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Abstract: Natural disaster impact assessment is of the utmost significance for post-disaster recovery,
environmental protection, and hazard mitigation plans. With their recent usage in landslide suscep-
tibility mapping, deep learning (DL) architectures have proven their efficiency in many scientific
studies. However, some restrictions, including insufficient model variance and limited generalization
capabilities, have been reported in the literature. To overcome these restrictions, ensembling DL
models has often been preferred as a practical solution. In this study, an ensemble DL architecture,
based on shared blocks, was proposed to improve the prediction capability of individual DL mod-
els. For this purpose, three DL models, namely Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), and Long Short-Term Memory (LSTM), together with their ensemble form
(CNN–RNN–LSTM) were utilized to model landslide susceptibility in Trabzon province, Turkey.
The proposed DL architecture produced the highest modeling performance of 0.93, followed by
CNN (0.92), RNN (0.91), and LSTM (0.86). Findings proved that the proposed model excelled the
performance of the DL models by up to 7% in terms of overall accuracy, which was also confirmed by
the Wilcoxon signed-rank test. The area under curve analysis also showed a significant improvement
(~4%) in susceptibility map accuracy by the proposed strategy.

Keywords: artificial intelligence; disaster impact assessment; ensemble deep learning; shared blocks;
landslide susceptibility mapping

1. Introduction

Natural disasters may be described as the occurrence of an extremely hazardous event
that has impacts on communities causing damage, disruption, and casualties, leaving the
affected communities unable to function normally [1]. Among natural hazards, landslides
compose at least 17% of all mortalities caused by natural disasters all over the world, based
on the statistics provided by the Center for Research on the Epidemiology of Disasters
(CRED) [2]. Landslides, which are characterized by the downslope motions of soil or
rock materials under the effect of gravity, have long been affecting human society, natural
habitats, and biota in various forms [3,4]. According to the statistics, between 1995 and
2014 more than 3876 landslide activities occurred globally, incurring 163,658 fatalities
and 11,689 injuries [5]. In other spatiotemporal-based research, it was reported that non-
seismic landslides cost the lives of approximately 56,000 people between 2004 and 2016 [6].
Furthermore, landslides are predominantly responsible for forest and soil denudation,
since they modify the topography of the Earth’s surface through the sudden deformations
they create. In addition, based on the statistics from the Emergency Events Database [7],
landslides cost an estimated 10.8 billion US dollars in economic damage from the 18th to
the 20th century, implying the urgent necessity for ongoing assessment and enhancement
of efforts to effectively manage and minimize landslide hazards.

The unexpected and harsh implications of landslides have mobilized the global sci-
entific community to take necessary precautions. In this context, the production of land-
slide susceptibility maps (LSMs) with accurate, up-to-date, and reliable information is
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prominent in the current literature. With LSMs, the geospatial distribution of landslide
and non-landslide zones of the study area under consideration can be characterized. In
addition, such maps not only assist extensive solutions to decision makers and public
institutions in terms of preparing emergency action plans during the pre-disaster phase,
but also serve as a functional tool in land management practices. Moreover, LSMs can be
used as a base map in many infrastructure and superstructure investments.

Owing to the complex nature and inconsistent mechanism of landslides, understand-
ing the major triggering factors underlying their occurrences and modeling their spatial
probability have been challenging tasks, mainly researched through statistical, determinis-
tic, and heuristic approaches [8,9]. The statistical methods are usually constructed using
linear correction analysis between historical landslides and predisposing factors. On the
other hand, deterministic methods require the estimations of quantitative measures of
stability factors across given a region and several necessary parameters (e.g., soil strength
and layer thickness) [10]. In heuristic approaches, expert opinions are employed for pre-
dicting landslide hazards by using predisposing factors, substantially involving the expert
knowledge system and analytical hierarchy process. A given hazard is rated consider-
ing the professional judgment of the analyst conducting the investigation. The major
challenge of heuristic approaches is the inadequacy of information related to the study
region, which occasionally results in undesirable generalizations [11]. Although these
techniques are intensively utilized for the generation of LSMs, they have major limitations
of requiring expert opinion and being applicable in only homogenous geomorphic set-
tings [12,13]. Therefore, most efforts have been devoted to solving the problem by using
more robust models. In parallel with the rapid improvements in artificial intelligence
and computer science, a new methodological concept called machine learning (ML) has
become apparent in many domains. These developments have also opened new horizons
in landslide susceptibility mapping studies. More specifically, the transition from con-
ventional knowledge-driven methods to data-driven strategies inherently had a direct
impact on the predictive performances of LSMs, and researchers emphasized that the new
strategy was more robust than previous approaches [14–16]. Until the present, numerous
ML approaches in a broad spectrum have been actively pursued. Some of these are based
on decision trees, which have a structure used to divide into smaller clusters by apply-
ing a set of decision rules (i.e., decision tree and random forest) [17,18]. Some of them
(i.e., support vector machines) are founded on the vector space-based approaches that try
to seek a decision boundary between classes [19]. Others are based on gradient boosting
methodology (i.e., gradient boosting machine, CatBoost, and XGBoost), employing the
principle of repetitively using patterns in residuals and strengthening and improving a
model with poor predictions [20–22].

Within the past few years, a new and evolving paradigm, namely deep learning (DL),
has been introduced to overcome some of the inherent restrictions of ML models and boost
the predictive quality of a produced model. DL algorithms do not need prior information,
since they can efficiently find relevant information across disparate datasets and get the best
parameters for creating models during the model training process. Moreover, the impact
of overfitting on the prediction accuracy of the DL model can be eliminated. Due to the
above-mentioned distinctive features, DL models have been intensively utilized in natural
disaster impact assessment—such as flooding [23], wildfires [24], and tsunamis [25]—to
understand the complex and dynamic structures of such phenomena. Previous studies
showed that DL algorithms, including Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and Long Short-Term Memories (LSTMs), have produced
remarkable predictive performances in the estimation of landslide vulnerability [26–30].
For instance, [31] investigated landslide susceptibility prediction using support vector
machine (SVM), 1D-CNN, and artificial neural networks (ANN) in the Yangyang province,
South Korea, and reported that CNN was superior to the ANN and SVM due to its ability
to deal with geospatial correlations via convolution and pooling functionalities. Likewise,
RNN was used to tackle the same problem and was found to have an effective predictive
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ability for landslide susceptibility mapping [32,33]. Research in [34] also applied RNN and
its variants to produce an LSM of Yongxin County, China, and proved their effectiveness.
Likewise, [29] employed three inductive learning algorithms, namely decision tree, SVM,
and backpropagation neural network, together with LSTM, to forecast spatial probabilities
of landslide risk in the China–Nepal Highway. Results indicated that LSTM outperformed
the other ML algorithms because of its ability to understand the time sequence with
extended temporal constraints.

Despite the recent prevalent use of single DL algorithms in landslide susceptibility
mapping studies, some drawbacks, namely insufficient model variance, less model gener-
alization, and limited model performance have been reported [28]. Each DL architecture
has its a specialized structure for specific applications. In such circumstances, ensembling
several DL models can boost the accuracy of the output, thereby allowing the main model
to be generalized, also providing an improved nonlinear representation [34]. Although the
ensemble scheme has been widely employed for traditional ML techniques [35,36], the use
of this concept for DL models is still an inactive topic in the generation of LSM practices.
Therefore, in this study, shared layers architecture, constructing an ensemble framework
through individual DL algorithms, was adopted. Shared layers are an important strategy
for generalizing DL models, ensuring the process of merging layers of numerous trained
DL models into a new model. The shared layers are regarded as a feasible and effective
method for minimizing the number of parameters in DL models. Previous research has
shown that the overall prediction quality in the ensemble DL model may be improved by
processing the tasks cooperatively and transferring information between the models [37].

In the present work, three popular individual DL algorithms (i.e., CNN, RNN, and
LSTM) and an ensemble DL model (RNN–CNN–LSTM), based on the shared layers blocks,
are employed for generating LSMs of the Trabzon province, located in the northeast part of
Turkey. The ultimate motivation of the study is to show the ease of use and effectiveness of
the ensemble DL architecture, together with its superiority over the individual DL methods
in the landslide susceptibility prediction. The additional objective of the work is to provide
an explainable decision-making mechanism of the proposed DL structure with the SHapley
Additive exPlanations (SHAP) approach. The novelty of this work lies in the implementa-
tion of the ensemble DL strategy concept by employing the shared layers architecture in
landslide susceptibility mapping to compensate for the above-mentioned restrictions of
individual DL algorithms. To this end, the importance scores of each landslide condition-
ing factor were initially estimated utilizing the correlation-based feature selection (CFS)
technique. Thus, potential collinearity in the dataset was sought to feed the DL architecture
with more suitable features. The predictive performances of the produced LSMs were
evaluated using six well-known accuracy metrics, namely overall accuracy (OA), precision,
recall, F1-score, Kappa coefficient, and area under the receiver operating curve (AUC).
Moreover, a statistical significance test (i.e., Wilcoxon signed-rank test) was implemented
to make a sound comparison of the predictive performances of the DL models. Finally,
the contribution of each predisposing factor on the proposed ensemble DL architecture is
explained using the SHAP method, based on game theory.

2. Study Area and Dataset
2.1. Description of the Study Area

Trabzon province, which is situated in the Eastern Black Sea coast of Turkey, was
considered as the area of interest since it is one of the regions intensely exposed to landslide
phenomena. The study area is geographically located 41◦08′ and 40◦30′ latitudes and
39◦15′ and 40◦15′ longitudes, which occupies a land of approximately 4664 km2 (Figure 1).
It is a narrow flat land nearby the sea and is characterized by rough and hilly topography
extending vertically to the seashore.
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Figure 1. Study area and landslide locations.

Topographically, the study area has elevations ranging from 0 to 3354 m and slope
angles up to 70◦. Morphologic, climatic, and physiographic characteristics of the region
facilitate occurrences of landslide activities. In the region dominated by the characteristics
of the Black Sea climate, the annual mean precipitations and temperature are 819 mm and
14.7 ◦C, respectively. Nonetheless, the precipitation pattern is erratic, with some seasons
of sparse rain followed by prolonged torrential rains. Such excessive rainfall accelerates
the rate of weathering, significantly weakening the resilience of the covering materials
to the potential of mass movement [38]. In the Eastern Black Sea region, particularly in
the Trabzon province, landslide activities are a long-term and escalating challenge for
the local community. As a matter of fact, in 1929, 1950, 1952, 1985, 1988, and 1990, a
great deal of life was lost in this region and there have been huge landslides causing
property loss [39]. For instance, 65 people lost their lives in the Maçka/Çatak region and
the area suffered substantial financial losses due to the heavy rain [39]. Besides, more than
150 landslides occurred between 2005 and 2008 in places with excessive precipitation and
escarpments; as a result, many residential buildings were damaged, and 460 buildings
became uninhabitable [40].

Geological structures of the region under consideration are primarily characterized
by Pliocene (Pl), Eocene (γ2, γ3, Ev), Upper Cretaceous-Paleocene (Cru1, Cru2, Cru3,
Cru4b, Cru5b, Cru5a), Upper Jurassic-Lower Cretaceous (JCr), and Secondary and Tertiary
eras composing Lias-Dogger (Jlh) (Figure 2). Some units are predominantly derived
from magmatic rocks, such as granitic, basaltic, and dacitic rocks, while certain units
incorporate sedimentary units such as sand–mud stone, limestone, alluvial deposits. In
the region, shallow landslide incidence has continually risen as a result of the highly
saturated loamy formations [41]. Apart from the triggering factors of landslide occurrences,
human intervention (i.e., anthropogenic factors), including infrastructural construction,
skewed urbanization, and deforestation have also severe impacts on the initiation of mass
movement activities.
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2.2. Landslide Inventory Map

Evaluation of landslide susceptibility is generally evaluated based on the fundamental
hypothesis that further landslide activities will presumably happen under similar circum-
stances as previous landslides [8]. Additionally, historical mass movements’ locations
provide insight and assist comprehensible inferences for links between spatial distributions
of future landslides and factors contributing to these phenomena. Therefore, landslide
inventory is considered as one of the most key tools in predicting further events [14].

In the present work, landslide samples were digitized as polygons from a topographic
base map with 1/25,000 scale to produce landslide inventory procured by the General
Directorate of Mineral Research and Exploration of Turkey. It should be noted that all
recorded historical landslides have shallow translational characteristics, owing to the
prolonged precipitation in the study area. Another important step in the landslide sus-
ceptibility mapping procedure is the determination of the sampling strategy to be used in
the extraction of landslide instances, which directly affects the predictive performances of
the produced LSMs. Therefore, this issue has always been under constant investigation
and is a well-documented problem within the current literature [42,43]. Several strategies,
such as centroids [44] and seed cells [45] have been employed to deal with the represen-
tation of the landslide polygons before the model training phase. In this current work,
one of the well-known sampling methods—the polygons of landslides for representing
geospatial position, utilized by several researchers [46–48]—was adopted as a landslide
sampling strategy. The main scarp of each landslide sample extracted from the accumula-
tion/depletion zone was later considered as a vector polygon. The existing 168 landslide
polygons on the inventory map were transformed into a raster version. The overall area
exposed by landslide phenomena is approximately 15 km2 while the smallest and largest
landslide areas were 136 m2 and 496,108 m2, respectively. It should be emphasized that
every pixel or landslide sample corresponds to a 30 × 30 m grid on the ground. On the
other hand, proper representation of non-landslide zones is one of the highest priority steps
for constructing landslide inventory. In case of the absence of ground truth data for non-
landslide samples, the methodology suggested by [10] is suitable and easy to implement.
This approach depends on two main facts: that a landslide event is not probable to occur
(i) on the surface of stagnant water or river channels, or (ii) on topographies with slope
angles not exceeding 5 degrees. Subsequently, the stratified random sampling approach
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is adopted to create non-landslide and landslide samples. Finally, it is worth mentioning
that a total of 16,718 landslide instances (i.e., pixels) were extracted and an equal number
of non-landslide instances were collected in order to avoid potential biases and inferences
stemming from the unbalanced dataset, and to make a sound comparison for the produced
DL models through accuracy assessment metrics.

2.3. Landslide Predisposing Factors

The correct identification of contributing factors plays a significant role in the robust-
ness and reliability of produced resultant LSMs, since they have an important implication
on the performances of the ML models. Meanwhile, such factors are also expected to be
consistent with the general feature of the study area. In the current work, as major geomor-
phological, hydrological, geological, and environmental features of the study area, a total
of 12 predisposing factors—including lithology, elevation, aspect, topographic wetness
index (TWI), topographic roughness index (TRI), topographic position index (TPI), slope
length, slope, distance to roads, road density, distance to rivers, and normalized difference
vegetation index (NDVI)—were considered, based on both of the previous research studies
conducted in the same region [48,49] (Table 1).

Table 1. Data source and scale/resolution information of landslide predisposing factors.

Major Factors Sub-Factors Source Scale/Resolution

Geology Lithology

General Directorate of Mineral
Research and Exploration of Turkey
(http://www.mta.gov.tr (accessed

on 4 October 2021))

1:100,000

Topographical

Elevation
(m)—DEM

Shuttle Radar Topography Mission
(SRTM-

https://earthexplorer.usgs.gov/
(accessed on 4 October 2021))

30 mAspect

DEM
TRI
TPI

Slope Length
Slope (◦)

Hydrological TWI DEM
30 mDistance to Rivers Digitized existing river networks

Environmental

Distance to Roads Digitized existing road and river
networks

30 m

Road Density

NDVI

Landsat-8 Operational Land Imager
(OLI) multispectral image (2016),
(https://earthexplorer.usgs.gov/

(accessed on 4 October 2021))

The digital elevation model (DEM), which is the main source for generating causative
factors, was provided by Shuttle Radar Topography Mission (SRTM). Seven thematic maps
(i.e., factors) including elevation, aspect, TWI, TRI, TPI, slope length, and slope were
produced from DEM. Distance to roads and distance to rivers were produced with the
Euclidean distance function, and road density was produced using existing road network
data. NDVI, which provides information about the health and density of green vegetation,
was produced by using the Red and NIR bands of Landsat-8 OLI. The lithology map of the
region, composing 13 units, was supplied by the General Directorate of Mineral Research
and Exploration, Turkey.

3. Methodology

In the literature, a wide range of methodological frameworks have been adopted to
generate LSMs. In this paper, the process of LSM production comprises five key points.

http://www.mta.gov.tr
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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The first stage involves acquiring landslide contributing factors, developing a landslide
inventory geospatial database, and measuring the contribution to modeling performance
of each factor through the correlation-based feature selection. The prepared dataset was
later divided into training (80%) (for model training) and test (20%) (for performance
evaluation of the produced models) parts. Afterward, the training data were split into two
sections, namely training (80%) and validation (20%) for checking whether the models
are overfitting. In the third stage, both single and ensemble DL shared layers architecture
models were established to build the descriptive structure. Later, six well-known accuracy
assessment criteria and a statistical significance test were considered to assess and compare
the predictive accuracies of produced DL models. The last stage comprises the generating
of LSMs of the study area under consideration. Figure 3 depicts the described methodology
adopted in the study. The causative factors were fed into the CNN, RNN, and LSTM
models, which were developed in Python using Jupyter Notebook using Keras, Pandas,
and Sklearn libraries.
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3.1. Correlation-Based Feature Selection

Choosing the most significant landslide causative factors is a fundamental point before
the stage of modeling an ML algorithm. In this context, feature selection (FS) techniques
not only boost the performances of the models but also improve the generalization capacity
and model interpretability. Since the FS process generally reduces the dimension of input
variables and storage requirements by eliminating unnecessary information, it decreases
computational cost and multicollinearity between the variables. Because of the distinct
advantages of the FS methods, they have been recently used in the generation of LSM
studies for the selection of most contributing factors [50,51].
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In the study, a correlation-based feature selection (CFS) technique was implemented
to quantify the mean merit of each contributing factor. The factors with greater correlation
coefficient scores have more contribution to the model while zero correlation coefficient
implies no contribution, and thus could be discarded from the dataset. The CFS method
assesses the correlation of subsets of the entire landslide conditioning factor space by
considering the following merit function:

rc =
krc f√

k + k(k− 1)c f f

(1)

where rc implies the total correlation among factors and the classes of the dependent
variable (e.g., landslide and non-landslide); k represents the number of predisposing
factors; rc f indicates the mean correlation value of the target variable and factors; and c f f
denotes the mean factor class correlation.

3.2. Deep Learning Methods

The research of artificial neural networks (NNs) has evolved into the paradigm of DL.
DL models are represented by several layers, including batch normalization (BN), flatten,
dense, and dropout. The layer of BN is used to establish a consistent distribution of data
during training [52]. Furthermore, the flattening layer is used to compress two- or three-
dimensional training data to one dimension [53]. The number of units in the model layers
must be limited to minimize model dimensions using dense layer structures. The dropout
layer is followed by the after dense layer in the DL model. Concisely, the specific neurons
dropped out, operating with a random value in the process of forward-propagation,
therefore increasing the generalization of the model [54]. The activation functions have a
significant role in DL-based architectures. The derivatives of these functions are multiplied
using the backpropagation method, and thus, the selected activation function ought to be
differentiable. As a consequence, activation functions should be selected in accordance
with the models used in the application of DL [55]. In particular, the sigmoid activation
function is commonly employed in landslide susceptibility prediction research because the
calculation of landslide vulnerability is fundamentally a nonlinear logistic regression topic.
The probability of classification in the DL model can also be calculated using the sigmoid
function, which represents the vulnerability of a landslide at a specific location [34,56,57].

3.2.1. Convolutional Neural Network (CNN)

CNN is commonly utilized as a feed forward NN that involves convolution processing,
including pooling, normalization, dense, dropout, and output layers. CNN models can
acquire the outstanding feature properties of the dataset, allowing it to distinguish without
the need for human-driven, complicated rules. CNNs may become in a variety of sizes, but
they all have input, hidden, and output layers. The input layer takes a one-dimensional
matrix with a feature value for each element of input data in the 1D CNN model. Each
convolutional layer is composed of some convolutional filters, and the parameters of each
process are tuned using back-propagation algorithms. The dataset is convolved using a
series of trainable filters which completely sweep the dataset, generating a series of feature
maps. Thereby, the most important features of the dataset are extracted in convolutional
processing. Herein, this process can continually lower the data dimensionality, resulting
in a decrease in the number of parameters and the cost of computing. Thus, the problem
of overfitting can be prevented. The following abbreviated equation represents the basic
functions performed by all types of 1D CNN (2):

Il
j = f (

N

∑
i=1

Il−1
i ∗ cl

ij + bl
j) (2)
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where c is the number of convolution filters, j points out the extent of convolutional filters,
and N is assigned as the channel input number Il−1

i . Moreover, b indicates the bias of filters,
f refers to the activation functions, and (∗) exemplifies the operator of convolution [58]. On
the other hand, CNN offers distinct benefits in many applications with its unique structure
of the shared weights, hierarchical feature, and local connectivity [59,60]. Particularly, the
redundant factors in the dataset are eliminated using CNN, obtaining just the meaningful
information for the LSM application [61].

3.2.2. Recurrent Neural Network (RNN)

RNN, a prominent DL approach, excels at the tasks of sequence analysis. In contrast
with CNN, it can handle sequential data utilizing recurrent states, which may acquire
meaningful information from both the current and past stages. This indicates that RNN
has a strong capacity to extract critical information from the dataset [28]. Therefore, they
are highly strong in computational calculation due to the absence of internal states of
the RNN [62]. RNNs have attracted much interest recently for their tackling a variety of
difficult issues involving sequential data processing. Because a temporal variability of the
sequential signal is closely similar to a factor information variability of pixels, the same
concept can be used for the LSM pixel unit. Ultimately, RNN uses a recurrent methodology
to describe data correlation and variability, with the parameters of the network established
while training with the sampled data [33]. The basic architecture of a conventional RNN is
shown in Figure 4.
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Figure 4. The units of a simple RNN: The RNN unit is a type of looping design that allows for the
continuation of information (ht−1) connected to previous knowledge (ht).

Theoretically, the formula of the basic RNN’s hidden units could be given as follows:

ht = tan h ( Wx xt + Wh ht−1 + b) (3)

where xt indicates the input data and ht represents the cell state at duration t in the hidden
layer, that is derived using cell state, which is shown as ht−1 at duration t−1, and also the
input data (xt) at duration t. Furthermore, Wh and Wx are temporally shared coefficients in
the cell unit. The output of RNN is relied on by both input data in the current duration and
the computations in a hidden state from the previous duration [63]. The RNN model is one
of the feasible and useful techniques for improving landslide prediction accuracy [32].

3.2.3. Long Short-Term Memory (LSTM)

A popular technique, LSTM, uses a more advanced recurrent structure to overcome
the limitation of the RNN model [64]. The structure of LSTM contains input, one/several
hidden, and output layers. When more detailed information is given, a typical LSTM
memory block consists of a unit to take information to the unit state, an input gate to
manage the amount of unit state update, an output gate to regulate the level of the unit
state contributed to output state, and a forget gate to check the level of unit initialized.
To calculate the first output and the latest updated unit state, the LSTM layer uses the
onset of the state of the network and the input at the initial step [65]. The unit of LSTM
is shown in Figure 5.
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When the operations of the LSTM unit are implemented to the input dataset with
forward propagation, the updating equations for the gate of forget, the gate of input, and
the gate of output are as presented in Figure 5 and the equations below.

ft = σ
(

W f ·[ht−1, xt] + b f

)
(4)

it = σ (Wi·[ht−1, xt] + bi) (5)

ot = σ (Wo·[ht−1, xt] + bo) (6)

ct = tan h (Wc·[ht−1, xt] + bc) (7)

ct = ft ∗ ct−1 + it ∗ ct (8)

ht = ot ∗ tan h (ct) (9)

where σ is represented by the sigmoid function and ct implies the state of the memory cell
at duration t. The weight matrices of cell gate and bias from all gates are W f ,i,o,c and b f ,i,o,c,
respectively. The unit of LSTM involves a hidden state, with ht−1 expressing the hidden
state of the previous duration and ht denoting the hidden state of the current duration.
LSTM additionally has the state of the cell, which is described by ct−1 for the previous
and current durations, respectively. The hidden state is referred to in short-term memory,
whereas the cell state is recognized in long-term memory. ht−1 and xt are analyzed with
ct−1 at the cell state and the DL, the model determines whether to output 0 (forget entire
information) or 1 (store whole information) for each cell. The following stage determines
which new data will be held in the unit cell [53]. These systems could be able to generalize
the dependencies and are especially appropriate for a sequential dataset, allowing it to be
utilized in the generation of LSM.

3.2.4. Ensemble DL with Shared Layers Approach

In the production of an LSM, one of the most challenging and critical tasks is the deter-
mination of optimal modeling technique which directly affects the produced susceptibility
models. In the literature, a large proportion of inductive learning algorithms ranging from
conventional statistical-based methods to DL algorithms has been employed for suscepti-
bility mapping [54,66–68]. However, the selection of ideal modeling algorithms is still the
subject of research, and there are still no globally agreed clear frameworks or guidelines.
In the light of this information, rather than choosing a specific learning algorithm, those
were combined under an ensemble scheme, based on a shared layers strategy to produce a
more stable and robust LSM in the study. On the fundamental basis, the ensemble learning
paradigm refers to the combination of several single (i.e., individual) inductive learning
algorithms to accomplish better generalization predictive performances [69]. Compared to
single DL models, the ensemble DL approach has the advantage of achieving more stable
and robust results by aggregating the results of individual DL algorithms [70].
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Various networks containing different parameters could be used to acquire the dioristic
character of data. Different NNs use the same parameters, which contributes to speeding
the process of training and preventing overfitting [71]. In theory, the model layers at
every training part are shared with the weights of the similar layers in the other training
parts. Moreover, the extracted features from each training part are merged and sent into
the concatenated layer (Figure 6). As a result, the high variance within the model is
reduced, and also it contributes to the generalization of the model [72]. On the other hand,
the number of model parameters rises as the architecture of the model is deeper, even
though the previous studies have accomplished noteworthy advancement in training high
deeper models.
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3.2.5. Description of Network Architectures

In the present study, all networks consist of two main parts. The first part involves
the RNN–CNN–LSTM layer blocks for extracting features, and the second part includes
dropout and dense layers to calculate the prediction of the classification procedure. These
layer blocks contain BN and flattening layers in the DL models. Furthermore, the trial-and-
error technique was utilized to seek the best parameters (i.e., epoch number, batch size,
the unit number of layer block, activation function, the optimizer, and loss function) to
objectively characterize the behaviors of the DL models. The parameters of DL models
used in the study are shown in Table 2.

Table 2. The model parameters of DL architectures.

Model Parameters CNN RNN LSTM

Input dimension 12 × 1 12 × 1 12 × 1
The number of units 16 16 16

Kernel size 2 - -
Activation function ReLu, sigmoid, tanh sigmoid, tanh sigmoid, tanh

Dense unit 20, 10 and 1 20, 10 and 1 20, 10 and 1
Dropout ratio 0.2 0.2 0.2

Optimizer Adagrad Adagrad Adagrad
Loss function MSE MSE MSE

Maximum epoch 20 20 140
Batch size 32 32 32

Total parameters 3873 913 1777

After executing CNN, RNN, and LSTM layers, the data normalization stage was
executed by using the BN layer in the layer blocks. The last process in these layer blocks
is the flattening stage, since this step is necessary so that they can be concatenated with
other layer blocks. Besides, the sigmoid function was selected as an activation function to
increase the model nonlinearity; thus, landslide probability with a range between 0 and 1
was quickly computed. Meanwhile, out of 12 landslide predisposing factors, only lithology
has a discrete structure, which represents countable data type, while the remaining 11
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factors (i.e., topographical, hydrological, and environmental) are in continuous numeric
format. Except for single LSTM, the highest number of epochs was set to 20 for all models,
because a rapid LSM assessment was required. However, the epoch number was 140 in
the single LSTM model for better training. During the implementation phase, the models
with only CNN, RNN, and LSTM blocks were trained initially for extracting features. The
outputs of these models were acquired using a prediction classifier consisting of dropout
and dense layers. In the proposed ensemble DL model, these single DL blocks were
ensembled in the same layer; thus, the different features of the data can be captured. In the
final stage, the classifier prediction component was inserted into the ensemble DL block,
and the final output was generated. For utilizing the concatenate function, four distinct
models were created, as shown in Figure 7. The objective of combining all these models
was to examine the influence of learning distinguishable characteristics of different DL
architectures (i.e., CNN, RNN, and LSTM) on the same dataset.
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3.2.6. Interpretation of DL Model Output

DL algorithms inherently have an internal structure that causes difficulty in explaining
and interpreting their results. To be more specific, CNNs contain complicated/convoluted
statistical designs with non-linear activation functions and several hidden layers, making
it challenging to analyze and clarify their estimations [73]. On the other hand, explaining
model outputs provides an understanding of which features influences the established
model to what extent, discarding irrelevant/unnecessary (if any) factors from the dataset,
as well as making more reliable and sound comparisons for the predictive performances of
the models. To address and achieve these issues, in this present study, introduced by [74],
the SHapley Additive exPlanations (SHAP) approach was adopted to elucidate the DL
model output. On a fundamental basis, the SHAP approach is based on game theory to
explain the output of learning algorithms more clearly. It provides a unified framework
to interpret predictions and a marginal contribution of each feature in a dataset, through
calculating the Shapley values that provide the coherence of the explanations. In contrast
to the conventional feature importance score operations of existing ML algorithms, the
SHAP approach can assess whether a feature contributes adversely or positively to the
model performance.

In addition to the SHAP analysis, Wilcoxon signed-ranked test, which is a non-
parametric hypothesis test, was also implemented to statistically measure the effectiveness
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of the produced models. The test has been intensively utilized to quantify the statistical
significance of performance differences between models and make a pair-wise compar-
ison [75,76]. The null hypothesis for the Wilcoxon signed-rank test is that there exists
no statistical difference between the models at a 95% confidence interval. The prior as-
sumption is rejected if z values surpass the critical threshold value (1.96), and thus, it
can be concluded that the differences in the predictive performances of the models are
statistically significant.

4. Results

The present work proposed a novel ensemble DL approach based on shared layers
architecture to generate LSMs of a case study in the Trabzon. A total of 12 landslide
causative factors were employed in the modeling of DL architectures. To implement the
proposed strategy, the average merit of each factor was initially estimated using the CFS to
conduct an a priori analysis. According to the results, a slope with 0.755 average merit was
the most important factor, having the highest importance score, followed by TRI (0.696),
slope length (0.329), NDVI (0.300), aspect (0.201), distance to rivers (0.126), TWI (0.113),
elevation (0.080), distance to roads (0.061), lithology (0.045), and road density (0.029). These
findings are also in harmony with earlier investigations in this region. In fact, it is a well-
recognized fact in the literature that slope is one the most significant agents in the initiation
of landslide activities. On the other hand, TPI (0.022) was the least effective parameter
for predicting landslide susceptibility (Figure 8). The average merits of all explanatory
factors were higher than zero, implying that each factor has a meaningful influence on
the landslide susceptibility modeling [77]. Therefore, DL model training was performed
without discarding any factor from the initial dataset.
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The loss function, or the objective function, is represented as the error of the model,
which is the difference between empirical and predicted values. The loss values can be
reduced by updating the model weights with the backpropagation algorithm. The degree
to which the anticipated value is near to the empirical value is referred to as accuracy [53].
The loss and accuracy values were calculated for both model validation and model training
state during the training of DL models. Figure 9 depicts the model performances for
the aforementioned model parameters in that all DL models performed successfully in
correlating the link between training and validation dataset avoiding overfitting. The
validation accuracies of the DL models namely, proposed ensemble DL, CNN, RNN, and
LSTM were computed as 0.94, 0.93, 0.92, and 0.87, respectively. On the other hand, it was
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confirmed that both validation and training loss values converge to approximately 0.1. On
account of the difference between accuracy and loss values, all models did not overfit and
properly estimated the landslide vulnerability to a new dataset.
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Assessment of the effectiveness of the applied methods has been recognized as a
significant instrument in gathering information about the accuracy of LSMs produced, and
the interpretation of these results. To evaluate the predictive performances of four resultant
LSMs, six well-known predictive performance evaluation measures (i.e., OA, precision,
recall, F1 score, Kappa coefficient, and AUC score) were used. According to the outcomes of
performance analysis, the proposed model (i.e., CNN–LSTM–RNN) produced had higher
predictive ability in terms of all accuracy measures compared to the single DL algorithms
(i.e., CNN, RNN, and LSTM) (Table 3). To be more specific, the CNN–LSTM–RNN model
had the highest predictive performance of 0.93, whilst the RNN produced results with 0.92,
followed by the CNN (0.91) and the LSTM (0.86), in terms of overall accuracy.

Table 3. Predictive performances of single and proposed ensemble DL algorithms.

DL Model

Prediction Result

OA Precision Recall F1
Score Kappa AUC Time

(sec.)

RNN 0.91 0.93 0.89 0.91 0.83 0.969 21.04
CNN 0.92 0.95 0.89 0.92 0.84 0.965 25.06
LSTM 0.86 0.86 0.86 0.86 0.73 0.935 402.00

CNN–LSTM–RNN 0.93 0.96 0.91 0.93 0.86 0.975 61.17

The receiver operating characteristic (ROC) curve has been widely employed in
assessing the predictive achievement of algorithms, including susceptibility mapping
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studies, since it allows a visual depiction of the diagnostic performance of a model. The
AUC scores range between 0.5 and 1. The predictive performances of the models can be
called fair (if the AUC value is between 0.7 and 0.8), good (if the AUC value is in the range
0.8–0.9), or excellent (if the AUC value is between 0.9–1) [78]. Considering the results in
this study, the CNN–RNN–LSTM model had the greatest AUC value of 0.975, followed by
the CNN (0.969), RNN (0.965), and LSTM (0.935) (Figure 10).
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The results clearly showed that the predictive performance of each DL model can be
described as excellent. To measure and evaluate the discrepancy between the effectiveness
of the models, the Kappa coefficient, commonly utilized to test inter-rater dependability,
was also estimated. The Kappa coefficient was estimated as 0.86 for the CNN–RNN–LSTM
model whilst the Kappa coefficient of 0.73 was calculated for the LSTM method, indicating
substantial agreement between the model and reality.

Apart from the performance assessment metrics, model training times of DL algo-
rithms were also considered to assess their computational complexities. Whilst the LSTM
is the model that takes the longest to train with 402.00 s., CNN and RNN networks were
completed the model training phase with 21.04 and 25.06 s., respectively. Moreover, the
CNN–LSTM–RNN model accomplished its training in approximately one minute. It should
be worth mentioning that the proposed shared layers strategy is satisfactory in terms of
the model-learning period as well as predictive performances.

In addition to the accuracy assessment metrics, differences between the model perfor-
mances were statistically measured by using Wilcoxon signed-rank test to make impartial
and sound comparisons. If the computed statistical value is higher than the threshold level
(1.96 for a 95% confidence interval), it can be said that the difference in model performances
is statistically significant. Based on the statistical test results, all estimated statistical values
for each model were higher than the critical value (Table 4). That is, the results of the
statistical significance test clearly revealed that the predictive performance differences
among three single DL and the proposed ensemble DL models were statistically significant.
In other words, it could be clearly stated that the proposed CNN–LSTM–RNN model
produced statistically superior results over the other three single DL models, since the
estimated statistical test values were higher than the critical table value.
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Table 4. Statistical significance test using Wilcoxon-signed rank test.

CNN RNN LSTM CNN–LSTM–RNN

CNN - 7.44 8.12 11.07
RNN - 2.14 2.62
LSTM - 4.22

CNN–LSTM–RNN -

The SHAP summary graph (Figure 11) ranks the most influential landslide condi-
tioning factors based on their importance, combining local interpretations from the SHAP
deep explainer function. In the summary graph, the factors in red color (e.g., slope, TRI,
road density, aspect, and elevation) have positive impacts on the model prediction perfor-
mances, while the factors in blue color (e.g., NDVI) influence the probability of landslide
occurrence negatively. Moreover, the size of the scale representing the colors of factors
corresponds to feature importance, indicating that the slope was the most influential one
among the factors, followed by TRI, road density, aspect, and elevation. When the factors
positively contribute to the landslide occurrence, it could be clearly seen that all of them are
topographical agents except road density. Moreover, it should be noted that the slope had
a positive effect on the model in the 0.63 to 0.90 probabilistic range where the probability
of landslide is high, which is consistent with the CFS analysis. On the other hand, the
NDVI has negative importance in terms of occurrences of landslides since its values are
closer to 1. To be more specific, NDVI had a negative effect on the model in the range of
0.91–0.95, where the probability of landslide is the highest, implying that the NDVI has an
inverse contribution in this interval, compared with the slope. The SHAP analysis showed
that high NDVI values indicating the dense and healthy vegetation cover had an inverse
effect on landslide occurrence. This is a reasonable and acceptable finding considering
the ability of densely vegetated areas to reduce the potential risk of mass movements by
protecting the land from excessive surface water, supporting drainage, and providing soil
stabilization. On the other hand, it can be deduced from the SHAP graph that the increase
in the values of the slope would increase the landslide risk. This can be explained by the
fact that increasing the gradient of the slope causes the deterioration of slope stability, thus
increasing the probability of mass movement activity.
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It should be worth mentioning that the natural break approach was adopted to reclas-
sify the generated LSMs into five susceptibility levels (i.e., very low, low, moderate, high,
and very high). When the produced LSMs, based on DL models, were visually analyzed, it
was obvious that high and very high susceptibility zones were predominantly densified
on the central and relatively southeast parts of the study area (Figure 12). Nonetheless,
it was found that these zones in the study area were not regularly scattered at the same
intensities, but in some regions (e.g., especially center parts), there was a distribution of in
the same susceptibility zones. However, the north and northeast parts of the study area are
mainly composed of very low and low susceptible zones. The main reason underlying this
issue is that the north of the region consists of a coastline where the slope and elevation are
generally low. Moreover, given the a priori analysis results obtained by the CFS method,
the slope was the most notable parameter in the prediction of landslide susceptibility,
confirming that it is plausible and acceptable in this respect.
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According to the LSM generated by the proposed ensemble-based DL strategy (i.e.,
CNN–RNN–LSTM), 19.90%, 19.81%, 18.80%, 18.28%, and 23.22% of the entire area in
Trabzon province were considered as having very low, low, moderate, high, and very high
landslide susceptibility, respectively (Figure 13). For the CNN algorithm, the very low class
had the largest area percentage (21.76%), followed by low (19.79%), very high (19.69%),
moderate (19.56%), and high (19.20%). When it comes to the LSTM algorithm, a similar
proportional distribution similar to the ensemble DL approach was observed. The highest
susceptibility index of LSTM was in the very high (25.28%), followed by very low (19.91%),
low (19.78%), moderate (18.77%), and high (16.27%). In the LSM produced by the RNN
algorithm, very high, high, moderate, low, and very low landslide susceptibility classes had
the 22.44%, 15.75%, 18.42%, 14.87%, and 28.52% percentage areas, respectively. Considering
the spatial susceptibility distributions obtained by four methods, these results imply that
roughly 20% of the study area consists of very high landslide-susceptible regions.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 24 
 

(19.69%), moderate (19.56%), and high (19.20%). When it comes to the LSTM algorithm, a 
similar proportional distribution similar to the ensemble DL approach was observed. The 
highest susceptibility index of LSTM was in the very high (25.28%), followed by very low 
(19.91%), low (19.78%), moderate (18.77%), and high (16.27%). In the LSM produced by 
the RNN algorithm, very high, high, moderate, low, and very low landslide susceptibility 
classes had the 22.44%, 15.75%, 18.42%, 14.87%, and 28.52% percentage areas, respectively. 
Considering the spatial susceptibility distributions obtained by four methods, these 
results imply that roughly 20% of the study area consists of very high landslide-
susceptible regions. 

 
Figure 13. Areal distribution of each susceptibility class for CNN, LSTM, RNN, and ensemble DL 
models. 

5. Discussion 
The correct identification of landslide hotspot zones and analyzing landslide 

susceptibility is of utmost significance for decision makers and related public institutions 
to conduct integrated disaster management and construct emergency action plans. 
However, in landslide susceptibility mapping studies, several critical issues—such as 
selection of proper landslide sampling strategy, determination of landslide predisposing 
factors, and the use of susceptibility modeling approaches—have usually been 
challenging for researchers, owing to the dynamics and non-linear mechanisms of 
landslides. 

Another encountered problem is related to the errors and inconsistencies resulting 
from the conversion of inventory and factor maps, particularly from vector maps to raster 
maps. Some landslide causative factors such as lineaments, road, and river networks are 
intrinsically represented by lines in vector format. Other parameters, particularly the ones 
derived from DEM, are represented by grids, referred to as raster format. To process both 
types of data, vector maps are usually converted into raster format, which is a much easier 
and more effective way of producing landslide susceptibility maps. In the conversion of 
landslide inventory maps, a special attention should be paid to the formation of boundary 
pixels of the polygons representing landslide and non-landslide zones, since these pixels 
may not have 100% representativeness due to the vector-to-raster conversion process. 
Inclusion of pixels having some degree of representativeness in reality as 100% 
representativeness in the inventory map undermines the learning abilities of the model 
and generalization capabilities. This may provoke pixels outside the landslide polygons, 
but adjacent to them, to be introduced to the algorithms as if they were a landslide pixel, 
even though they do not have a 100% landslide risk. For this reason, the correct 
representation of the inbound boundaries of the landslide zone polygons is of critical 
importance for the established models to make an accurate estimation. In the current 
literature, many landslide sampling strategies, namely landslide area, point, scarp, and 
seed cell, have been proposed to achieve such a critical step [79–81]. Their main purpose 

Figure 13. Areal distribution of each susceptibility class for CNN, LSTM, RNN, and
ensemble DL models.



Remote Sens. 2021, 13, 4776 18 of 24

5. Discussion

The correct identification of landslide hotspot zones and analyzing landslide sus-
ceptibility is of utmost significance for decision makers and related public institutions to
conduct integrated disaster management and construct emergency action plans. How-
ever, in landslide susceptibility mapping studies, several critical issues—such as selection
of proper landslide sampling strategy, determination of landslide predisposing factors,
and the use of susceptibility modeling approaches—have usually been challenging for
researchers, owing to the dynamics and non-linear mechanisms of landslides.

Another encountered problem is related to the errors and inconsistencies resulting
from the conversion of inventory and factor maps, particularly from vector maps to raster
maps. Some landslide causative factors such as lineaments, road, and river networks
are intrinsically represented by lines in vector format. Other parameters, particularly
the ones derived from DEM, are represented by grids, referred to as raster format. To
process both types of data, vector maps are usually converted into raster format, which is
a much easier and more effective way of producing landslide susceptibility maps. In the
conversion of landslide inventory maps, a special attention should be paid to the formation
of boundary pixels of the polygons representing landslide and non-landslide zones, since
these pixels may not have 100% representativeness due to the vector-to-raster conversion
process. Inclusion of pixels having some degree of representativeness in reality as 100%
representativeness in the inventory map undermines the learning abilities of the model and
generalization capabilities. This may provoke pixels outside the landslide polygons, but
adjacent to them, to be introduced to the algorithms as if they were a landslide pixel, even
though they do not have a 100% landslide risk. For this reason, the correct representation
of the inbound boundaries of the landslide zone polygons is of critical importance for
the established models to make an accurate estimation. In the current literature, many
landslide sampling strategies, namely landslide area, point, scarp, and seed cell, have
been proposed to achieve such a critical step [79–81]. Their main purpose is to adopt a
precise sampling strategy by creating an environment that is entirely representative of the
pre-failure circumstances.

In the production of an LSM, one of the most critical and challenging tasks is the deter-
mination of optimal landslide contributing factors [82]. In the literature, many contributing
factors have been employed for susceptibility mapping. However, the selection of optimal
landslide causative factors is still the subject of research, and there are still no globally
agreed clear frameworks or guidelines. The main reason for this could be explained by the
particular characteristics of study sites under consideration [83]. More specifically, while
any factor utilized in LSM may be a contributing factor for a certain area, it may not be
for another [49]. On the other side, superfluous and irrelevant contributing factors will
diminish the reliability and the predictive accuracy of the algorithm, and thus increase the
instability. In the research area, feature selection algorithms, particularly the filter-based
ones including CFS, information gain, gain ratio, and Relief-F, have been intensively imple-
mented [84–86]. With the application of CFS in the study, it was observed that no factor
should be eliminated among the 12 factors. In other words, all 12 factors had a meaningful
contribution to the model performance.

A great deal of modeling algorithms for the landslide susceptibility prediction has been
proposed and implemented from past to present. For instance, analyzing 565 peer-reviewed
articles concerning landslide susceptibility, [87] reported that a total of 163 algorithms were
applied for susceptibility zonation in these studies. They also addressed that the use of
such a large number of different algorithms also elaborates the comparison of susceptibility
models and associated mapping results. On the other hand, which algorithm would
offer the most ideal solution to a landslide susceptibility prediction problem is another
highly controversial and obscure issue. Under all the above-mentioned circumstances,
the production of LSMs through the integration of multiple algorithms with ensemble
schemes, rather than deciding on the use of an individual learning algorithm, would be a
more appropriate approach. Moreover, the concerns on a model (i.e., generalization and
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overfitting) can be emerging, necessitating the regularization approach (i.e., ensemble) to
the models for eliminating these complications. Besides, generating diversity in extracting
the features of the dataset with a single DL model has been a serious issue. The use
of ensembling schemes, which can eliminate potentially biased inferences of individual
learning algorithms by ensuring diversity within the established model, is rare to find for
DL models in the literature, but it has been studied lately for ML algorithms [15,88].

DL algorithms have recently been employed for a broad range of complex problems,
including landslide susceptibility mapping [28]. DL architectures have been used to
perform computations in several layers instead of a single layer approach and use enormous
amounts of data simultaneously. Furthermore, the DL models discover even the parameters
to be defined in ML and can be able to produce a superior assessment. Despite their superior
performance, one of the most important limitations of DL models is their complication
in clarifying the rationale and ensuring corroborating evidence to explain their outputs.
Moreover, the necessity of interpretation and explanation of the results from such models
limits their comprehensive adoption. Therefore, most of the efforts in the DL community
have gone into solving this problem by proposing a series of techniques (i.e., SHAP and
LIME) for decision-making processes of learning algorithms. In this study, SHAP analysis
results revealed that some landslide predisposing factors had positive (e.g., slope, TRI,
road density, aspect, and elevation) or negative (only NDVI) effects on the ensemble DL
model proposed in this study. Even though DL algorithms have been intensively utilized
for the identification of landslide susceptibility [68,69,89], elucidating the outputs of DL
models with such approaches have received limited attention in the literature.

Owing to the nature of landslide susceptibility mapping studies, the use of many
thematic variables in a wide range is an inevitable reality. This also engenders the necessity
to evaluate contributing factors of different resolutions or scales together. In the study,
thematic maps of 11 conditioning factors were available at 30 m resolution and only one
factor map (i.e., lithology) was at a scale of 1/100,000, theoretically corresponding to a 20 m
resolution. Therefore, 30 m spatial grid resolution was considered as the optimal solution
for all parameters to avoid virtual resampling of pixels into 20 m for the 11 thematic maps,
at the same time, to protect and process the original pixels values.

6. Conclusions

The intensity and frequency of landslides have become a more serious and harsh
problem in Trabzon province, Turkey, due to the climatic conditions, geomorphological
agents, and accelerated urban expansion that causes enormous loss of human lives and
economic harms. Therefore, the production of reliable and robust LSMs is a tremendous
necessity for landslide disaster avoidance and prevention studies. The current work intends
to propose a novel ensemble DL strategy based on the shared blocks to boost the landslide
prediction accuracies of the single DL models, a mentioned model which integrates CNN,
LSTM, and RNN models, all of which were trained using the optimizer of Adagrad. Results
of the developed shared layers model, CNN, LSTM, and RNN models were assessed and
compared through accuracy assessment and statistical analysis. Some critical implications
can be drawn from the outcomes of this work, as follows:

(i) The experimental consequences exhibited the proposed shared layer model (CNN–
RNN–LSTM) had the highest prediction accuracy (0.93%), followed by the RNN (0.92%),
CNN (0.91%), and LSTM (0.86%) models. Concisely, the suggested model performed
approximately 7% better when compared with the LSTM model in terms of OA scores.

(ii) Similar to the other accuracy assessment metrics derived from the confusion matrix,
the AUC score of the proposed ensemble DL strategy had the highest AUC score with 0.975,
while the LSTM model had the lowest AUC score with 0.935. It can be clearly concluded
that the proposed strategy outperformed the single-DL model by about 4% in terms of
AUC score.

(iii) To make a more robust comparative analysis, a statistical significance test, Wilcoxon
signed-rank test, was applied. The test results revealed that that the differences between
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the performances of all models were statistically significant at a 95% confidence interval,
which once again proved that the ensemble DL model outperformed the single DL models.
With the application of the Wilcoxon signed-rank test, the performance differences up to
7% between the proposed ensemble-based DL architecture and the other three individual
DL models were not only numerically observed, but also validated statistically.

(iv) The ensemble DL strategy, based on shared blocks, found results in approximately
61 sec. This clearly implies that the training duration of the proposed strategy was ap-
proximately 7 times faster than that of the LSTM (402 s), pointing out that the model
is also computationally feasible. This finding also implies that the proposed ensemble
DL model had an effective and practical architecture in terms of both performance and
processing time.

(v) The top three important parameters (i.e., slope, TRI, and slope length) were
detected as the factors that represent the geomorphologic characteristics of the study area
under investigation. On the other hand, TPI, which is a measure of topographic slope
position, was found to be the least effective factor. This information obtained about the
landslide predisposing factors with the CFS application, which is considered as a pre-
processing step, enabled both the detection of potential factors that will adversely impact
the model performance of LSMs and the understanding of which factor contributes to the
model performance and to what extent.

(vi) With the application of the SHAP method, factors affecting the model, in which
landslide probabilities were higher, were determined. Results revealed that the slope had
the highest positive contribution in regions where the probability of landslide occurrence
was high, while NDVI had adverse implications. In addition, it is worth mentioning that
topographic factors made a significant contribution to the landslide occurrences in the
study area, considering that four out of the six most influential parameters on landslide
phenomena were slope, TRI, elevation, and aspect.

To sum up, a high accurate LSM is invaluable for facilitating governments with plan-
ning the city and preventing/minimizing the effects of landslides. Succeeding extensions
of this study might contain the LSM application of the ensemble DL with shared layer archi-
tectures using time series datasets, including daily meteorological (i.e., rainfall, wind, and
temperature) and remotely sensed datasets (e.g., point clouds and multispectral images).
This study revealed the effectiveness and importance of DL models and their ensembled
forms in natural disaster impact assessment. For other applications, it is planned not only
to evaluate datasets related to different landslide-prone regions, but also to develop more
generalized ensemble DL algorithms.
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