dual-path Partial Recurrent Networks
(D-PRNs); Iteratively Reweighted Multivariate Alteration Detection (IRMAD); Principal Component
Analysis (PCA)

1. Introduction

Imagery alteration detection generally refers to the techniques of divergence recogni-
tion in the same geographical location observed over time in order to detect the pixel-level
alterations caused by various natural and human factors, such as the alterations of river
channels, geological disasters, artificial buildings, vegetation cover, and so on. The avail-
ability of open and shared bi-temporal multispectral/hyperspectral imagery datasets,
as well as Synthetic Aperture Radar (SAR) imagery datasets, facilitates researchers in
testing the superiority of proposals for alteration detection. Moreover, many imagery
datasets are radiometric corrected [1–4], which offers a foundation for the following works
such as image recognition [5–7], analysis, and classification [8,9]. Therefore, we can focus
straightforwardly on constructing alteration detection models with good performance.

Generally, in the field of alteration detection, the widely used transformation al-
gorithms have been proposed to extract and map the original image data into a new
space. After that, the variant features will be highlighted to achieve greater contrast of the
bi-temporal features. The transformation algorithms are mainly the classical Multivari-
ate Alteration Detection (MAD) [10], which also serves other transformation algorithms,
Iteratively Reweighted Multivariate Alteration Detection (IRMAD) [11] and the Princi-
pal Component Analysis (PCA) [12], as well as the Independent Component Analysis
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(ICA) [13] and the Gramm Schmidt (GS) [14]. However, in practice, the transformation
algorithms are sometimes less effective in reducing the negative impact of noise. Therefore,
in this paper, we propose to alleviate the problem by applying deep learning algorithms to
detected images. Thus, pseudo features are effectively suppressed [1,2,15].

During the past several years, many methods have been proposed to apply DNNs
for projecting essential deep features. [16–24]. Ghosh et al. [25] proposed to integrate
semi-supervised learning with an improved, self-organizing feature, map-based, alteration
detection technique and unsupervised context sensitivity. Zhang et al. [19] adopted an
image fusion network with deep supervision for alteration detection in bi-temporal hyper-
spectral images. Connors et al. [26] presented a deep generative model-based method with
Deep Rendering Mixture for alteration detection in very-high-resolution (VHR) images.
Chen et al. [27] presented an advanced, Siamese, multilayered, convolutional, recurrent
neural network (SiamCRNN) with wide applicability for alteration detection in multi-
temporal and homogeneous/heterogeneous VHR images. Andermatt et al. [28] proposed
a weakly supervised alteration detection network, W-CDNet, which receives the training
samples with image-level semantic labels. Daudt et al. [29] specially designed a guided
anisotropic diffusion (GAD) algorithm used as two strategies of weak supervision for
alteration detection. Zhang et al. [30] proposed an excellent supervised alteration detection
algorithm based on modified, triplet-state loss function for aerial images.

Although the abovementioned models have achieved very good alteration detection
results, their defects and flaws are quite apparent. That is, they are based on complex and
supervised network structures. The several shortcomings of them are as follows. First,
in essence, supervised learning slightly deviates from the original intention of artificial
intelligence to guide the fitting model. Second, the final detection results of approaches
with supervised learning are related not only to the guidance mode of supervision signals
but also to the distribution of artificial labels. However, generating appropriate labels
is another challenge of supervision-based deep learning, and not properly solving may
lead to the error description of effective features to a certain extent. Additionally, it is
difficult to measure and protect the effective fitting model from being misguided. Third,
whether to label the real scenes or the image data, it requires varying degrees of labor
cost. In practical application, the images to be detected are not always annotated. Fourth,
alteration detection models with supervised mode, as well as the complex deep network
frameworks, are at a disadvantage in terms of time and resource consumption.

Accordingly, in this paper, we propose two symmetric, light-weight networks to serve
our proposal, the Alteration Detection Model using Dual-path Partial Recurrent Networks
(ADM-D-PRNs). The proposed ADM-D-PRNs have wide applicability in bi-temporal
multispectral/hyperspectral imagery alteration detection. Experimental results showed
that the ADM-D-PRNs achieved better detection results than the outstanding baselined
Deep Slow Feature Analysis (DSFA) [31] series models on multispectral/hyperspectral
dataset ‘Taizhou’/‘River’. In the proposed ADM-D-PRNs, the Change Vector Analysis
(CVA) Binary Alteration Map provided a reference for DNNs to select invariant pixel pairs
with high confidence as training samples. The proposed D-PRNs learned to suppress
noise/pseudo features and project more accurate and effective features into a new space.
Remarkably, the performance of alteration detection models based on pre-detection and
DNNs was not only related to the suitability of a DNN but also to the confidence of
training samples corresponding to the pixels in a pre-detected Binary Alteration Map.
In the proposed ADM-D-PRNs, the three post-processing algorithms, Unsupervised Slow
Feature Analysis (USFA), IRMAD, and PCA, w respectively employed to realize the mutual
supplement and achieve the optimization of the essential bi-temporal features. Significantly,
the quality of deep features has a crucial impact in the whole detection model; also, the
action of post-processing algorithms on deep features with serious distortions will further
amplify the erroneous description.

We organized the rest of this paper as follows. Section 2 presents the details of the
proposed schema. Section 3 demonstrates and compares the experimental results of several
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alteration detection models. Section 4 discusses the specific results under different sampling
strategies. In Section 5, we draw the conclusions and offer the future work.

2. Proposed ADM-D-PRNs

Figure 1 shows the flowchart of the proposed ADM-D-PRNs. Firstly, the CVA pre-
detection method was employed to compute bi-temporal images and generate the CVA
Binary Alteration Map, from which the invariant pixels with high confidence were ex-
tracted and, thus, selected as training samples. Then, the proposed D-PRNs was applied for
learning the training samples and transforming the bi-temporal images into a new feature
space for detection analysis and calculation. After that, different post-processing methods
were employed. The USFA was used to suppress the invariant features and highlight the
variant features, while the IRMAD and PCA were used to obtain the well-transformed
description features by dimension reduction, thereby enhancing the effect on pixel clas-
sification. By applying the Chi-square distance, the Alteration Intensity Map could be
calculated. Finally, the threshold algorithms, K-means [32] and Otsu [33], were respectively
employed to generate the Binary Alteration Map.
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Figure 1. The proposed ADM-D-PRNs.
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2.1. CVA Pre-Detection

Generally, there are several strategies for the sample source in practice. In the proposed
ADM-D-PRNs, we proposed to use invariant pixel pairs with high confidence to train
the networks. We selected the invariant pixels randomly as training samples and, thus,
achieved a better performance than the other sampling strategies. The metrics’ accuracy
of a training model based on pre-detection mainly depends on two aspects: first, enough
training samples and, second, training samples with high confidence. In summary, by
learning the invariant pixels with high confidence, features with higher confidence can
be obtained.

Considering that the input of the ADM-D-PRNs is pixel pairs from the bi-temporal
multispectral/hyperspectral images, we firstly employed the CVA pre-detection method
to generate the CVA Binary Alteration Map, from which the invariant pixels with high
confidence were then generated as training samples.

As an extension of the simple divergence method in multispectral/hyperspectral
images, CVA calculates the changing magnitude through an overall divergence operation
of each pixel pair of bi-temporal images. As Equation (1) shows, the changing vector
Dk consists of the variation of each pixel pairs, considering all spectral bands. Then the
CVA Alteration Intensity Map, CVA_AIM, can be obtained by applying the Euclidean
Distance [34], as shown in Equation (2).

D =



D1
D2

...
Dk

...
Db


,

D1 = [x1,(i,j)(t2)− x1,(i,j)(t1)]

D2 = [x2,(i,j)(t2)− x2,(i,j)(t1)]

...
Dk = [xk,(i,j)(t2)− xk,(i,j)(t1)]

...
Db = [xb,(i,j)(t2)− xb,(i,j)(t1)]

(1)

where D denotes the divergence of each spectral band pairs and consists of b vectors; b
denotes the number of spectral bands; k denotes the band index with the range of values
from 1 to b; i and j denote the pixel index in the image matrix, with the range of values
from 0 to (r− 1) and from 0 to (c− 1), where the r and c are the height and width of the
current image in pixels; n represents the number of pixels in each image; the xk,(i,j)(t1)
and xk,(i,j)(t2) represent the feature values in position (i, j) of two data matrices of the k-th
spectral band.

CVA_AIM =
b

∑
k=1

√
(Dk)

2 (2)

2.2. The Proposed D-PRNs

Different from the common image recognition and detection tasks that process one
image at a time, the alteration detection task processes at least two images at the same time,
and the projection features must meet the needs of alteration detection. To fulfill the needs
of the alteration detection task, we proposed the D-PRNs to project two groups of deep
features, which better describe the divergence of the bi-temporal images. Figure 2 shows
the structure of the proposed D-PRNs. In order to facilitate the process of D-PRNs, the
image features are reshaped into vectors, each of which stores feature values of an image
band. As Figure 2 shows, the red nodes in the leftmost input layer represent the pixel-wise
features of each image band, and the number of red nodes in this layer is equivalent to
the number of image bands. Similarly, the red nodes in the rightmost layer represent the
output features. The second and third layers with 128 blue nodes are the two hidden layers.
The fourth layer with blue nodes represents the output layer with 10 nodes. X and Y denote
the input bi-temporal images of D-PRNs. The number of nodes in each layer is equivalent
to the number of output feature bands.
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It is worth noting that the leftmost layer receives the invariant pixel pairs in the
training process, while receiving all pixel-wise features of bi-temporal images in the trans-
formation stage, at the same time with a 20% dropout rate of layer-to-layer connections to
reduce the Co-dependence of training samples and, thus, to avoid the over fitting of the
training framework.

The following, Equations (3)–(10), describe how the proposed D-PRNs work. Firstly,
original data X and Y pass through the first hidden layers of D-PRNs. For the convenience
of calculation, the input images data are flattened into vector matrices, with each image
band corresponding to a vector matrix.

Xp1 = leaky_relu(Wx,1X1 + bx,1) (3)

Yp1 = leaky_relu(Wy,1Y1 + by,1) (4)

where Wx,1 and Wy,1 denote the weight vector matrices, while bx,1 and by,1 denote the bias
vector matrices, and the ‘1′ indicates the first hidden layer. As the output of the first hidden
layer, Xp1 and Yp1 are naturally two vector matrices, which act as the input of the second
hidden layer.

X1,p2 = so f tsign(Wx,2Xp1 + bx,2) (5)

X2,p2 = so f tsign(Wx,2Xp2 + bx,2) (6)

Y1,p2 = so f tsign(Wy,2Yp1 + by,2) (7)

Y2,p2 = so f tsign(Wy,2Yp2 + by,2) (8)

where X1,p2/Y1,p2 represents the output of the first recurrence and serves the second
recurrence of the second hidden layer. As the weight vector matrices and bias vector
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matrices of the second recurrence, Wx,2, Wy,2, bx,2, and by,2 are all used twice. After that,
the output of the second hidden layer, X2,p2 and Y2,p2, will be obtained.

Xp3 = tanh(Wx,3X2,p2 + bx,3) (9)

Yp3 = tanh(Wy,3Y2,p2 + by,3) (10)

By passing X2,p2 and Y2,p2 through the output layer, the projection features, Xp3 and
Yp3 with 10 bands, will be obtained, as shown in Equations (9) and (10). Xp3 and Yp3 are
regarded as the input of the following post-processing algorithms.

In the proposed D-PRNs, we used the same loss function as FCN [31]. The difference
is that the mixed activation function and the recurrence of parameters in the second hidden
layer contributed to the balanced performance on variant and invariant pixels. In the
process of D-PRNs’ learning, a dropout rate of 20% was more effective to avoid over
fitting. Experiments showed that the modified D-PRNs had better deep feature description
capability than FCN.

2.3. Post-Processing Algorithms

In this paper, we used three methods, USFA, IRMAD, and PCA, as post-processing
algorithms. The USFA is an unsupervised method based on SFA. It differentiates the two
comparative projection feature sets by suppressing the invariant features and highlighting
the variant features. The IRMAD can efficiently capture the alterations of unstable points
and accurately obtain the alteration information with less affection by external factors.
The PCA algorithm suppresses the noise of projection features and keeps the original
information as much as possible, so as to improve the signal-to-noise ratio.

The USFA assigns two specific vector matrices to the bi-temporal projection features
to suppress the invariant pixels and highlight the variant pixels. Figure 3 shows the visual-
ization states of the invariant and variant pixels before/under/after the USFA algorithm,
where the red dots represent the invariant pixels while the blue dots represent the variant
pixels. Figure 3a shows the initial state of pixel features projected by Deep DNNs before
USFA processing. It can be seen that some red dots and blue dots are on the edge of the
threshold or in the opposite categories, which will lead to error classification of argument
pixels. In Figure 3b, arrows near the intersection region of the red dots and blue dots
represent their respective movement directions. It should be noted that not all feature
distributions are suitable for the use of USFA. USFA plays a differential role for high-quality
features to be processed. Therefore, in the case of erroneously dividing the invariant and
variant features into the opposite categories, it will result in the amplification of error
suppressing and highlighting. Figure 3c shows the redistribution of pixels after USFA
processing, and it is easier to distinguish the invariant pixels from the variant pixels.

IRMAD is a widely used multivariate image alteration detection method. Its capability
is to capture the multivariate alterations of unstable pixels on the premise of eliminating
external interference factors. Through the linear transformation, the bi-temporal multi-
variate images, X and Y, captured over time can be expressed by coefficients, as shown in
Equation (11).

aTX = a1X1 + · · ·+ aiXi
bTY = b1Y1 + · · ·+ biYi

(11)

where i denotes the number of spectral bands. We use aTX− bTY to reflect the alterations
of bi-temporal images. Once the maximum alteration intensity of the reference image
and query image is obtained with small error by calculating the maximum variance of
aTX− bTY, as shown in Equation (12), the problem will be solved. According to the CCA
algorithm [35], to get the maximum aTX − bTY, we just need to maximize Equation (12)
according to constraint (13), where V denotes the mathematical variance.
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In this way, the problem of bi-temporal multivariate image alteration detection is
transformed into the problem of canonical correlation coefficient (CCC) Corr

(
aTX, bTY

)
.

The larger CCC will lead to smaller value of Equation (12), which means a smaller alteration;
on the contrary, smaller CCC means a greater alteration. On the other hand, the coefficients
a and b will be obtained by CCA algorithm. Then, the alteration intensity of the bi-temporal
images can be obtained by iteration of Chi-square distance, as shown in Equation (14).
The iterative weight ωj, as shown in Equation (15), participates in the next variance of
aTXi − bTYi [11]. Iteration is repeated until the CCC converges, where j and n denote the
number of iterations and the number of bands, respectively.

V(aTX− bTY)
= V(aTX) + V(aTY)− 2Cov(aTX, bTY)
= 2(1− Corr(aTX, bTY))

(12)

V(aTX) = V(bTY) = 1 (13)

Tj =
n

∑
i=1

(
(aTXi − bTYi)

2
j

V(aTXi − bTYi)
) ∈ χ2(n) (14)

ωj = P
{

χ2(n) > Tj

}
(15)

PCA is a lossy feature compression approach in essence. However, it is necessary to
maintain the most original information in the compression process. To achieve this goal,
the projection features should be scattered as much as possible. The scatter degree can be
mathematically expressed by variance.
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Suppose A is a feature after projection. The variance of A as shown in Equation (16)
should be as large as possible to achieve the purpose of scattered projection features. Before
PCA dimensionality reduction, Zero-mean has generally been done. For the convenience
of calculation, Equation (16) can also be approximately expressed as Equation (17).

V(A) =
1
n

n

∑
i=1

(ai − µ)2 (16)

V(A) =
1
n

n

∑
i=1

ai
2 (17)

where V, i, n, ai, and µ represent the mathematical variance, band index, the number of
bands, a value of feature A, and the mean value of feature A, respectively.

On the other side, in order to reduce the redundant information of features, we hope
that the projection features have no relevance to each other; thus, covariance is employed
to measure the feature irrelevance. Suppose A and B, expressed as Equation (18), are the
two features after PCA dimensionality reduction. Then, the covariance of A and B can be
expressed as Equation (19); we want it to be 0 to achieve irrelevance.

X =


a1 b1
a2 b2
...

...
an bn

 (18)

Cov(A, B) =
1
n

n

∑
i=1

aibi (19)

We then use Equation (18) to construct the covariance matrix and multiply it with 1/n,
thus obtaining Equation (20).

1
n

XTX =

[ 1
n ∑n

i=1 a2
i

1
n ∑n

i=1 aibi
1
n ∑n

i=1 aibi
1
n ∑n

i=1 b2
i

]
(20)

It can be seen that the diagonal element of Equation (20) is the variance of A and B.
With Equation (19) to be 0, then Equation (20) can be expressed as Equation (21).

1
n

XTX =

[ 1
n ∑n

i=1 a2
i 0

0 1
n ∑n

i=1 b2
i

]
(21)

Therefore, to achieve the purpose, the reduced data covariance matrix should meet the
condition of diagonal matrix. Suppose that the original data, X, are dimensionally reduced
by PCA to obtain data X′, which satisfies the Equation (22).

X′ = XP (22)

Suppose that Xc and X′c are the covariance of X and X′. Then,

X′c =
1
n X′TX′

= 1
n (XP)TXP

= 1
n PTXTXP

= PT( 1
n XTX)P

= PTXcP

(23)

Therefore, it is only necessary to obtain P and make X′c = PTXcP, which satisfies
the condition of a diagonal matrix. Since Xc is a Real Symmetric Matrix, we just need to
diagonalize it. Thus far, the PCA problem is solved.
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2.4. Chi-Square Distance and Thresholding

By passing the bi-temporal images’ data, X and Y, through the D-PRNs’ learning
framework, the input images will be transformed into other new data spaces, denoted by
Xp and Yp. As we know, projection features of a DNN with good construction can more
accurately express the essence of the original images. However, it is difficult for us to judge
whether a pixel has changed or not from the bi-temporal projection features. Therefore, an
Alteration Intensity Map is used to comprehensively reflect the alteration degree of each
pixel pairs of bi-temporal images. We used D, as Equation (24) shows, to represent the
divergence of bi-temporal features Xp and Yp; and it serves as the the principal component
of Chi-square distance, as shown in Equation (25), which is employed to measure the
alteration intensity of bi-temporal features

D = ωTXp −ωTYp (24)

Chi− square =
b

∑
i=1

(D)2

σ2
i

(25)

where ωT denotes the transposition of vector matrix ω, while σi denotes the variance of
the i-th band pair. The result of Chi-Square Distance is a data matrix for storing grayscale
values. It represents the alteration degree of all pixel pairs.

The generated Alteration Intensity Map consists of gray scale values in the range of
0~255, which makes it difficult to judge whether or not any alteration happens. Therefore,
a Binary Alteration Map is urgently necessary to indicate the altered pixels; thus, two
threshold algorithms, K-means and Otsu, are respectively employed.

3. Experiments

In this section, two datasets, ‘River’ and ‘Taizhou’, were used for evaluating the per-
formance of the proposed ADM-D-PRNs. Among them, ‘River’ is an opened hyperspectral
dataset captured by a Hyperion sensor carried on satellite Earth Observing-1 (EO-1), while
‘Taizhou’ is a multispectral dataset captured by Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) sensor.

Figure 4 shows the tested datasets. Figure 4(a1,b1) represents the bi-temporal scene
images of dataset ‘River’, captured on 3 May 2013 and 31 December 2013, respectively, in
Jiangsu Province, China, with (a1) as reference image and (b1) as query image. Both of
the two original images had the size of 463 × 241 × 198. The three number respectively
denote the width, the height, and the number of testing spectral bands with 30-m spatial
resolution. In the ground truth map, as Figure 4(c1) shows, the entire image belonged to
the known areas, which consisted of 111,583 pixels, including 12,560 variant pixels marked
with white and 99,023 invariant pixels marked with black. The alterations of dataset ‘River’
are the appearance and disappearance of prominent substances in the river channel.

Similarly, (a2) and (b2) represent the two scene images of dataset ‘Taizhou’, captured
in 2000 and 2003, respectively, in Taizhou City, China, with (a2) as reference image and (b2)
as query image. Both of the two original images had the size of 400× 400× 6, which means
that the width and height of each original image were both 400 pixels. It had six testing
multispectral bands (1 ~ 5 and 7) with 30-m spatial resolution, a dropping thermal infrared
band (6) with 60-m spatial resolution, and a panchromatic band (8) with a resolution of
15 m. In the ground truth map of dataset ‘Taizhou’, as Figure 4(c2) shows, there were
160,000 pixels in total, 21,390 of which belonged to the known areas, including 4227 variant
pixels marked with gray and 17,163 invariant pixels marked with white.

To measure the performance of the proposed ADM-D-PRNs, the five quantitative coef-
ficients, OA_CHG, OA_UN, OA [36], Kappa, and F1 [37], as defined in Equations (26)–(30),
were calculated.
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OA_CHG =
TP
GP

(26)

OA_UN =
TN
GN

(27)

OA =
TP + TN
GP + GN

(28)

Kappa =
OA− Pe

1− Pe
, Pe =

(TP + FP)× GP + (TN + FN)× GN

(GP + GN)2 (29)

F1 =
2TP

2TP + FP + FN
(30)

where OA_CHG and OA_UN are two relatively one-sided coefficients, while OA, Kappa,
and F1 are comprehensive coefficients. The four variables, TP (True Positives), FN (False
Negatives), TN (True Negatives), and FP (False Positives), respectively, denote the number
of variant pixels with correct hit, the number of invariant pixels with false hit, the number
of invariant pixels with correct hit, and the number of variant pixels with false hit. The
two constants GP (Ground-truth Positives) and GN (Ground-truth Negatives), respectively,
denote the number of variant pixels and invariant pixels in a specific ground truth map;
both of them are easily computed.

Figure 5 shows the visual analysis of the four variables, TP, FP, TN, and FN. In
Figure 5(a1,a2) are two random Binary Alteration Maps of ‘River’ and ‘Taizhou’, where
(b1,b2) show the corresponding ground truth maps and (c1,c2) display the corresponding
Hitting Status Maps, which are employed to visualize various kinds of detection results.
In order to generate the Hitting Status Maps, pixels of the Binary Alteration Map were
compared with the corresponding pixels of the ground truth map. For dataset ‘River’, the
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TP and TN pixels were marked with white and black, while the FP and FN pixels were
marked with yellow and red, as Figure 5(c1) shows. For dataset ‘Taizhou’, the TP and TN
pixels were marked with red and green, while the FP and FN pixels were marked with
white and blue, as Figure 5(c2) shows.
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To show the superiority of the proposed ADM-D-PRNs, we employed the USFA,
IRMAD, and PCA, respectively, with the proposed D-PRNs and we implemented the
baseline DSFA [31] series models on two datasets, ‘River’ and ‘Taizhou,’ as well, for
fair comparison. The DSFA-64-2, DSFA-128-2, and DSFA-256-2 were conducted. In the
following, Sections 3.1 and 3.2, we present the visualization results in different processes to
demonstrate how the proposed models and baseline methods work. The Projection Feature
Maps, Divergence Maps, and Binary Alteration Maps of the state-of-the-art baseline models,
DSFA-64-2, DSFA-128-2, and DSFA-256-2, and the proposed ADM-D-PRNs are shown.

3.1. Projection Feature Maps

DNNs have powerful capability to transform the original image data into a new feature
space non-linearly for alteration detection tasks. Since the spectral band number of a RGB
image is up to 3 while each group of projection features has 10 bands, in this experiment,
we used the remote sensing image processing tool ENVI 5.3 to choose the three bands (the
fourth, the third, and the second bands) in the feature space, which were endowed with
red, green, and blue color independently to synthesize the pseudo color images. Due to the
characteristics of nonlinear expression capability of DNNs, each group of features projected
by the same DNN in different training processes will differentially express the essence of
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the original images; thus, the pseudo color images of the corresponding projection features
were also different in visual performance.

Figures 6 and 7 show the bi-temporal pseudo color images of projection features on
datasets ‘River’ and ‘Taizhou’, respectively, where (a), (b), (c), (d), (e), and (f) represent feature
maps of DSFA-64-2, DSFA-128-2, DSFA-256-2, proposed ADM-D-PRNs using USFA, pro-
posed ADM-D-PRNs using IRMAD, and proposed ADM-D-PRNs using PCA, respectively.
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3.2. Detected Binary Alteration Maps

The arithmetic divergence between two feature sets is defined as Divergence Features.
Similarly, for the generation of projection feature maps, shown in Figures 6 and 7, we
chose the same bands to synthesize the Divergence Maps. In Figures 8 and 9, the first
row (R1) shows the pseudo color Divergence Maps of datasets ‘River’ and ‘Taizhou’,
respectively. It should be noted that, even if the different learning frameworks with infinite
convergence obtained in different training processes had equivalent degrees of fitting, there
were individual differences between the corresponding parameters of the two learning
frameworks. It was a result of non-uniqueness of the Divergence Features.

Then, the second row (R2) shows the corresponding Alteration Intensity Maps. The
alterations of bi-temporal images can be roughly reflected on the Alteration Intensity Map.
The brightness of pixels in the Alteration Intensity Maps are defined according to the
alteration probability being detected. In Figures 8(R2) and 9(R2), the very bright areas
indicate significant alteration, while the very dark areas indicate little or no alteration. It
is worth noting that the accuracy of alteration intensity cannot be reflected by a single
category of pixels, just as the highlighted component of the Alteration Intensity Map
obtained by ADM-D-PRNs using IRMAD is much brighter than that using USFA. However,
after the threshold segmentation, the detection performance of the former exceeded that
of the latter. In view of this phenomenon, our explanation is that in the process of feature
transformation, the highlighting of variant pixel features led to false highlighting of some
invariant pixel features, and vice versa.
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Finally, to show the results of the alteration detection task, we employed the K-means
and Otsu as threshold algorithms to transform the Alteration Intensity Map into a bi-
nary representation that can uniquely determine whether pixels were altered or not. In
Figures 8(R3) and 9(R3,R4), the black and white pixels indicate the areas detected as invari-
ant and variant, respectively. It should be noted that, in Figure 9(R3), the results indicated
in white represent the variant area for the entire image, while those in Figure 9(R4) repre-
sent the variant area for the known areas. Since the unknown areas were not indicated in
the ground truth map, they were not involved in the calculation of quantitative coefficients.

3.3. Comparison Results of Alteration Detection Results

In the following, Tables 1–4, we give the quantitative results of alteration detection
with the proposed ADM-D-PRNs and the state-of-the-art models DSFA-64-2, DSFA-128-2,
and DSFA-256-2 proposed in [31]. The three post-processing methods, USFA, IRMAD, and
PCA, were employed to evaluate and make up for the deficiency of the proposed D-PRNs.
The threshold algorithms, K-means and Otsu methods, were respectively applied, and
the comparison results are shown in Tables 1–4. The figures demonstrate that the overall
performance of the proposed ADM-D-PRNs was superior to the state-of-the-art DSFA
series models.

Table 1 and 2 show the alteration detection results of dataset ‘River’ using K-means
and Otsu, respectively. It can be seen from Table 1 that the proposed D-PRNs with USFA
achieved the best OA and had a slight increase compared with the baseline method DSFA-
128-2, while the proposed D-PRNs with PCA performed the best in one-sided coefficient,
OA_CHG, with about a 6% rise and about 1.4% and 1.23% rises in comprehensive coeffi-
cients Kappa and F1, respectively, comparing with the best baseline model, DSFA-128-2.
In Table 2, the comparison results indicated that the state-of-the-art DSFA series models
did not own any top performance among the five quantitative coefficients. The best perfor-
mances of both one-sided coefficient OA_UN and comprehensive coefficient OA were in the
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proposed model ADM-D-PRNs using USFA, while the proposed ADM-D-PRNs using PCA
performed the best in one-sided coefficient OA_CHG and the other two comprehensive
coefficients, Kappa and F1.

Table 1. Alteration detection results of dataset ‘River’ using K-means.

Methods DSFA-64-2 [31] DSFA-128-2
[31]

DSFA-256-2
[31]

ADM-D-PRNs
Using USFA
(Proposed)

ADM-D-PRNs
Using IRMAD

(Proposed)

ADM-D-PRNs
Using PCA
(Proposed)

GP
GN

12,560
99,023

TP
TN

7707 8478 8319 8911 9235 9248
97,162 97,149 96,463 97,109 96,398 96,607

FP
FN

1861 1874 2560 1914 2625 2416
4853 4082 4241 3649 3325 3312

OA_CHG
OA_UN

0.6136 0.6750 0.6623 0.7095 0.7353 0.7363
0.9812 0.9811 0.9741 0.9807 0.9735 0.9756

OA
Kappa

0.9398 0.9466 0.9390 0.9501 0.9467 0.9487
0.6639 0.7106 0.6760 0.7344 0.7264 0.7348

F1 0.6966 0.7400 0.7098 0.7621 0.7563 0.7635

Table 2. Alteration detection results of dataset ‘River’ using Otsu.

Methods DSFA-64-2 [31] DSFA-128-2
[31]

DSFA-256-2
[31]

ADM-D-PRNs
Using USFA
(Proposed)

ADM-D-PRNs
Using IRMAD

(Proposed)

ADM-D-PRNs
Using PCA
(Proposed)

GP
GN

12,560
99,023

TP
TN

7667 8342 8298 8530 8970 9225
97,192 97,267 96,483 97,546 96,984 96,720

FP
FN

1831 1756 2540 1477 2039 2303
4893 4218 4262 4030 3590 3335

OA_CHG
OA_UN

0.6104 0.6642 0.6623 0.6791 0.7142 0.7345
0.9815 0.9823 0.9741 0.9851 0.9794 0.9767

OA
Kappa

0.9397 0.9465 0.9390 0.9506 0.9496 0.9495
0.6624 0.7069 0.7284 0.7289 0.7331 0.7377

F1 0.6952 0.7363 0.7098 0.7560 0.7612 0.7659

Table 3. Alteration detection results of dataset ‘Taizhou’ using K-means.

Methods DSFA-64-2 [31] DSFA-128-2
[31]

DSFA-256-2
[31]

ADM-D-PRNs
Using USFA
(Proposed)

ADM-D-PRNs
Using IRMAD

(Proposed)

ADM-D-PRNs
Using PCA
(Proposed)

GP
GN

4227
17,163

TP
TN

3673 3769 3538 3942 4061 4112
16,954 17,104 17,117 17,069 16,900 16,898

FP
FN

209 59 46 94 263 265
554 458 689 285 166 115

OA_CHG
OA_UN

0.8689 0.8916 0.8370 0.9326 0.9607 0.9728
0.9878 0.9966 0.9973 0.9945 0.9847 0.9846

OA
Kappa

0.9643 0.9758 0.9656 0.9823 0.9799 0.9822
0.8839 0.9210 0.8851 0.9432 0.9373 0.9447

F1 0.9059 0.9358 0.9059 0.9541 0.9493 0.9558
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Table 4. Alteration detection results of dataset ‘Taizhou’ using Otsu.

Methods DSFA-64-2 [31] DSFA-128-2
[31]

DSFA-256-2
[31]

ADM-D-PRNs
Using USFA
(Proposed)

ADM-D-PRNs
Using IRMAD

(Proposed)

ADM-D-PRNs
Using PCA
(Proposed)

GP
GN

4227
17,163

TP
TN

3662 3759 3529 3955 4062 4119
16,958 17,112 17,120 17,065 16,893 16,892

FP
FN

205 51 43 87 270 271
565 468 698 295 165 108

OA_CHG
OA_UN

0.8663 0.8893 0.8349 0.9302 0.9610 0.9744
0.9881 0.9970 0.9975 0.9949 0.9843 0.9842

OA
Kappa

0.9640 0.9757 0.9654 0.9821 0.9797 0.9823
0.8827 0.9205 0.8840 0.9426 0.9365 0.9449

F1 0.9049 0.9354 0.9050 0.9537 0.9492 0.9560

Similarly, Tables 3 and 4 show the alteration detection results of dataset ‘Taizhou’ using
K-means and Otsu, respectively. In Table 3, comparison results indicate that the proposed
model sacrificed little performance in OA_UN coefficient and had great improvement
in OA_CHG. The baseline method, DSFA-128-2, occupied the optimal value in OA_UN
coefficient, while the proposed D-PRNs with PCA achieved the best performance in one-
sided coefficient OA_CHG and comprehensive coefficients, Kappa and F1. In Table 4, the
proposed D-PRNs with PCA performed the best in one-sided coefficient OA_CHG and all
three comprehensive coefficients, OA, Kappa, and F1.

4. Discussion

In addition to the difference in the learning capability of Deep Networks, the number
of samples and difference among individuals will affect the good construction of model
parameters. Furthermore, in order to compare and analyze the difference in detection
accuracy caused by various sampling strategies, we performed the proposed ADM-D-
PRNs using USFA with five sampling strategies on datasets ‘River’ and ‘Taizhou’. As
shown in Tables 5 and 6, the Random, CVA_CHG, CVA_UN, G_CHG, and G_UN are five
simple sampling strategies based on CVA pre-detection and ground truth map, and they,
respectively, indicated random selection, variant pixel pairs corresponding to the CVA
Binary Alteration Map, invariant pixel pairs corresponding to the CVA Binary Alteration
Map, variant pixel pairs corresponding to the ground truth map, and invariant pixel pairs
corresponding to the ground truth map. As the involved areas of the aforementioned
sampling strategies provided enough pixel pairs as training samples, we did not need
to consider the problem of generalization ability of the learning framework brought by
insufficient samples.

In our experiments, we used a comprehensive F1 score to analyze the desirability and
feasibility of several sampling strategies on two datasets as follows. First, the proposed
ADM-D-PRNs with random strategy only achieved 0.7053 in F1 coefficient on dataset
‘River’. It is a large gap compared with the top two scores by conducting the CVA_UN and
G_UN strategies. Moreover, once the random strategy is adopted in a learning process,
the pre-detection will become meaningless. Second, similarly, CVA_CHG and G_CHG
strategies contributed to high scores of 0.9581 and 0.9690 in F1, respectively, on the dataset
‘Taizhou’, but performed very poorly on dataset ‘River’. Our explanation for the anomaly
is partly and chiefly that the altered pixels with less cardinality contained many pseudo
changing features brought by hyperspectral imaging conditions, which greatly misled the
deep learning. However, the problem was avoided when using CVA_CHG and G_CHG
strategies on multispectral dataset ‘Taizhou’. This was mainly due to the multispectral
dataset Taizhou containing fewer pseudo features. Third, CVA_UN and G_ UN achieved
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the top two values, of 0.7612 and 0.7608, in F1 coefficient on dataset ‘River’ and a very high
accuracy, of 0.9541 and 0.9553, in the same coefficient on dataset ‘Taizhou’. However, since
the ground truth map is used to verify the performance of alteration detection algorithms,
G_UN should not be used in practical application. According to the above analysis, we
adopted CVA_UN as a sampling strategy in the tests.

Table 5. Alteration detection results of dataset ‘River’ using different sampling strategies.

Sampling Random CVA_CHG CVA_UN G_CHG G_UN

OA_CHG
OA_UN

0.6323 0.3356 0.7088 0.9023 0.7072
0.9796 0.6947 0.9805 0.5512 0.9807

OA
Kappa

0.9405 0.6543 0.9499 0.5907 0.9499
0.6727 0.0172 0.7334 0.1812 0.7330

F1 0.7053 0.1794 0.7612 0.3317 0.7608

Table 6. Alteration detection results of dataset ‘Taizhou’ using different sampling strategies.

Sampling Random CVA_CHG CVA_UN G_CHG G_UN

OA_CHG
OA_UN

0.9342 0.9470 0.9326 0.9562 0.9357
0.9948 0.9927 0.9945 0.9957 0.9943

OA
Kappa

0.9828 0.9836 0.9823 0.9879 0.9827
0.9448 0.9479 0.9432 0.9614 0.9446

F1 0.9555 0.9581 0.9541 0.9690 0.9553

5. Conclusions

In this paper, we proposed the alteration detection model ADM-D-PRNs to detect
the alterations of bi-temporal multispectral/hyperspectral remote sensing images. In the
proposed ADM-D-PRNs’ schema, D-PRNs are used to transform the original bi-temporal
images into a new dimensional space. We established USFA, IRMAD, and PCA as post-
processing methods of projection features to evaluate and compensate the deficiency of
deep networks. Our proposed D-PRNs are lightweight networks with unsupervised ar-
chitecture; they can save a lot of learning time and do not need any absolutely trusted
labels to guide the learning direction. We implemented the proposed schema on a hy-
perspectral dataset, ‘River’, and a multispectral dataset, ‘Taizhou’. Experimental results
showed that the proposed model ADM-D-PRNs outperformed the state-of-the-art models
DSFA-64-2, DSFA-128-2, and DSFA-256-2. This means the proposed D-PRNs have a more
powerful capability to nonlinearly express the essential divergence of bi-temporal multi-
spectral/hyperspectral images than the fully connected networks used in baselined DSFA
series models.

Our proposed scheme adopted the CVA pre-detection method to generate the invariant
pixel pairs as training samples, as mentioned in the Discussion. However, the premise of
this sampling method is that sufficient invariant pixel pairs are needed. Otherwise, the
expected purpose will not be achieved. Therefore, the future work is to formulate a robust
sampling algorithm to quantify the importance of features and generate the suitable pixel
pairs as training samples. In this way, we can get rid of the uncontrollable and unexpected
results brought by the various pre-detection methods.
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