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Abstract: Autumn phenology, commonly represented by the end of season (EOS), is considered
to be the most sensitive and crucial productivity indicator of alpine and cold grassland in the
Qinghai-Tibetan Plateau. Previous studies typically assumed that the rates of EOS changes remain
unchanged over long time periods. However, pixel-scale analysis indicates the existence of turning
points and differing EOS change rates before and after these points. The spatial heterogeneity and
controls of these turning points remain unclear. In this study, the EOS turning point changes are
extracted and their controls are explored by integrating long time-series remote sensing images and
piecewise regression methods. The results indicate that the EOS changed over time with a delay
rate of 0.08 days/year during 1982–2015. The rates of change are not consistent over different time
periods, which clearly highlights the existence of turning points. The results show that temperature
contributed most strongly to the EOS changes, followed by precipitation and insolation. Furthermore,
the turning points of climate, human activities (e.g., grazing, economic development), and their
intersections are found to jointly control the EOS turning points. This study is the first quantitative
investigation into the spatial heterogeneity and controls of the EOS turning points on the Qinghai-
Tibetan Plateau, and provides important insight into the growth mechanism of alpine and cold
grassland.

Keywords: autumn phenology; turning point; climate changes; human activities; Qinghai-Tibetan Plateau

1. Introduction

Vegetation phenology refers to periodically recurring growth patterns [1], and sheds
a unique light on how ecosystems respond to climate change [2–4]. Shifts in phenology
trends can affect the carbon budget, water flux, and energy balance from a regional to global
scale [5]. Regional warming in alpine regions has led to several significant phenology
changes, including advancement of the start of the growing season (SOS) in spring and
a delay of the end of season (EOS) in autumn, as well as extensions of the growing
season [6]. Phenology changes in turn provide strong feedback to climate systems, which
can affect the regional carbon and water cycles [7]. The advancement of SOS and its
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controls have been detected in numerous satellite data and observations [8,9]. However,
emerging evidence has shown that autumn phenology may contribute more strongly to the
growth season length extension than spring phenology, leading to an increase of biomass
accumulation [10,11]. Autumn phenology plays a critical role in carbon and nitrogen
cycling [12]; it is thus important to track the spatial dynamics of autumn phenology to
obtain more accurate information regarding growth season length variations and improve
the modeling of biochemical cycles at vegetation-climate intersections [13,14].

With its distinctive geographical and hydrothermal condition, the Qinghai-Tibetan
Plateau is regarded as one of the planet’s most vulnerable alpine and cold ecosystems
because of its strong sensitivity to climate change and has thus become a hotspot of
international research [15]. Some degree of consensus has been achieved in recent decades
regarding EOS changes on the Qinghai-Tibetan Plateau. Previous studies have shown an
overall lengthening of the growing season and extension of the EOS on the Qinghai-Tibetan
Plateau due to the warming and increasingly humid climate [16,17]. Studies based on a
limited number of phenological observations reported that the EOS exhibited advancement
trends on a regional scale [18]. Moreover, EOS changes have significantly affected the gross
primary productivity (GPP) and evapotranspiration (ET) of alpine and cold ecosystems [15].
Some evidence has demonstrated that EOS is not only controlled by climate conditions and
human activities [19,20] but also depends on the previous growth stage (i.e., SOS, annual
peak growth time) [21,22], which make the EOS variation controls complex and difficult to
constrain. Additional studies are therefore required to more clearly reveal the mechanism
of EOS changes.

The major challenge of EOS studies arises from the poorly understood control mecha-
nism. Previous studies have recognized that warmer temperatures and inadequate autumn
solar radiation enhance vegetation growth [22,23]. Daytime and nighttime temperatures
have different impacts on the alpine grassland EOS. However, the effects of higher presea-
son precipitation or longer sunshine duration on the EOS changes remain unclear [6]. The
intersection of a wide variety of climate variables complicates this interpretation. Further-
more, some evidence has shown that human activities (especially grassland grazing) can
alter vegetation phenology [24,25], but the superimposed effects of ecological protection
and grazing make this effect difficult to quantify.

Recent advances in time-series analysis have demonstrated that ecosystem status
changes are gradual but ultimately lead to qualitative changes [26]. The concept of turning
points has opened a new research direction of ecosystem status change. Land cover changes,
extreme climate, and human disturbances often occur abruptly and can result in ecosystem
status changes [27,28], whereas increasing human pressure or grazing may more gradually
change the ecosystem. Some previous studies demonstrated that the trend rates of EOS
changes tend to vary over long periods, whereas turning points (sometimes referred to as
breaking points) are more distinct, with different change rates occurring before and after
these points [29]. A turning point of the Qinghai-Tibetan Plateau has traditionally been
defined in the year 2000 or the entire study period is taken as a whole [20], but notable
variations can be detected at the pixel-scale, which have not been previously reported.

This paper investigates the Qinghai-Tibetan Plateau as a study area to (1) detect
the existence of EOS turning points in different subregions, (2) quantify the determined
climatic factors before and after the turning points, and (3) explore the contribution of
climate change and human activities (grazing, economic development) to the EOS turning
points. The detection of EOS turning points at the pixel and regional scale not only enriches
the understanding of the EOS controls on alpine and cold grassland but also provides
further details to reveal the EOS change mechanisms over different periods and their
controls on the Qinghai-Tibetan Plateau.
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2. Materials and Methods
2.1. Study Area

The Qinghai-Tibetan Plateau is situated in southwestern China and covers all of Tibet
and the Qinghai provinces and is also a part of the Xinjiang, Sichuan, Gansu, and Yunnan
provinces (Figure 1). The Qinghai-Tibetan Plateau is considered the third pole in the
world, has an average altitude of >4000 m, and is characterized by a plateau monsoon
climate with low temperatures, low precipitation, and strong insolation. More than 54%
of the Qinghai-Tibetan Plateau area has a total annual precipitation below 400 mm and
temperatures below 0 ◦C [22]. This region is known as the Asia water tower and is home to
the headstreams of the Yangtze, Yellow, Lantsang, and Indus rivers. The alpine, cold, and
dry climatic conditions lead to unique vegetation types on the Qinghai-Tibetan Plateau. A
climate gradient exists from warm-humid in the southeast to cold-dry in the northwest,
along which the vegetation types transition from forestland, meadow, steppe, and desert.
The grassland, which includes meadow, steppe, and desert steppe, and covers 51.05%
of the Qinghai-Tibetan Plateau area, is the most important ecosystem and sensitive to
climate change. An understanding of grassland dynamics under the climate and human
disturbance conditions is crucial for regional ecological security.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 16 
 

 

riches the understanding of the EOS controls on alpine and cold grassland but also pro-
vides further details to reveal the EOS change mechanisms over different periods and 
their controls on the Qinghai-Tibetan Plateau. 

2. Materials and Methods 
2.1. Study Area 

The Qinghai-Tibetan Plateau is situated in southwestern China and covers all of Tibet 
and the Qinghai provinces and is also a part of the Xinjiang, Sichuan, Gansu, and Yunnan 
provinces (Figure 1). The Qinghai-Tibetan Plateau is considered the third pole in the 
world, has an average altitude of >4000 m, and is characterized by a plateau monsoon 
climate with low temperatures, low precipitation, and strong insolation. More than 54% 
of the Qinghai-Tibetan Plateau area has a total annual precipitation below 400 mm and 
temperatures below 0 °C [22]. This region is known as the Asia water tower and is home 
to the headstreams of the Yangtze, Yellow, Lantsang, and Indus rivers. The alpine, cold, 
and dry climatic conditions lead to unique vegetation types on the Qinghai-Tibetan Plat-
eau. A climate gradient exists from warm-humid in the southeast to cold-dry in the north-
west, along which the vegetation types transition from forestland, meadow, steppe, and 
desert. The grassland, which includes meadow, steppe, and desert steppe, and covers 
51.05% of the Qinghai-Tibetan Plateau area, is the most important ecosystem and sensitive 
to climate change. An understanding of grassland dynamics under the climate and human 
disturbance conditions is crucial for regional ecological security. 

 
Figure 1. Study area and geographical subregions. The black circles represent the locations of 209 meteorological stations 
on the Qinghai-Tibetan Plateau. 

We divided the entire Qinghai-Tibetan Plateau into 12 subregions (Figure 1, Table 1) 
based on the bio-geographical division proposed by Zheng et al. [30]. The grassland dis-
tribution was extracted according to a China vegetation map (scale = 1:100,000) [31], elim-
inating subregions X, XI, and XII, for which the main vegetation types are desert, for-
estland, and forestland, respectively. Only the remaining nine subregions (I–IX) are ana-
lyzed in this study, covering meadow, steppe, and desert grassland (Table 1). Of these 
nine subregions, we focused in detail on subregion I, which has the highest annual accu-
mulated temperature above 0 °C (AGDD0) and medium moisture index (MI). Subregions 

Figure 1. Study area and geographical subregions. The black circles represent the locations of 209 meteorological stations
on the Qinghai-Tibetan Plateau.

We divided the entire Qinghai-Tibetan Plateau into 12 subregions (Figure 1, Table 1) based
on the bio-geographical division proposed by Zheng et al. [30]. The grassland distribution
was extracted according to a China vegetation map (scale = 1:100,000) [31], eliminating
subregions X, XI, and XII, for which the main vegetation types are desert, forestland,
and forestland, respectively. Only the remaining nine subregions (I–IX) are analyzed
in this study, covering meadow, steppe, and desert grassland (Table 1). Of these nine
subregions, we focused in detail on subregion I, which has the highest annual accumulated
temperature above 0 ◦C (AGDD0) and medium moisture index (MI). Subregions II and III
had relatively high MI values that decreased from southeast to northwest. Each subregion
exhibited unique climatic conditions and economic development levels, as well as different
vegetation responses to climate and human activities.
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Table 1. Description of the Qinghai-Tibetan Plateau subregions. AGDD0: Annual accumulated temperature above 0 ◦C. MI:
Moisture index calculated by the ratio of the mean annual precipitation to the annual equilibrium evapotranspiration.

ID Subregion Names AGDD0 Means (◦C) MI Means Main Provinces

I Alpine temperate steppe of the Qinghai Lake Basin 1311.45 0.62 Qinghai, Gansu

II Alpine meadow steppe on the Zoige Plateau 981.29 1.01 Qinghai, Sichuan

III Alpine meadow steppe on the Yushu-Naqu Plateau 670.04 0.91 Qinghai, Tibet

IV Alpine meadow steppe on the sources of the Yangtze and Yellow rivers 496.14 0.57 Qinghai

V Alpine and cold grassland on the Southern Chang Tang Plateau 824.56 0.45 Tibet

VI Alpine temperate grassland of the Brahmaputra River Basin 917.33 0.59 Tibet

VII Alpine and cold grassland on the Northern Chang Tang Plateau 618.61 0.38 Tibet

VIII Alpine and cold grassland on the Upper Indus River Basin 827.01 0.24 Tibet

IX Alpine and cold desert grassland of the Kunlun Mountains 571.07 0.35 Tibet, Xinjiang

X Alpine desert in the Qaidam Basin 1699.63 0.18 Qinghai

XI Alpine forestland in the Hengduan Mountain 2043.25 1.14 Sichuan, Yunnan

XII Subtropical forestland in the southern Tibet 3941.97 1.86 Tibet

2.2. Data Source

The GIMMS NDVI3g dataset provided by NASA was used to estimate the EOS on the
Qinghai-Tibetan Plateau. The dataset was available from 1982 to 2015 with an 8-km spatial
resolution and 15-day temporal resolution [32]. Some previous processes (e.g., calibration,
noise removal) were performed for this version to better detect the vegetation dynamics [32].
This dataset has been widely used to detect long-term vegetation dynamics [33–35]. Due
to the normalized difference vegetation index (NDVI) data might be misrepresented by
snow [36]; we used the average temperature of a sequence of five days less than 0 ◦C
to screen out the pixels that might be covered by snow. Temperature, precipitation, and
insolation data from 1982–2015 were extracted from the China meteorological forcing
dataset (1979–2015) downloaded from the Big Earth Data Platform for Three Poles with a
spatial resolution of 0.1◦ and temporal resolution of 3 h (http://poles.tpdc.ac.cn/, Accessed
on 15 August 2021) [37].

Human activities, including grazing density and economic development, were quanti-
fied using economic statistic data. For example, the grazing density were represented by
the number of large animals (one large animal equal to five sheep unit) and sheep, and
uniformly converted into sheep units. The economic development levels were quantified
as the production of primary, secondary, and tertiary sectors. These data come from the
statistical yearbooks of Qinghai and Tibet from 1982 to 2015.

2.3. Retrieval of EOS

Numerous methods have been used to fit the NDVI changes from seasonal vegetation
cycles. After comparing the fitting results of HANTS [38], Polyfit [39], and Double logis-
tic [40] in the nine subregions, we found that the RMES of HANTS (1.26 ± 0.24 × 10−5)
and Polyfit (1.28 ± 0.24 × 10−5) were similar and smaller than the Double logistic results
(1.93 ± 0.43 × 10−5) (Figure A1). HANTS and Polyfit, were therefore selected as the two
most simple and effective methods to fit the NDVI change curves. Dynamic thresholds were
adopted to determine the EOS. Further details of these two fitting methods are described
below.

The HANTS method involves the harmonic analysis of a time series, is adapted from
the fast Fourier transform, and eliminates cloud noise using the least square method [38,40].
The HANTS methods can quickly smooth the data, remove outliers, and fill gaps of missing
data. The following Equation (1) was used to fit the NDVI seasonal fluctuation curve:

NDVI(t) = a0 + ∑n
i=1 aicos(2πt − ϕi) (1)

where t is the Julian date, a0 is the average of all NDVI observations, and ϕi and ai are the
phase and amplitude of the curve, respectively.

http://poles.tpdc.ac.cn/
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The Polyfit method adopts a polynomial function to fit the NDVI records [39]. The
following sixth order Equation (2) is used to describe the NDVI curve:

NDVI(t) = a0 + a1t + a2t2 + . . . + a6t6 (2)

where a0–a6 are regression coefficients determined using the Levenberg–Marquardt method.
The EOS was determined by the day when the smoothed curve of the 34-year mean

passed a designated threshold. We first fitted the NDVI changes with HANTS and Polyfit
methods and then calculated the NDVIratio (described in Equation (3)) for 365 days with
multi-year mean NDVI values, next detected the time t with the minimum NDVIratio and
used the corresponding NDVI(t + 1) at time (t + 1) as the NDVI threshold for the EOS.
Finally, we obtained the EOS for 34 years using the threshold:

NDVIratio(t) =
NDVI(t + 1)− NDVI(t)

NDVI(t)
(3)

2.4. Quantification of the EOS Trends, Turning Points, and Controls

After extracting the EOS at the pixel scale, we first quantified the tendency of the EOS
changes using greenness changes methods, and then detected the turning points using the
piecewise regression method. The mean EOS values and EOS trends within the subregions
were calculated as the EOS and EOS trends at the subregion level. The turning points at a
subregion and province level were calculated by the majority values.

The EOS trends were calculated using the greenness rate of change [41]. The EOS was
considered delayed if the slope was a positive value; otherwise, the EOS advanced.

slope =
n × ∑n

i=1(i × NDVI)− ∑n
i=1 i ∑n

i=1 NDVIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (4)

where i is the order of the year, n is the number of years, NDVIi is the NDVI in the ith year,
and the slope is the vegetation change rate. Alternatively, we can use the unary linear
regression, in which the P values and confidence levels can be calculated.

Turning points were identified by piecewise regression [42] analysis, as defined in
Equation (5), which can be used to detect sudden and sharp changes in directionality. This
method has been widely applied for analyzing vegetation dynamics [19,43,44].

y =

{
β0 + β1t + ε t ≤ α

β0 + β1t + β2(t − α) + ε t > α
(5)

where t is the order of the year, α is the estimated turning point of the vegetation change
trend determined using the least square error method, β1 and (β1 + β2) are the change rates
before and after the turning points, respectively, and ε is the residual error. We performed
t-tests to check the significance of the piecewise regressions.

Redundancy analysis (RDA) is a powerful analysis technique that could be applied
in separating the contributions of climate, human activities, and their intersections to the
EOS changes. RDA is a method to extract and summarize the variation in a set of response
variables that can be explained by a set of explanatory variables [45]. In this study, RDA
was performed with the vegan package in R language [46]. In RDA, climatic variables
or human activity variables were chosen as predictors to maximize the extent of their
correlation with the EOS changes as the response variable. RDA had been widely used in
ecology-related studies [47,48]. The turning points of human activities were also calculated
with Equation (5). The relationships between the turning points of the EOS and climatic
variables were quantified using partial regression analysis or the correlation coefficient.
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3. Results
3.1. EOS Spatial Distribution and Variation Characteristics

The obtained EOS presented high spatial heterogeneity across the grassland of the
Qinghai-Tibetan Plateau during 1982–2015 (Figure 2). The EOS results extracted using
the HANTS and Polyfit methods were not consistent, but their spatial distribution trends
were similar (Figure 2a,b). The mean multi-year EOS began on the 291th day of the year
(end of September) and spanned nearly one month from the southeast to the northwest
(Figures 2 and 3a). The EOS started early (around the 277th day) in subregion IX, which
has the highest elevation and lowest AGDD0 values, and started late (around the 300th
day) in subregions II and III, which are characterized by relatively warm-humid conditions.
In the central Qinghai-Tibetan Plateau (subregion V), the EOS occurred on the 295th day.
In subregion I, the EOS was early in the west and late in the east with a mean EOS on the
292th day. The spatial heterogeneity variations were significantly controlled by the MI
(EOS = 16.55 × MI + 287.28, R2

adj = 0.20 **), with an early EOS in the drought subregions
(IV, VII, VIII, and IX) and late EOS in the relatively humid subregions (II, III, and VI). The
EOS spatial heterogeneity was essentially insensitive to AGDD0.

The mean EOS on the Qinghai-Tibetan Plateau exhibited a slow delayed trend with
an average rate of 0.08 days/year. The EOS results extracted using the HANTS and Polyfit
methods presented similar patterns (Figure 2d,e). Using these two fitting methods, 60.2%
of the study area presented delay trends (27.8% area is significant), while 39.8% of the study
area presented advance trends (13.4% area is significant). The EOS trends differed between
the nine subregions during 1982–2015 (Figure 3b), showing a delay in the northwest and
an advance in the southeast. Subregions I and IX showed significantly delayed trends
with more than 0.20 days/year. The EOS of subregion II, with a main land use type of
wetland, was also delayed by a rate of 0.12 days/year. The EOS in subregion VIII, which is
characterized by alpine, cold, and dry climatic conditions, presented a negative trend with
the fastest variation rate (−0.12 days/year) compared with the other subregions. The EOS
of subregion IV showed an advanced trend in the north but delayed trend in the south,
with a mean EOS trend of 0.02 days/year. The EOS in subregions III and V showed slight
advanced trends of –0.02 and −0.01 days/year, respectively. Subregions VI and VII both
presented a slightly delayed trend with an average of approximately 0.04 days/year.

3.2. Detection of EOS Turning Points in the Subregions

The EOS changed over time and presented delayed trends during 1982–2015, but
the rates of change were not fixed in each subregion over different periods, and notable
turning points were observed (48.2% is significant) (Figure 4c). For example, in subregion
I, the turning point occurs in the year 1994, for which the EOS was delayed before 1994
and slightly advanced after 1994 (Figure 4f). Similarly, subregion II showed a delayed EOS
before 2002 and then a slightly advanced EOS after 2002. In the remaining subregions
(III, IV, VI, and IX), the change trends were similar and the turning point year was 1994,
where the EOS was delayed prior to 1994, suddenly advanced in 1995, and then maintained
the previous change trend until 2015. The turning point trends in subregions V, VII, and
VIII occurred in 1994, 1994, and 1999 respectively, but were not significant. These results
demonstrate that the EOS changes clearly exhibit turning points and a wide range of EOS
change trends with significant spatial heterogeneity on the Qinghai-Tibetan Plateau. The
pattern of EOS turning points extracted by HANTS and Polyfit (Figure 4a,b,d,e) have a
small difference in subregion I and VI.
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3.3. EOS Variations Controlled by Climatic Variables before and after Turning Points

The EOS changes exhibited close relationships with the climatic variables, but the
dominant climatic variable differed in each subregion before and after its associated turning
point (Figure 5). Temperature was the dominant control over the EOS changes in most
subregions (I, II, IV, VI, VII, VIII, and IX) before and after the turning point year. In contrast,
subregion III showed that the EOS was mainly controlled by the precipitation. Central
subregion VII showed that the EOS was jointly controlled by the effects of temperature
and precipitation. The area where the EOS changes was controlled by temperature covered
the largest proportion, followed by precipitation and insolation (Figure 5d). The results
indicate that the proportions controlled by each climate variable changed before and
after the turning point years. For example, the EOS in subregion V was controlled by
precipitation before the turning point, which then switched to temperature (Figure A2).
The EOS of only approximately 40% of the area in subregion VI was significantly controlled
by temperature prior to the turning point, which thereafter increased to 70%. Contribution
of climates to EOS variation are similar with the fitting results of HANTs and Polyfit
(Figure A3).
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3.4. Controls on the EOS Turning Points

The changes of the annual EOS turning points are consistent with the turning points
of the climate variables in most subregions (Table 2). In subregions I and II, the year of
the EOS turning point coincides with the year of the insolation and precipitation turning
points, respectively. Furthermore, the years of the EOS and temperature turning points
are consistent in subregions III–IX. The major determining climatic variable for the EOS
turning points is precipitation, followed by temperature and insolation. The relationship
with the EOS turning point and insolation is generally weak (R2 < 0.05).

Table 2. Correlation coefficients and P values between the turning points of the EOS and the turning
points of climate variables.

The EOS Turning Points versus Climate Turning Points R2 p Value

EOS~temperature 0.331 <0.01
EOS~precipitation 0.378 <0.01

EOS~insolation 0.038 0.76

The relationship between the EOS and human activities was studied at the province
level owing to limited statistical data in certain counties and subregions. The economic
data show a consistent turning point with the EOS. Before the turning point year (~1996 for
Qinghai and ~1995 for Tibet), Qinghai maintained a large amount of sheep, which reflected
high grazing activity, and the economic development was slow with low production in the
primary, secondary, and tertiary sectors. However, after the turning point year, the grazing
intensity decreased and reached a stable change rate, whereas the economy developed
rapidly, especially in the secondary sector. For Tibet, the grazing intensity was small before
the turning point year but showed a rapid growth rate after the turning point. Similar to
Qinghai, Tibet experienced fast economic growth after the turning point, especially in the
tertiary sector.

At the province level, the annual EOS was closely related to climate, human activities,
and their intersections (Table 3). For Qinghai, a combination of the turning points of climate
and human activities can explain 78.86% of the EOS turning points changes, with climate
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independently accounting for 40.22% and human activities accounting for 10.45%. The
intersections of climate and human activities can explain 28.19% of the EOS variation in
Qinghai. In Tibet, the EOS change due to climate (66.17%) was larger than that in Qinghai
and the effect of human activities (6.8%) was weaker. The climate and human activities
intersections in Tibet (9.98%) were also smaller than in Qinghai.

Table 3. Independent contributions of the turning points of climate, human activities, and their
intersections to the annual turning points variations of EOS at the province level.

Provinces Climate
Independent (%)

Human Activities
Independent (%)

Climate-Human Activities
Intersections (%)

Qinghai 40.22 10.45 28.19
Tibet 66.17 6.80 9.98

4. Discussion
4.1. Controls on the EOS and EOS Turning Points

This study is the first to demonstrate pixel-scale spatial heterogeneity of the EOS
turning points and explain the turning point controls. The results indicate that the joint
effects of climate variables and human activities are the main controls of the EOS turning
points. The response of the EOS to environmental changes is complex. Some previous
studies indicated that temperature plays a crucial role in EOS regulation [49] however,
we show that the temperature control over the EOS is regulated by precipitation and
insolation in the meadow and grassland ecotones. The cause of the turning points in most
subregions is the abrupt change of temperature and precipitation. The results also reveal
that insolation contributed considerably to the EOS changes, which is consistent with some
previous reports that the EOS and its relation with GPP is mainly limited by insolation [50].
Other studies have reported that meadow shrinkage, decreased land cover, land albedo
changes, and permafrost and seasonal frozen soil dynamics intersect with climate change,
which alters the EOS trends [51].

Grazing is the most important human activity that affects grassland dynamics on
the Qinghai-Tibetan Plateau [52]. The spatial heterogeneity of community increases, com-
munity function alteration, and biodiversity loss are considered to be some of the key
disturbances that result in grassland degradation [53,54]. The pika population could also
increase the effects of animal distribution on vegetation [55]. Overgrazing reduces the
vegetation biomass and height, and restricts the regrowth ability of grassland. Our anal-
ysis shows that grazing activities in Qinghai notably decreased around 1998, coinciding
with the implementation of national conservation policies (e.g., ecological compensation,
restoration of degraded grassland). Grazing in Tibet was not active before 1995 and then
rapidly increased, however grazing decreased after 2005 due to the late implementation
of ecological conservation projects. The primary industry (mostly agriculture and ani-
mal husbandry) increased by nearly a factor of five in 1996–2015 compared with that in
1982–1994, which is also consistent with the EOS change turning points. The tertiary
industry in Qinghai and Tibet quickly increased after the turning points, which indirectly
reflects the intensification of human activities on the Qinghai-Tibetan Plateau.

4.2. Ecological Significance of the EOS and Its Turning Points

Phenological changes have great effects on the structure and function of ecosystems.
At the community level, various species have different phenological responses to climate
change, whereas the EOS can lead to a change in the competition for light and water
conditions [17,56]. Moreover, plant species changes in the community introduced by the
EOS can lead to phenological mismatches; for example, the period of high consumer
demand for a resource does not match with the period of resource abundance [57]. At
the ecosystem level, phenological grassland changes can modify certain land surface
parameters (e.g., albedo, sensible heat flux, evaporation, boundary layer conductivity),
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which affects the regional carbon and water cycles [58]. For example, a later EOS may
promote GPP and cause plants to close their stomates and increase water use efficiency if
a soil deficit exists [59]. Moreover, the delayed EOS may also increase transpiration and
partly offset the GPP, therefore leading to closer relationships between the net ecosystem
productivities and EOS changes [60].

The existence of turning points indicates that the EOS trend over long-time periods
does not remain unchanged, and the rates of EOS changes differ before and after these
points. This observation has several advantages in ecosystem-related studies. First, climatic
controls on the EOS in the Qinghai-Tibetan Plateau intersect with each other and follow
non-linear relationships with the EOS. An analysis of the EOS before and after the turning
points therefore helpful to evaluate the climatic driving mechanisms of the EOS. Second,
the detection of spatial heterogeneity of the turning points is helpful for evaluating the
large-scale implementation effects of ecological conservation projects. Third, an analysis of
the turning points of the EOS relationships with ecosystem functions and services provide
important guidelines for fine ecology planning and the development of protection policies.

4.3. Uncertainties, Challenges, and Future Directions

The uncertainties in this study arise from three aspects. First, although the EOS
trends are consistent with the findings of MODIS NDVI and SPOT NDVI, some design
shortcomings in the AVHRR sensor may potentially introduce noise into the GIMMS 3g
NDVI dataset. Second, the human activities are difficult to quantify for lack of grazing data
(intensity and boundary) and statistic data on the county levels for a long time. Third, there
is a limited number of phenological stations on the Qinghai-Tibetan Plateau, and most are
distributed in the east, which thus does not represent the EOS changes of the entire plateau.
The results of the EOS extraction are not fully calibrated by observations owing to limited
data availability.

We recommended the following perspectives for future studies. First, extreme climate
events (e.g., cold, frost, drought) may have a more direct effect on vegetation phenology
than gradual changes in mean climatic conditions [27,28]. Non-structural carbohydrate
storage in plants is helpful to avoid damage caused by extreme events [61]. However,
extreme climate conditions with variable frequencies and intensities in different seasons on
the Qinghai-Tibetan Plateau require rigorous quantification. Second, although many stud-
ies have quantified the effects of climate variables in different seasons, spring phenology,
growth season length, and human disturbances on the EOS changes, the joint contribution
of these variables is low and the control mechanisms of the EOS and its turning points
remain poorly understood. The strengthening and development of phenological observa-
tions stations are therefore necessary to explain the mechanism of phenology changes in
the Qinghai-Tibetan Plateau. Third, ecosystem models are essential tools for simulating the
carbon cycle in both historic and future climate scenarios however, their accuracies remain
limited by the understanding of the EOS [62]. More reasonable algorithms and reliable
observations are required to calibrate the ecosystem models, which will ultimately provide
a new research direction but presently faces serious challenges.

5. Conclusions

This study applied multiple statistical methods and long-time series remote sensing
data to determine the spatial heterogeneity and controls of autumn phenology on the
Qinghai-Tibetan Plateau. The results are summarized as follows. (1) EOS turning points
exhibit notable spatial heterogeneities. (2) The climatic controls of the EOS before and
after the turning points varied in different subregions on the Qinghai-Tibetan Plateau. (3)
Changes in the turning points are controlled by the joint effects of climate and human
activities (grazing and economic development). This study is the first to demonstrate the
spatial heterogeneity of turning points at a pixel scale and discuss their controls on the
Qinghai-Tibetan Plateau, which is useful for exploring the mechanism of EOS changes and
developing regional ecosystem conservation measures.
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