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Abstract: The unmanned aerial vehicle (UAV) autopilot flight to survey urban rooftop solar panels
needs a certain flight altitude at a level that can avoid obstacles such as high-rise buildings, street
trees, telegraph poles, etc. For this reason, the autopilot-based thermal imaging has severe data
redundancy—namely, that non-solar panel area occupies more than 99% of ground target, causing
a serious lack of the thermal markers on solar panels. This study aims to explore the correlations
between the thermal signatures of urban rooftop solar panels obtained from a UAV video stream
and autopilot-based photomosaic. The thermal signatures of video imaging are strongly correlated
(0.89–0.99) to those of autopilot-based photomosaics. Furthermore, the differences in the thermal
signatures of solar panels between the video and photomosaic are aligned in the range of noise
equivalent differential temperature with a 95% confidence level. The results of this study could
serve as a valuable reference for employing video stream-based thermal imaging to urban rooftop
solar panels.

Keywords: unmanned aerial vehicle (UAV); video; urban rooftop solar panel; photomosaic;
co-relationship; thermal signature

1. Introduction

The urban solar panels are typically scattered, occupying only 1% of the total roof area
in the city [1]. Further, they account for only 10% of the rooftop surface available in the
standard single-family house [2], carrying six or fewer panels installed with 1 m width and
1.6 m height [3]. The autopilot is operated by executing pre-defined waypoints according
to the specific flight plan for the target area. The target subject to autopilot flight is a certain
area with at least several hundreds of square meters (for instance, 30 × 30 = 900 m2) while
covering more than four pre-defined waypoints [4]. Therefore, autopilot flight at the urban
area needs a certain flight altitude at a level that can avoid obstacles such as high-rise
buildings, street trees, telegraph poles, etc.

For this reason, the autopilot-based thermal imaging has severe data redundancy—
namely, that non-solar panel area occupies more than 99% of ground target, causing a
serious lack of the thermal markers on solar panels. Insufficient thermal markers on solar
panels cause the matching failure or mismatch on a single solar panel during building
thermal photomosaics, resulting in errors in exterior orientation parameters such as direct
measurements of distances, angles, positions, and areas of solar panels [5]. In addition, the
unnecessary targets possibly contaminate the thermal signatures of solar panels due to the
influence of ambient light from unnecessary targets [5,6].
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These insufficient thermal markers can be secured by targeting exclusively solar
panels installed at only 1% of the total roof area while guaranteeing a high overlapping
rate among the number of video frames. Video has an unusual property and offers several
advantages in terms of securing accurate and sufficient key points in thermal imaging of
urban solar panels. Unlike the static imagery captured by autopilot flight with pre-defined
waypoints, dynamic stereo coverage between individual frames can be accomplished
with very intensive overlapping within a single solar panel [7–9]. Video-based-thermal
imaging can capture the thermal signatures from specifically targeted objects with constant
overlapping rates within the confined area [7]. This characteristic of video can complement
the data redundancy of traditional thermal imaging captured using autopilot flight for
scattered small size solar panels in the urban environment.

Autopilot-based thermal imaging with still imageries has secured a position where
it can be used as a standardized procedure to replace in situ visual inspections and I–V
curve tests for the inspection of solar panels due to time and cost efficiency [10,11]. In this
regard, it could be a benchmark for evaluating the thermal signatures obtained from video
mosaic. Regarding UAV-borne video thermal imaging, most studies have evaluated its
applicability in view of the real-time detection, classification, and tracking of objects [12,13],
for instance, field phenotyping of water stress [14] and fire monitoring [15]. Several sources
have evaluated the credibility of thermal signatures obtained from UAV autopilot thermal
photomosaics by comparing them with the thermal signatures measured using in situ
thermometers [14,16,17]. According to Kelly et al. (2019) [16], the uncertainty of thermal
signatures obtained from an autopilot thermal photomosaics is in the range of ±0.5 ◦C,
which is lower than the corresponding uncertainty observed in measurements with in
situ thermometers under stable conditions. Other studies have evaluated UAV-borne
video in comparison with autopilot-based imaging of solar panels in terms of mapping
accuracy. For example, Hwang et al. (2021) found that the 3D coordinates of urban
solar panels obtained from autopilot-based video mosaics meet the mapping accuracy
requirements recommended by the American Society for Photogrammetry and Remote
Sensing (ASPRS) [18].

However, to the best of our knowledge, there are no studies in the literature exploring
the correlations between thermal signatures obtained from UAV video and those obtained
from autopilot-based photomosaic on urban rooftop solar panels. To examine the suitability
of video as a complementary tool of autopilot-based thermal imaging on the scattered
urban rooftop solar panels, the video should have adequate thermal sensitivity as the level
of autopilot-based thermal photomosaics in detecting the thermal anomaly in solar panels.
Therefore, the study aims to explore correlations between thermal signatures of UAV video
streams versus photomosaics for urban rooftop solar panels.

2. Method
2.1. Experimental Target

The experimental target is in the southeastern part of South Korea, between latitude
35◦50′54′ ′N and longitude 128◦32′41′ ′E (Figure 1). It is in the Dalseong administrative
district in the Daegu metropolitan area, the third most populous city in South Korea [19].
Daegu is suitable for solar power generation because it experiences low rainfall and abun-
dant solar radiation, compared with other cities in South Korea [20,21]. The experimental
target, Daegu Educational Training Institute, is located in the Gamsam-dong residential
area in the city center, which is characterized by diverse land-use patterns, such as com-
mercial, residential, schools, and parks [22]. Solar panels are installed closely along the
rooftop boundary on the fifth floor of the institute building. These solar panels have diverse
geometric characteristics (tilts, azimuth, and slopes).

Moreover, the rooftop is covered with weather shed, and it houses a ventilator, air
conditioner outdoor units, and tiles. Such rooftop surfaces are common in urban areas. In
this respect, the selected building represents an ideal study area to comparatively evaluate
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UAV video streams and photomosaics in the context of thermal imaging of urban rooftop
solar panels.
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Figure 1. UAV thermal photomosaic for experimental site processed with Pix4D Mapper and images obtained from a
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2.2. Acquisition of UAV Thermal Imagery

The UAV video was recorded on 24 August 2020 when the solar zenith angle was
the highest (13:00) for avoiding shade and poor weather (for instance, rainfall). The UAV
thermal video of solar panels was recorded using a quadcopter DJI Matrice 200 V2 equipped
with a DJI Zenmuse XT2 camera (Table 1). The solar panels installed in the study area
consisted of 72 cells (16 cm in width and 17 cm in height). To detect the thermal information
of the cells in the study area, the ground sampling distances (GSDs) of individual thermal
UAV video frames should be less than 17 cm. The GSD of a UAV video can be calculated
using the focal length of the camera (FR), sensor width of the camera (Sw), flight height (H),
and image width (imW), as follows (Equation (1)):

GSD =
Sw× H × 100

FR × imW
(1)

As the camera specifications are fixed, flight height is the major contributor to GSD.
For this reason, we set the flight altitude to 80 m to achieve the best GSD (7.16 cm) available
for detecting individual solar panels in the study area while leaving sufficient space for
the UAV to fly freely over the solar panels. Thermal infrared (TIR) video in the form of a
sequence-formatted (SEQ) file was captured at 30 frames per s and flight speed of 2.7 m/s.
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Table 1. Specifications of UAV and thermal camera.

UAV (DJI Matrice 200 V2) Camera (DJI Zenmuse XT2)

Weight 4.69 kg Pixel numbers
(width × height) 640 × 512

Maximum flight
altitude

3000 m
(flight altitude used in this

experiment: 80 m)

Sensor size
(width × height) 10.88 × 8.7 mm

Focal length * 19 mm

Hovering
accuracy

z
(height)

Vertical, ±0.1 m
Horizontal, ±0.3 m Spectral band 7.5–13.5 µm

x, y
(location)

Horizontal, ±1.5 m or ±0.3 m
(Downward Vision System) Full frame rates 30 Hz

Maximum flight speed 61.2 km/h
(P-mode)

Sensitivity
[NEDT]/Aperture <0.05 ◦C, f/1.0

* Focal length of Zenmuse XT2 is fixed at 19 mm while capturing video and still imageries in autopilot mode.;
NEDT: noise equivalent differential temperature.

2.3. Video-Based Thermal Frame Mosaic

Raw UAV thermal video frames do not contain geometric information. DJI Matrice
200 V2 and DJI Zenmuse XT2 provide telemetry data for full orientation (position and
altitude) in subtitle format (SubRip Subtitle: SRT), along with the recorded thermal video.
The time sync function of OSDK V3.8.1 embedded in the flight controller aligns the record-
ing duration of the video, GPS time, and the flight controller clock at 1 Hz. Thus, the SRT
file provides second-by-second full orientation data that consist of a number indicating
the sequence, Coordinated Universal Time (UTC), and full orientation parameters (GPS
coordinates, barometer altitude) acquired from the flight controller during the flight. To
extract thermal video imagery from the SEQ video file, we utilized FLIR Tools. The full
frame rate of DJI Zenmuse XT2 is 30 Hz (30 frames per second). However, in each recorded
second, a few frames appear blurred due to flight vibration and the small aperture of the DJI
Zenmuse XT2 (F/1.0). Therefore, the frame intervals of the UAV thermal video captured
in this study were set to 15 frames/2 s (overlap: 99%), one frame/1 s (overlap: 97%), and
one frame/2 s (overlap: 88%) to reduce noise and guarantee the desired overlapping rate.
Autopilot flight was executed over a double-grid path with an overlapping rate of 95%. A
photomosaic of individual frames was automatically created using the photogrammetry
software Pix4D Mapper and executing the following processes: (1) initial processing (key
point extraction, key point matching, camera model optimization, geolocation GPS/GCP);
(2) point cloud and mesh generation (point densification, 3D textured mesh); (3) digital
surface model (DSM) (photomosaic and index) development.

A structure from motion (SfM) algorithm was applied to establish the camera exposure
position and motion trajectory for building a sparse point cloud [23–25]. The sparse
point cloud was then used for camera calibration, and a multiview-stereo (MVS) was
utilized in conjunction with the DSM generation method based on reverse distance weight
interpolation to construct a dense point cloud [26,27]. Figure 2 presents the overlap
between the thermal photomosaics, with the green areas indicating an overlap of more
than five images for every pixel. Mostly, the thermal photomosaics generated using
autopilot (hereinafter referred to as the photomosaic) and video imagery is green, except
at the borders. The overlap ratios, key points, and matched key points are sufficient for
generating high-quality results (Figure 2).

With UAV TIR imagery, identifying ground control points (GCPs) on images is rather
perplexing owing to its low spatial resolution and collimation from heat transfer effects.
Thermal contrasts can be deducted mostly from the edges of building roofs because the
features of the vertical elements around the building are different in terms of thermal
infrared radiance [28]. For this reason, we set the edges of the solar panel mounted atop
the Daegu Educational Training Institute building as the GCPs (18 points), which were
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identified from the building vector layer recognized in the 1/1000 digitized building facility
map provided by the National Spatial Data Infrastructure Portal, Korean Ministry of Land,
Infrastructure, and Transport. As the edge of the Daegu Educational Training Institute
building is difficult to access, it is not easy to measure the 3D coordinates (X, Y, Z) with
real-time kinematics (RTK) owing to the exterior materials of the building. According
to Hwang et al. (2021), the 3D coordinates of the solar panels detected from the VIR
video photomosaic built using the RTK-measured GCPs satisfy the mapping accuracy
requirements recommended by the American Society for Photogrammetry and Remote
Sensing (ASPRS): 3D coordinates (0.028 m) [18]. Hence, we extracted the 3D coordinates of
the GCPs from the video visible infrared (VIR) frame mosaic while fulfilling the ASPRS
mapping accuracy requirement (Figure 3).

To acquire the solar panel surface temperature (from this point on referred to as the
SPST) of individual solar panels, we used individual solar panels’ boundaries to identify
the mean SPSTs of individual solar panels. Table 2 shows the temperature pixel values
of individual solar modules. The number of solar panels detected seems to be similar
between the thermal photomosaic obtained on the basis of autopilot with flight path plan
and that obtained from video images (15 frames/2 s, 1 frame/1 s, 1 frame/ frame/2 s).
However, the video mosaic processed at 1 frame/2 s has fewer detectable solar panels than
the 359 installed solar panels owing to the low quality of the video mosaic with blurred
areas (Figure 1). In addition, the SPSTs of the pixels and solar panels are higher (31.60 ◦C
and 31.64 ◦C) in the thermal mosaics processed at 1 frame/2s than those processed at other
frame rates (Table 2).
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Table 2. Descriptive statistics of detected SPST (◦C) from the solar panels in the thermal frame mosaic
obtained from the video images captured using a quadcopter operating on autopilot with a planned
flight path.

Category Autopilot 7.5 Frames/s 1 Frame/s 0.5 Frames/s

SPSTs of solar
cells detected in

solar panels

Min 26.03 26.02 25.38 24.63

Max 38.50 38.36 37.51 38.24

Mean 31.50 31.47 31.47 31.60

Standard deviation 0.57 0.58 0.60 0.59

Numbers of detected solar panels 645 645 645 359

SPSTs of
individual solar

panels

Min 27.46 27.44 27.74 26.02

Max 33.47 33.42 33.46 33.95

Mean 31.52 31.52 31.53 31.64

Standard deviation 0.98 0.97 0.98 1.15

2.4. Evaluating Performance of Video Mosaics in Thermal Deficiency Inspections

This study used a linear regression model to evaluate the relationships and differences
between the video versus photomosaic of the same locations by comparing the correspond-
ing SPST values. Linear regression assumes stationary relationships across the study area.
Linear regression and Pearson correlation analyses explain the linear relationship between
the two variables on the basis of proportional equations [29,30]. Comparative evaluations
with linear regression and Pearson correlation can yield the fitness of the SPSTs detected
from the UAV video thermal infrared (TIR) frame mosaic (from now on referred to as
the video mosaic) and photomosaic. The coefficient and error terms help us determine
whether the SPSTs obtained from the UAV video mosaics are over or under-measured,
compared with those of the photomosaic. The Pearson correlation indicates that the SPSTs
values of the UAV video mosaic and photomosaic have the same directions within the solar
panel area.

Given that the coefficient and error terms are close to 1 and 0, respectively, when the
Pearson correlation values are higher, the individual SPSTs obtained from the UAV video
and photomosaics are similar and can be used as a substitute for the thermal imaging of
urban rooftop solar panels. Therefore, the corresponding linear regression models are
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established as the SPSTs detected from the photomosaics as the dependent variables and
video mosaics with different frame intervals. These linear models, which are expressed as
Equations (2)–(4), are calibrated using ordinary least squares (OLS) estimation.

SPSTp = a0 + a1

(
SPST7.5 f rames

)
+ ε1 (2)

SPSTp = b0 + b1

(
SPST1 f rame

)
+ ε2 (3)

SPSTp = c0 + c1

(
SPST0.5 f rame

)
+ ε3, (4)

where SPSTp is the SPSTs obtained from the photomosaic, SPST7.5 f rames is the SPST ob-
tained from the video mosaic processed at 15 frames/2 s, SPST1 f rame is the SPST obtained
the video mosaic processed at one frame/1 s, and SPST0.5 f rame is the SPST obtained from
the video mosaic processed at one frame/2 s. In Equations (2)–(4), a1, b1, and c1 are
coefficients, and ε1–ε3 are random error terms of the residuals. Equations (2)–(4) repre-
sent the regression models established using SPST7.5 f rames, SPST1 f rame, and SPST0.5 f rame,
respectively, as the explanatory variables and SPSTp as the dependent variable.

A measure of the noise performance of thermal detector systems (sensors) is the
noise equivalent differential temperature (NEDT), which is approximately the smallest
detectable change in the temperature of a thermal radiation source. NEDT accounts for the
influences of all relevant parameters and is an unambiguous measure of the performance
of a thermal detector system. NEDT is used as the error covariance, and it influences the
assimilation weights compared to other data sources [31]. The NEDT of DJI Zenmuse XT2
is less than 0.05 ◦C. Given that the differences in the SPSTs obtained from video and photo
mosaics are aligned in terms of NEDT, SPSTs detected from the video mosaics have a stable
accuracy close to that of the SPSTs detected from the photomosaics. In the case of TIR
sensors, sensor noise is estimated by computing the standard deviation of the calibration
target measurements [32]. From a statistical viewpoint, the standard deviation is able
to appropriately represent the precision of a series of measurements that have a stable
mean. As the temperature differences in SPST between the video and photomosaics are
aligned in the NEDT range, the SPSTs detected from the video mosaics meet the precision
requirements of the measurement. To obtain more detailed information about accuracy, we
computed the 95% confidence intervals (CI) of the differences in SPST between the video
and photomosaic over the aforementioned NEDT range.

3. Results

Figure 4 and Table 3 show and summarize, respectively, the results of a regression
analysis of the SPSTs detected from video and photomosaic. SPST7.5 f rames and SPST1 f rame
exhibit strong correlations with SPSTp at shorter frame intervals because the Pearson
correlation coefficients are higher than 0.98 (0.98–0.99). Moreover, the model fitness values
are extremely high at 0.953–0.983. Furthermore, the unstandardized coefficients, which
represent the direction and strength of SPSTs detected from the photo and video mosaic
(manual flight), are 0.977–1.001 in shorter frame intervals, indicating a strongly positive (+)
linear correlation, that is, the increments in SPSTs are likely to point in the same direction. By
contrast, the model for longer frame intervals (SPST0.5 f rame), which has a lower overlapping
rate (88%) than that of the photo (95%), shows the lowest value of R2 (0.793). Moreover,
the coefficient of SPST0.5 f rame (0.785) is lower than those of SPST7.5 f rames and SPST1 f rame,
indicating that SPST0.5 f rame tends to be overestimated relative to SPSTp [33]. Identical
results can be found when testing the null hypothesis that the coefficients (a1, b1, c1) in the
respective models are zero. For this purpose, we computed the respective t-statistics and
p-values. The p-value represents the highest error probability at which we cannot reject H0.
As all p-values were fairly small, we can reject H0 based on our data. The same result holds
for the t-statistics:

√
n ∗X/S, where X and S are defined as the sample mean and the sample

standard deviation, and n denotes the sample size. In general, higher t-statistic values
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indicate that we can reject H0, that is, that the corresponding coefficients are more likely
to be significant. The precise boundary between significance and insignificance depends
on the sample size and Student’s t distribution [34]. However, in general, the benchmark
is lower than 3. Hence, given the values in Table 3, the coefficients are highly significant.
As the frame intervals become shorter (15 frames/2 s→ 1 frame/1 s→ 1 frame/2 s), the
t-statistic values decrease (176.860→ 114.540→ 36.958). The RMSE increases (0.14→ 0.21
→ 0.53 ◦C) as the frame intervals become shorter (15 frames/2 s→ 1 frame/1 s→ one
frame/2 s). In sum, the shorter frame intervals from the video are more strongly correlated
to SPSTp.
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Table 3. Results of ordinary least squares linear regression between the solar panel surface tempera-
tures (◦C) detected from the photo and video mosaic.

Frame Intervals SPST7.5frames SPST1frame SPST0.5frame

Numbers of solar panels 645 645 359

Unstandardized coefficient (◦C) 1.001 * 0.977 * 0.785 *

t-statistic 176.860 * 114.540 * 36.958 *

VIF 1.00 1.00 1.00

Pearson correlation 0.991 * 0.976* 0.890 *

R2 0.983 0.953 0.793

RMSE (◦C) 0.14 0.21 0.53

Overlapping rate (%) 99 97 88
*: p-value < 0.01; VIF: variance inflation factor; RMSE: root-mean-square error.
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The thermal UAV video was captured 20 min after the autopilot-based images were
captured. SPST was the highest at 14:00 h., even though the solar zenith angle at that
time was lower than that at 13:00 h. This is because the solar panels remained heated
until 14:00 h, and therefore, SPST peaks at 14:00 h in summer [35]. In this regard, the
SPSTs obtained from the video mosaic are higher than SPSTp. The difference between the
SPSTs at 13:00 h and 14:00 h is less than approximately 1 ◦C [36]. However, the differences
between SPSTp and SPST0.5 f rame range from −0.86 to 1.45 ◦C (Table 4). These differences
are excessive, even when we consider the time lag during shooting. This tendency can be
ascribed to differences in the numbers of key points as thermal markers.

Table 4. Differences in SPSTs between photo and video mosaic. The differences are calculated as
SPSTp minus SPSTs detected from the video. As the differences are negative (−), the SPSTs detected
from the video are higher relative to SPSTp.

Frame Intervals SPST7.5frames SPST1frame SPST0.5frame

Number of
solar panels

Negative (−) difference with SPSTp 293 323 268

Positive (+) difference with SPSTp 352 322 91

Temperature
difference

(◦C)

Min −0.366 −0.604 −0.855

Max 0.310 0.563 1.446

Mean 0.007 −0.005 −0.106

Sum 4.357 −3.283 −38.02

Standard deviation 0.14 0.21 0.52

In a UAV image, the radial fall-off brightness is away from the image center because
of the so-called vignetting effect caused by optical transmission problems [37]. The spatial
transmissivity of a vignetted image is normalized to a maximum value of 1. Classically,
a camera transmits reduced illumination from the center of an image toward the edges.
Thus, the image transmissivity in the center is 1, and it is smaller than 1 toward the image
borders. This vignetting effect attenuates the thermal signatures at the edges relative to
the actual values owing to the reduced transmissivity and increases signal-to-noise ratio
(SNR) of thermal signatures at the edges of thermal images. The Pix4D Mapper software
package applies a vignetting polynomial to correct the vignetting effect by modeling the
camera optics with the coefficients included in the image headers [16,38,39]. In generating
a thermal mosaic, the matched points among the images are calculated using the mean
values of the matched key points. This helps one to derive results similar to those when
the image edges are excluded. In general, SNR improves drastically by averaging a greater
number of frames. The lower overlapping rates between reference frames in mosaics
reduce the number of matched key points. An insufficient number of key points leads to
the generation of biased thermal signatures with uncorrected vignetting effects. Therefore,
to ensure that the quality of thermal signatures obtained from video frames is consistent
with those from photos, the video mosaic must use frames with intervals that satisfy or
exceed the overlapping rates achieved with autopilot-based imaging.

Table 5 shows that video-based thermal imaging secures approximately three to
four-fold numbers of 3D-densified points (15.76–21.0/m3) on the solar panels than on
the photo (5.3/m3). Since the photomosaics include the 99% of unnecessary targets of
the non-solar panel (4.69 ha) than the video (1.34–1.99 ha), it has the larger 2D key point
observations (1,038,092) than video (161,712–932,947). This study was implemented at a
public educational facility covered by a large number of solar panels. More than 80% of
the roof area in this facility is covered with 645 solar panels, not likely for typical urban
solar panels, which account for only 10% of a typical roof area [2]. In other words, the
number of 3D-densified points per m3 would be much less in autopilot-based thermal
imaging for typical urban solar panels. Nonetheless, this study experimentally validated
that the video-based thermal imaging could secure 3D-densified points required in the
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process of building thermal video mosaics, with the higher overlapping rates and the
shorter flight duration.

Table 5. Comparative evaluation of point cloud between video versus photomosaic.

Frame
Intervals

2D Key Point
Observations

Matched 2D Key Points
Per Image (Mean)

Average Density *
(/m3) Area Covered (ha) Flight Duration

(m:s)

SPSTp 1,038,092 2749 5.3 4.69 28:00

SPST7.5 f rames 932,947 3571 21.10 1.99 02:09

SPST1 f rame 571,406 3019 15.76 1.85 02:09

SPST0.5 f rame 161,712 1902 13.28 1.34 02:09

Longer frame intervals (15 frames/2 s→ 1 frame/1 s→ 1 frame/2 s) have lower overlapping rates (99→ 97→ 88%), fewer
matched 2D key points per image (3571→ 3019→ 1902), and average density (21.10/m3 → 15.76/m3 → 13.28/m3). SPSTp has
lower overlapping rates (95%), the number of matched 2D key points (2749), and average density (5.3/m3) compared with
SPST7.5 f rames and SPST1 f rame having smaller covered areas.

* Average number of 3D-densified points obtained for the project per cubic meter.

4. Discussion

The temperature differences between SPSTp and SPST7.5 f rames range from −0.366
to 0.310 ◦C, meaning that the differences between the two values are comparatively low
in terms of standard deviation (0.14 ◦C) and mean value (0.007 ◦C), compared with the
temperature difference between SPST1 f rame and SPST0.5 f rame. Therefore, the SPSTs detected
from video mosaics processed at 15 frames/2 s are well aligned with the SPSTs detected
from the photomosaics.

To explore the accuracy of the SPSTs detected from video mosaics relative to those
of the SPSTs detected from the photo, we computed the 95% confidence intervals (CI) for
the abovementioned temperature differences. For this purpose, we first checked whether
our sample data followed the Gaussian distribution. This assumption would allow us to
compare our results with those of other studies because the Gaussian CI formula has been
widely used in the literature. The Jarque–Bera test, which is a rather sensitive test, rejected
the hypothesis that the data were Gaussian (maybe source, maybe not). However, as we
only require approximate values, we compared the estimated kernel densities with the
exact Gaussian density. Figure 5 presents the respective plots for all three temperature
differences between SPST versus SPST7.5 f rames, SPST1 f rame and SPST0.5 f rame. From this
figure, it can be inferred that the Gaussian assumption is more or less justified for the
temperature differences of SPST7.5 f rames and SPST1 f rame against SPSTp but not for the
temperature differences between SPST0.5 f rame and SPSTp.

This tendency was observed in the Gaussian tests as well (Figure 6). Kernel density
estimation is essentially a non-parametric estimate of the probability density. The stronger
the similarity between kernel density and theoretical density, the closer the dataset’s distri-
bution to the theoretical distribution. The kernel density measured from the differences
in SPSTs between the video (SPST7.5 f rames, SPST1 f rame) and photomosaics were consis-
tent with the theoretical Gaussian density in terms of the estimated empirical mean and
standard deviation. However, this was not true for SPST0.5 f rame.

The 95% CI of the temperature differences between SPSTp and SPST 7.5 f rames based on
the Gaussian formula is as follows: (−0.0030; 0.0185). In other words, if we were to repeat
the experiment an adequate number of times, the true value of the temperature differences
would lie at a probability of 95% within those boundaries. Hence, we interpret the CI as
follows: First, the smaller the value, the better it is, and second, the CI should include zero
when discussing differences, which is the case in this study. Therefore, the 95% CI of the
temperature differences between SPSTp and SPST1 f rame data is [−0.0208; 0.0120], where
zero is included. The CI of the temperature differences between SPSTp and SPST1 f rame
is based on empirical quantiles because the Gaussian assumption is not justified in this
case (Figure 6), and it reads as [−0.1411; −0.0693]; here, zero is not included, that is, the CI



Remote Sens. 2021, 13, 4770 11 of 15

indicates a statistically significant difference. Although thermal videos are recorded with
shorter flight durations and over a smaller shooting area, video mosaics can ensure higher
overlapping rates and satisfy the minimum numbers of key points.

Furthermore, the video mosaics can achieve identical SPSTs in the NEDT range
(±0.05 ◦C) within the 95% CI, compared with photomosaics. This result illustrates that the
quality of thermal signatures obtained from video mosaics is consistent with that obtained
from photomosaics. Thus, in this study, we experimentally validated that thermal video
imaging can be applied for monitoring the thermal signatures of targeted small-scale urban
rooftop solar panels.
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UAV thermal imaging is commonly applied to detect defective solar panels by compar-
ative evaluation between well-operating and failing solar panels. There are many previous
studies to detect the failing panels in the process of forecasting the electricity production
from the urban solar panels [40,41]. This is a preliminary study to detect the defective
solar panels installed at the scattered rooftop using video by providing realistic evidence
regarding the credibility of thermal signatures obtained from a video. A separate, more
in-depth follow-up study is required to evaluate the value of video for the purpose of
detecting malfunctions of solar panels.

The paper has not addressed many research questions that need to be answered for
the suitability of video as a complementary tool of autopilot-based thermal imaging on
the scattered urban rooftop solar panels. Recently, visual simultaneous localization and
mapping (SLAM) is being actively discussed as an innovative method to monitor solar
panels [42]. Visual SLAM has the strength of building 3D structures and mapping in
real time with lower computational costs. In addition, some regulatory agencies provide
greater weight to real-time surveys since visual SLAM summarizes the information gained
over time with probability distribution safeguards against malfunctions of solar panels
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without time delay [43]. However, further clarification is needed regarding the potential
and constraints of visual SLAM in the scattered urban rooftop solar panels.

5. Conclusions

To the best of our knowledge, this is arguably the first study on the correlations
of thermal signatures between UAV video and autopilot-based photomosaics for urban
rooftop solar panels scattered across 1% of a city center. We experimentally validated that
the differences in solar panel surface temperatures between UAV video and photomosaics
are aligned in noise equivalent differential temperature range (DJI Zenmuse XT2: ±0.05 ◦C)
within the 95% confidence intervals. Given that video-based thermal imaging is conducted
with a shorter flight duration and smaller covered area than when capturing still images in
the autopilot mode, video imaging can achieve the required quality of thermal signatures
with three- to fourfold numbers of the average density of key points on the targeted solar
panels. The results of this study can serve as preliminary evidence for applying video-based
thermal imaging for thermal deficiency inspection on urban solar panels.
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