& emote sensing

Article

Detection of Bark Beetle Disturbance at Tree Level Using UAS
Multispectral Imagery and Deep Learning

Robert Minaiik

check for

updates
Citation: Minafik, R.; Langhammer,
J.; Lendzioch, T. Detection of Bark
Beetle Disturbance at Tree Level
Using UAS Multispectral Imagery
and Deep Learning. Remote Sens.
2021, 13, 4768. https://doi.org/
10.3390/1s13234768

Academic Editors: Flor Alvarez

Taboada and Miro Govedarica

Received: 13 October 2021
Accepted: 22 November 2021
Published: 24 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Jakub Langhammer *

and Theodora Lendzioch

Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6,
128 43 Prague 2, Czech Republic; robert.minarik@natur.cuni.cz (R.M.); theodora.lendzioch@natur.cuni.cz (T.L.)
* Correspondence: jakub.langhammer@natur.cuni.cz; Tel.: +420-221-951-364

Abstract: This study aimed to examine the potential of convolutional neural networks (CNNs)
for the detection of individual trees infested by bark beetles in a multispectral high-resolution
dataset acquired by an unmanned aerial system (UAS). We compared the performance of three CNN
architectures and the random forest (RF) model to classify the trees into four categories: pines, sbbd
(longer infested trees when needles turn yellow), sbbg (trees under green attack) and non-infested
trees (sh). The best performance was achieved by the Nez4c3b CNN (kappa 0.80) and Safaugu4c3b
CNN (kappa 0.76) using only RGB bands. The main misclassifications were between sbbd and sbbg
because of the similar spectral responses. Merging sbbd and sbbg into a more general class of infested
trees made the selection of model type less important. All tested model types, including RF, were
able to detect infested trees with an F-score of the class over 0.90. Nevertheless, the best overall
metrics were achieved again by the Safaugu3c3b model (kappa 0.92) and Nez3cb model (kappa 0.87)
using only RGB bands. The performance of both models is comparable, but the Nez model has a
higher learning rate for this task. Based on our findings, we conclude that the Nez and Safaugu CNN
models are superior to the RF models and transfer learning models for the identification of infested
trees and for distinguishing between different infestation stages. Therefore, these models can be used
not only for basic identification of infested trees but also for monitoring the development of bark
beetle disturbance.

Keywords: bark beetle; forest disturbance detection; individual tree-based classification (ITBC); deep
learning; machine learning

1. Introduction

Pest insect disturbances are a natural part of the structural development process of
temperate and boreal forests [1,2]. However, ongoing climate change has increased the
frequency and severity of pest insect outbreaks in these biomes worldwide, including
Europe [3-5]. In Central Europe, recent outbreaks of bark beetles, especially Ips typogra-
phus (Linnaeus, 1758), have contributed significantly to the doubling in canopy mortality,
generating serious concerns about the effects on the environment, timber markets and
human wellbeing [6-8]. Although bark beetle outbreaks have been intensifying in Central
Europe for the last three decades [6], the most recent outbreaks in Czechia since 2015
exceeded the frequency and severity of outbreaks observed in the last two decades [9].
Moreover, the predictions expect the increase of bark beetle disturbances seven times more
up to 2030 compared to the period 1971-1980 in Europe [6]. Therefore, the relatively fast,
inexpensive and (if possible) automated methodology for the detection of single infested
trees would help to reduce damage in a timely manner.

A terrestrial survey of discoloration symptoms has traditionally been used to detect Ips
typographus (Linnaeus, 1758) (hereafter bark beetle) infestation on a single tree level [10,11].
However, the terrestrial method is time-consuming and therefore suitable only at the plot
scale. Nevertheless, discoloration symptoms can be detected relatively easily from a bird’s-
eye perspective over a large area. Consequently, conventional optical remote sensing
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and area-based (pixel-based) classification approaches have been used for pest insect
disturbance detection at regional, national and global scales [12-17]. However, for the
detection of individual infested trees and their timely sanitation, an individual tree-based
classification (ITBC) approach is essential [18,19]. The area-based approach is not suitable
because the mapping unit is not a single crown, but one pixel whose size reflects the spatial
resolution of the data [20], often resulting in a few (spaceborne sensors) or too many pixels
(airborne or drone-borne sensors) forming a crown that enters a classification. The spatial
resolution of freely available satellite data from Sentinel-2 and Landsat missions (>10 m) is
too coarse for the detection of single infested trees [16]. Although the ultrahigh resolution
(in cm) may seem beneficial, the artificial mapping unit (the pixel) is much smaller than a
crown, making the interpretation of the classified map more complicated and limiting its
usage for in situ forest management decision making. Therefore, recent studies classifying
bark beetle disturbance at the single tree level from ultrahigh-resolution images (airborne
or drone-borne data) employed ITBC.

Previous work can be separated into a few groups according to the process of crown
delineation. The basic approach is a time consuming manual delineation and labeling of
the crowns followed by classification of the crowns [21-23]. These authors apply gener-
alized linear models [21], maximum entropy [21], or random forest classifiers [21-23] to
multispectral images. However, manual delineation and labeling are time-consuming and
impractical for forest management. Other studies apply classic object-based classification
to multispectral images [24-26]. However, this approach still does not delineate crowns
but only segments based on spectral and spatial contextual information. Therefore, the
most advanced approach combines automatic delineation of individual tree crowns with a
subsequent classification of the crowns. Nevertheless, this approach is uncommon, and
only a few studies have been published. Nasi et al. [19,27] detected individual spruce trees
infested by the bark beetle in an urban forest classifying spectral features of identified tree-
tops into three classes (healthy, infested and dead). Treetops were automatically detected
as dead according to the highest brightness value. They used a support vector machine
classifier, and the resulting kappa coefficient value was 0.61. Kloucek et al. [28] identified
individual infested, healthy and dead trees in a natural spruce monoculture combining
local maxima filtering for tree identification and a maximum likelihood classifier, with a
kappa coefficient of 0.78.

All of the abovementioned studies implemented statistical or machine learning algo-
rithms. These algorithms usually require heuristic selection of appropriate transformations
and hand-crafted latent variables such as vegetation indices [29] and texture metrics [30]
calculated from the data prior to modeling [31,32]. Therefore, the selection of the best
predictors demands user knowledge about interactions between biochemical and structural
tree properties and electromagnetic signals detected by the sensor [32]. This requirement
is a potential drawback for forest management applications. However, the drawback is
addressed by deep learning, especially convolutional neural networks (CNNs), for image
analysis [33,34]. CNNs are superior to the previous parametric and machine learning algo-
rithms used in remote sensing, including vegetation and forest applications, because they
can learn the best data transformations (convolutions) on different spatial scales (pooling)
by iterative optimization of layers during training with no addition of handcrafted feature
layers [32,34-36].

This advantage is documented by current forestry studies on forestry using CNNs for
image analysis at the single tree level from ultrahigh-resolution RGB images. CNNs have
been used for individual tree crown delineation in a tropical forest (synthetic dataset) [37]
or in a temperate forest [38]. Much effort has been devoted to developing CNNss for tree
species classification using manually delineated crowns [39,40], automatically delineated
crowns [41,42], or CNN architectures, including crown segmentation [43,44]. However,
studies detecting pest insect infestation are not still common. Safonova et al. [31] detected
infested clusters (no single trees) of Abies sibirica Ledeb. in boreal forests using CNN and
RGB images. Nguyen et al. [45] identified individual sick Abies mariesii Mast. by means
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of RGB images and deep learning trained on a large dataset. Little research has also been
conducted on classification or segmentation of multi-/hyperspectral images due to the
lower resolution of the images. Only Miyoshi et al. [46] and Nezami et al. [47] classified
tree species using drone hyperspectral images. Therefore, previous research raised the
question of when it is possible to perform the successful detection of individual infested
trees by applying CNN on a small multispectral dataset.

The aim of this study is to examine the potential of CNNs for the detection of indi-
vidual trees infested by bark beetles on a dataset from multispectral images acquired by
an unmanned aircraft system (UAS) with very high spatial resolution. We compare the
classification accuracy of the different CNN architectures with the well-established random
forest (RF) classifier. The research questions addressed in the study are as follows: (1) Is it
possible to reach acceptable accuracy of the model trained from scratch? (2) Does transfer
learning improve the detection of infested trees? (3) What CNN architecture performs
for the identification of infested trees? (4) Are CNNs superior to machine learning algo-
rithms for the classification of bark beetle disturbances on small multispectral datasets?
In a broader context, the study aims to design a relatively simple, semiautomated and
efficient workflow for the detection of infested individual trees that can be adopted by
forest management in the country.

2. Materials and Methods
2.1. Study Site and Remote Sensing Data

The study site (approximately 50.090°N and 14.650°E) is in Klanovice Forest. Klanovice
Forest is a typical suburban temperate forest located in the Prague metropolitan area,
Czechia. Klanovice Forest has suffered from massive bark beetle outbreaks since 2015 (up
to four generations per year) due to urban heat islands [48]. The dominant tree species are
Norway spruce, pine, oak and birch at the study site (Figure 1).
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Figure 1. Cont.



Remote Sens. 2021, 13, 4768

40f21

50°5'31"N

50°5'24"N

14°38'53"E 14°39°0"E 14°39'7"E

50°5'31"N

50°524"N

14°38'53"E 14°39'0"E 14°39'7"E
(b)

Figure 1. RGB imagery of the study site: (a) Klanovice forest (red rectangle) and study site (yellow rectangle) located near
Prague; (b) RGB orthomosaic of the study site.

UAS imaging was conducted on 4 September 2020 using a DJI Matrice 210 RTK
featuring a MicaSense RedEdge-M multispectral camera. The weather conditions were
sunny, and flight was performed at approximately noon to minimize shadows. We set
the flight altitude to 100 m above ground, frontlap 90% and sidelap 80% to be identical to
previous flights conducted at the study site. The calibrating images of the reflectance panel
were taken prior to and after flight to be used for radiometric calibration of images during
photogrammetric processing.

Photogrammetric processing was performed in Agisoft Metashape Professional 1.6.2.
using the standard procedure for multispectral images, including reflectance calibra-
tion [49]. Onboard real-time kinematics (RTK) global navigation satellite system (GNSS)
data were used for image alighment using high accuracy settings. After the alignment, the
dense cloud was generated using high-quality and aggressive depth filtering. Based
on dense clouds, the digital surface model (DSM) was computed and projected into
WGS84/UTM zone 33N. A multispectral mosaic was orthorectified based on images and
DSM with a spatial resolution of 6 cm/pixel. The dense cloud was decimated to preserve
only the highest point in each cell (0.2 m) of the grid that was virtually placed over the
dense cloud. For a detailed description of the Klanovice forest, camera parameters and
photogrammetric processing, we refer to Minafik et al. [50].

2.2. Ground Truth Data

A terrestrial survey of the health status of Picea abies (L.) H. Karst. (hereafter, Norway
spruce or spruce) was conducted one day prior to the flight. The health status of mature
Norway spruces was assessed relative to each other based on foliage discoloration, defolia-
tion and trunk symptoms (resin ducts) that are typical for bark infestation [51]. The spruce
trees were classified into three groups: live and not infested (sh), green attack (sbbg) and
longer infested trees when needles turned yellow (sbbd) (Figure 2). Among spruce trees,
pines (Pinus sylvestris L.) were also mapped because their spectral response is similar to the
spectral response of infested trees.
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Figure 2. Disturbance classes used in the study: (a) pine; (b) sbbd—damaged spruce tree (longer

infested spruce tree when needles turn to yellow, light green needles dropped, bark flaked away by
woodpeckers); (¢) sbbg—spruce tree under green attack (needles green or light green, resin ducts
present); (d) sh—live and not infested spruce tree (needles green).

The survey of the infestation symptoms extended the previous one carried out in
March 2020 using the same methodology [50]. We checked the previously mapped trees and
reclassified them if necessary. Some of the trees had already been cut down. Moreover, we
located and classified new trees. The ground truth dataset was extended from 122 mature
spruce trees to 429 by the survey. The position of each tree was measured by the total
station due to the multipath GNSS signal. The number of pines in the ground truth dataset
was increased from 23 to 243 using visual interpretation from the orthomosaic.

2.3. Tree Crown Segmentation and Spectral Separability Analysis

Even if we located the position of every tree as a point during the field survey or
visual interpretation, and tree crowns could be extracted manually, we decided to perform
a simple automatic tree crown delineation to be consistent with the objectives of the study
concerning the semiautomated ITBC workflow design. The crown delineation methodology
was partially based on the delineation workflow designed in a previous study [50]. We
describe here only the basic principle and methods.

We applied the identical excess green index vegetation mask calculated in a previous
study [50] to separate the conifers from the surface and broadleaves. Therefore, only
targeted spruces and pines were considered in the tree delineation routine. Then, treetops
were identified from the normalized dense point cloud using a local maxima filter with the
adaptive circular moving window size according to the tree height function f1 [50].

f1 = tree height x 0.07 + 1 @)
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Around each identified treetop, a square bounding box (buffer) was automatically
constructed. The size of the buffer was set according to the height distribution of identified
treetops. The trees under the median height received bounding boxes (BBs) of 2 m size,
those lower than quantile 0.75 received 3.2 m BB, and those higher than quantile 0.75
received 4 m BB centered on the treetops. The bounding box sizes were selected to cover at
least the upper 50% of the crown where bark beetle infestation was the most significant [28].

We applied no spectral transformation of the original bands, such as vegetation
index calculations, because previous studies stated that the original data were already
sufficient [39,52]. Moreover, we analyzed the spectral separability of disturbance classes to
reduce the dimensionality of inputs.

The spectral separability of disturbance classes was investigated using all spectral
bands of the multispectral camera. MicaSense RedEdge-M is sensible to Blue (475 nm),
Green (560 nm), Red (668 nm) Red-edge, (717 nm) and near infrared (NIR) (840 nm) parts
of the spectrum [50]. Central wavelengths are in brackets. The bounding boxes were used
for extracting the reflectance values of tree crowns of individual disturbance classes. We
used a Kruskal-Wallis test with the following nonparametric post hoc comparison after
Siegel and Castellan [53] to test the spectral separability of the disturbance classes. Only
bands with high separability of disturbance classes were used for classification.

The bounding boxes were primarily used for cutting the individual tree crowns from
the original orthomosaic. Every tree was represented by a small multispectral image of
33/53/66 x 33/53/66 x 4(3) pixels of size stored on the hard drive (see Figure 2). According
to the results of spectral separability analysis, we tested two band subsets consisting of
Red, Green, Blue bands and Red, Green, Blue and Red-edge bands for classification. The
reflectance values were multiplied by 200 and stored as integers. Data preprocessing was
performed in R [54].

2.4. Classification Models
2.4.1. Convolutional Neural Networks

In this study, we tested three types of CNN architectures applicable to tree classifi-
cation using a small dataset selected based on a literature search. We decided to test a
fairly simple and fast network trained from scratch with no data augmentation, CNN
designed directly for pest insect detection with data augmentation trained from scratch
and pretrained CNN using transfer learning.

As a fairly simple network, we modified the CNN published in [47] (hereafter, Nez),
which quickly reduced dimensionality and ultimately performed the classification of the
tree species (Table 1). For a quick decrease in the loss function, we applied batch size 1 for
this network as theoretically recommended by Chollet and Allaire [55].

Table 1. Configuration of Nez CNN model. (i) is the number of input bands. We classified into 4 or
3 disturbance classes.

Layer Kernel Size Kernel Number Stride Output Size

Input - - 32 x 32 x (i)

Convl 5x5 4 1 28 x 28 x 4
Maxpooll 3x3 1 3 9x9 x4

Conv2 5x5 16 1 5x5x16
Maxpooll 3x3 1 3 1x1x16

ReLU - -

Conv3 1x1 4 1 1x1x4

Dense (softmax) 4(3)

Second, we were inspired by the CNN previously published in [31] that was supe-
rior to state-of-art pretrained CNN in the classification of damaged firs from RGB data.
However, we designed our own architecture with respect to the spatial resolution of our



Remote Sens. 2021, 13, 4768

7 of 21

data (Table 2). We trained the network in two instances, without (Saf) or with (SafAugu)
data augmentation.

Table 2. Configuration of Saf/Safaugu CNN model. (i) is the number of input bands. We classified
into 4 or 3 disturbance classes.

Layer Kernel Size Kernel Number Stride Output Size
Input - - 32 x 32 x (i)
Convl 3x3 8 1 32 x32x8
Max Pooll 2x2 1 2 16 x 16 x 8
Conv2 5x5 16 1 16 x 16 x 16
Conv3 3x3 16 1 16 x 16 x 16
Max Pool2 2x2 1 2 8 x 8 x 16
Conv4 3x3 16 1 8 x 8 x16
Convb 5x5 16 1 8§ x 8 x16
Dropoutl - - 0.15
Convé6 5x5 64 - 8 x 8 x 64
Glob Avg Pool - - 64
Densel (ReLU) - - 64
Dropout2 - - 0.25
Dense2 (ReLU) - - 16
Dense3 (softmax) - - 4(3)

Moreover, we applied transfer learning (specifically feature extraction) because of the
small data problem. We selected DenseNet169 [56] because it showed good performance in
previous studies [31,57]. The network weights were pretrained on the ImageNet dataset.
We adopted the whole convolutional base, and we only wrote and trained the classifier on
the top (Table 3). DenseNet169 was trained only with data augmentation.

Table 3. Configuration of Dense169 CNN model. (i) is the number of input bands. We classified into
4 or 3 disturbance classes.

Layer Output Size
Input 32 x 32 x (i)
DenseNet169 (convolutional base) 1664
Densel (ReLU) 128
Dense2 (ReLU) 16
Dense3 (softmax) 4(3)

2.4.2. Random Forest

RF is a well-established machine learning algorithm [58]. Several benchmark studies
consider the algorithm to be one of the best data-driven algorithms currently available [59-61].
RF is a robust algorithm because the classification is made an ensemble estimate from a
high number of decision trees based on bagging and random selection of covariates. The
final classification is a majority vote of all predicted classes over trees [58]. We applied the
implementation from the caret [62] package in R. The algorithm was applied only to the
basic training dataset using original spectral bands and no data augmentation. We applied
no feature engineering because of comparison to CNNs.

2.5. Training and Validation

The original dataset consisting of 672 tree crowns was split randomly into training,
validation, and test folders at a rate of 70:10:20. The relative frequency of elements in the
classes was preserved in data splitting. Each model was trained using the same 70% of the
tree crows.

The tree crown images were read as a multidimensional tensor (arrays) from the hard
drive. Every image was converted back to reflectance values, and crowns were resampled
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to 32 x 32 X i using the nearest neighborhood prior to training. The weights of the CNN
models were randomly set at the beginning. The weights were optimized iteratively to
minimize the loss function. We used a categorical cross-entropy loss function for all CNN
models because we had a typical multiclass classification problem. We selected the adaptive
moment estimation optimizer (Adam) [63].

For the RF, the median reflectance values of each crown were extracted from the
orthomosaic in R to perform tree-based classification (one tree, one object). Therefore, each
tree was represented by one row in the attribute table of buffer polygons with median
reflectance values of all bands. Buffer polygons were used for the classification. The default
number of decision trees (500) suggested in the original paper was preserved.

The validation dataset was used during training to detect overfitting of the models.
For CNN models, the validation dataset was used to empirically set the appropriate batch
size, number of epochs and steps per epoch to prevent overfitting using trial and error
methods (Table 4). For RF, we used a validation dataset to check the overfitting of the
models for the selected number of decision trees.

Table 4. The overview of finally selected batch size, number of epochs and steps per epoch for every
CNN model to prevent overfitting.

. . Steps per Steps per
Model Batch Size T  Batch Size V Epochs Epoch T Epoch V
Nez 1 1 40 - -
Saf 27 26 160 18 2
SafAugu 27 26 400 18 2
DenseNet
169 27 26 160 18 2

T: training dataset; V: validation dataset.

All code was written in R v. 4.0.5 using the packages keras, tensorflow and caret [55,62].
We used the R interface to Keras with the TensorFlow backend ver. 2.4.0 for computation.
Nez, Saf and Safaugu CNNs were written in R by the authors according to the description in
the original articles using the Keras package. DenseNet convolution was already available
in the keras package. The models were trained on CUDA-compatible NVIDIA GeForce
MX250 graphic card with 2 GB RAM installed in a notebook.

2.6. Accuracy Assesment

The test dataset was used to assess the performance of the classification models. The
test dataset had no contact with the test samples during training and validation; therefore,
the results showed unbiased model effectiveness [64]. The confusion matrix was calculated
based on comparing the predicted disturbance classes of the test dataset to ground truth
classes. From the confusion matrix, several indices of agreement were calculated for each
model and for each disturbance class. For the between-class comparison, we calculated
precision (p), recall (r) and F-score [32]. These metrics were also applied to the accuracy
assessment of automatic tree identification.

The general performance of the model was assessed using the mean F-score of the
model and Cohen’s kappa index. The kappa index is objective because it gives the
agreement to the true class considering the random chance of correct classification [65].

3. Results
3.1. Tree Indentification

Tree identification was assessed compared to ground truth in terms of true-positive
(TP), false-negative (FN, omission error), and false-positive (FP, commission error) trees.
The results of automatic tree identification are presented in Table 5. The recall was lower
than the precision, showing that the algorithm had a problem identifying smaller and
lower crowns in dense forests that were partially shaded by larger trees, especially pines.
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Therefore, the adaptive moving window included more than one tree and identified only
the highest tree. In contrast, the very high precision score shows that the algorithm detected
almost no multiple treetops. The wrongly identified or unidentified trees were corrected
according to the ground truth dataset prior to ITBC.

Table 5. The results of automatic tree identification.

Point Density
(points/m?) TP FP FN r p F-Score

22 585 14 87 0.87 0.98 0.92

TP: true positive, FP: false positive; FN: false negative; r: recall; p: precision.

3.2. Spectral Separability of Disturbance Classes

The results of spectral separability analysis are presented in Figure 3. The null hypoth-
esis of no spectral separability of disturbance classes was rejected for all bands because
there were significant reflectance differences between pines and spruces. However, the
following multiple comparisons showed some separability issues between disturbance cate-
gories of spruce trees that were the most important. The best spectral separability of spruce
disturbance classes was in the blue and red bands (Figure 4a,c). The interquartile range of
sbbd, sbbg and sh revealed only small overlap between sbbd and sbbg categories, and the
multiple comparison test showed significant differences among reflectance values. These
disturbance classes were also separable in the green- and red-edge parts of the spectrum.
The results showed increased overlap among sbbd and sbbg trees within these two bands,
but there were still significant differences. However, the sbbd, sbbg and sh categories were
not spectrally separable in the NIR band, and the boxplots highly overlapped with each
other. Therefore, the NIR band was skipped for the ITBC. Based on the results, we decided
to perform classification with two datasets composed of bands 1-4 (4b) and 1-3 (3b) and to
investigate the effect of band selection on the classification results.
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Figure 3. Cont.
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Figure 3. Spectral separability of disturbance classes: (a) Band 1—Blue, 475 nm; (b) Band 2—Green 560 nm; (c) Band
3—Red, 668 nm; (d) Band 4—Red-edge, 717 nm; (e) Band 5—NIR, 840nm. * Marks the significant spectral differences (the
significance level o = 0.05) among disturbance classes. The results of multiple comparisons are presented only for the most

important disturbance classes reflecting the bark beetle infestation.

3.3. Classification Results

The ITBC results employing different models and model types are presented in Table 5.
Basically, each model classified the trees using the four (model version 4c4b) or three (model
version 4c3b) most informative bands (Section 3.2) into all four disturbance classes. The
comparison of class-specific F-scores showed the strong connection to spectral separability
of the disturbance classes. The highest mean F-score was obtained for pines (0.93) regardless
of the model version because of their spectral and textural responses that were different
from spruces. However, the more important spruce disturbance classes reached lower mean
F-Scores of 0.68, 0.65 and 0.72 for sbbd, sbbg and sh, respectively, because of their more
similar spectral and textural responses, resulting in misclassifications of the trees of these
classes (Figure 4, left column). Nevertheless, previous studies used coarser classification
for infested /healthy (not infested) categories. Therefore, we decided to experimentally
merge the sbbd and sbbg classes into a more general class of infested trees (sbb) and train
the classification models for three output categories using the four (model version 3c4b)
or three (model version 3c3b) most informative spectral bands (Figure 4, right column).
Finally, each model was trained and assessed in four versions (Table 6).
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Table 6. Evaluation metrics of bark beetle disturbance classification at the tree level. For the pair of models of the same architecture and
the same number of output classes but the different number of input bands, the more accurate model is highlighted in bold. For each
model, the most accurate model version is highlighted in green. The model showing the general poorest performance is highlighted

in orange.
Model Mean Model’s
Model Version F-Score by Class F-Score Kappa Mean Kappa
pine sbbd sbbg sh
Nez 4c4b 0.93 0.72 0.77 0.80 0.80 0.74
4c3b 0.95 0.79 0.83 0.78 0.84 0.80 0.81
3c4b 0.93 0.91 0.81 0.88 0.84 ’
3c3b 0.92 0.94 0.86 0.91 0.87
Saf 4c4b 0.91 0.71 0.68 0.69 0.75 0.69
4c3b 0.96 0.78 0.77 0.75 0.82 0.77 0.79
3cdb 0.95 0.90 0.73 0.86 0.82 ’
3c3b 0.95 0.93 0.78 0.89 0.86
Safaugu 4c4b 0.95 0.69 0.72 0.79 0.79 0.72
4¢3b 0.93 0.80 0.77 0.75 0.81 0.76 0.81
3cdb 0.95 0.93 0.73 0.87 0.85 ’
3c3b 0.98 0.96 0.83 0.92 0.92
Densel69 4c4b 0.94 0.65 0.60 0.67 0.72 0.64
4c3b 0.93 0.68 0.72 0.73 0.77 0.70 077
3c4b 0.95 0.95 0.76 0.89 0.87 ’
3c3b 0.93 0.94 0.73 0.87 0.85
RF 4c4b 0.93 0.49 0.63 0.76 0.70 0.60
4c3b 0.92 0.50 0.60 0.45 0.62 0.55 0.69
3c4b 0.94 0.92 0.76 0.87 0.85 ’
3c3b 0.94 0.88 0.45 0.76 0.75
Class’s 4c 0.93 0.68 0.65 0.72 - - }
ass's F-score 3¢ 0.94 0.92 0.74 - -
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Figure 4. Confusion matrices of the best performing models classifying trees into four classes (left column) or three classes
(right column) according to Table 5: (a) Nez 4c3b; (b) Nez 3¢3b; (c) Saf 4c3b; (d) Saf 3¢3b; (e) Safaugu 4c3b; (f) Safaugu 3c3b;

(g) Densel69 4c3b; (h) Dense 3c4b; (i) RF 4c4b; (j) RF 3c4b.
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The results showed that the model types using only the three most informative RGB
bands (4c3b) were superior to the 4c4b types of CNNs. The best classification performance
was reached using Nez4c3b, showing only a few misclassifications between the sbbd and
sbbg categories (Figure 4a). The second-best classification performance was achieved by
Saf4c3b/Safaugudc3b. However, the model misclassified the largest number of sbbg trees
(13%) to sh, which could be a problem despite the highest number of correctly classified sh
trees (Figure 4c). Nevertheless, featuring data augmentation in the Saf4c3b model reduced
the misclassifications of sbbg trees to sh class (Figure 4e), even if the overall accuracy
metrics remained similar. All three CNNs were trained from scratch. The relatively lower
overall performance among CNN classifiers was achieved using the adapted Dense169 4c3b
model. The Densel69 4c3b model misclassified 30% of sbbg trees into the sbbd category
(Figure 4g). All 4c CNN classifiers achieved higher mean F-scores and kappa metrics than
the 4c RF models. The confusion matrices of RF models revealed the issue of distinguishing
sbbd from sbbg, resulting in misclassification of 37% of sbbd trees to sbbg and 34% of sbbg
trees to sbbd (Figure 4i). Nevertheless, 4c RF models reached F-scores comparable to the
F-scores of CNNss for pines and sh classes.

Merging two related classes of the infested trees (sbbg and sbbd) prior to classification
resulted in an increase in classification accuracy (Figure 4, right column). The mean F-scores
increased by 7-17%, and kappa increased by 7-25% comparing the best 3c models to their
4c versions. The lowest increase was for Nez and Saf models. The highest increase was
for the Safaugu, Densel69 and RF models. However, the classification accuracy of pine sh
trees was similar regardless of the number of input classes. The evaluation metrics of the
models increased only by merging the classes.

The 3c3b model versions were mostly superior to the 3c4b versions of the models
again. Only the RF3c4b model reached 10% higher evaluation metrics than the 3¢3b version.
The best classification accuracy was obtained using Safaugu3c3b, achieving a mean F-score
of 0.92 and kappa. Nevertheless, the accuracy metrics were comparable for all 3c3c CNN
models and even for RF3c4b. The rest of the models achieved a mean F-score of 0.86-0.91
and kappa of 0.82-0.87.

Based on the experimental results of this subsection, several conclusions were drawn
concerning the identification of infested trees from the small multispectral dataset. The
more important is the selection of representative features with high separability of distur-
bance classes than the number of features for the classification using CNNs. To distinguish
between newly infested trees (sbbg), non-infested trees (sh) and longer infested trees (sbbd),
the CNN classifiers developed for forest applications (Nez and Saf/Safaugu) (Figure 5a)
are more accurate than RF (Figure 5b) and pretrained DenseNet169. Data augmentation has
a positive effect on the classification accuracy of the deeper Saf model, but the number of
epochs must be increased. However, misclassifications between the sbbd and sbbg classes
up to 20% can occur because of spectral overlaps. Therefore, it should be considered when
the classification results serve decision making. If the complexity of the problem decreases
by merging the related information classes (sbbd and sbbg) to a more general infested
tree (sbb) category, the selection of model type is less important. All tested model types,
including RF, were able to detect the most important class of infested trees with an F-score
of the class over 0.90.
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Figure 5. Illustration of classification results using test dataset: (a) Safaugu 4c3b; (b) RF 4c3b. Ground
truth data are represented by points. Model predictions are represented by squares. Pines are
highlighted in blue. Sbbd spruces are highlighted in red. Sbbg spruces are highlighted in orange. Sh
spruces are highlighted in green.

4. Discussion
4.1. Tree Delineation

The accuracy of individual tree detection is comparable or superior to other studies
focused on the identification of conifers in an uneven-aged mixed forest using local maxima
filtering [66,67]. Although the recall score (0.87) of automatic tree identification points
to the omission of small trees in the dense part of the mixed forest, the method is more
efficient and less time-consuming than the manual identification of all trees because only
the unidentified trees must be detected manually by visual interpretation. The recall
of treetop identification is lower than that recall in a previous study [50] using the same
methodology because the previous study focused only on mature spruce trees over 60 years
that are primarily infested by the bark beetle [13]. In this study, conifer trees over 5 m
were considered.
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The issue of small tree omissions could be reduced using another algorithm of treetop
detection, e.g., a deep-learning method based on 2D confidence map estimation from
hyperspectral data [46]. The authors reached F-score, precision and recall values of 0.959,
0.973 and 0.945, respectively. Another option is to apply instance segmentation. However,
this approach requires very sophisticated reference data, including both the identification of
individuals and delineation of their explicit spatial extent [32,44]. Therefore, the approach
was tested only on synthetic data [37,68]. Moreover, the approach requires very high
computational power (workstation, server or cloud computing) [68] that can limit the usage
in a common practice. For these reasons, we segmented the trees prior to classification using
the simple representation of the crown by bounding box instead of more advanced tree
crown delineations. This practice is common because CNNs require basically rectangular
inputs, and it has been verified by previous studies [31,42,47,57]. In this study, we did not
investigate the other algorithms because they are beyond the scope of the study.

4.2. The Effect of Feature Layer Selection on Classification Results

We applied no spectral transformation of the original bands, such as vegetation index
calculations, because according to previous studies, the addition of spectral transforma-
tions may even introduce information loss and decrease the model accuracy [47,69,70].
Concerning the addition of elevation features such as the canopy height model, the results
of previous studies focused on three species classifications revealed no significant improve-
ment in CNN models [47,69,70]. Therefore, we decided to test only a basic pipeline with
the original bands to preserve high automation and easy reproducibility of the workflow.

Spectral separability analysis can be understood in a broader context as feature layer
selection for classification. Feature layer selection is not investigated much for CNNs
because CNNs provide end-to-end learning, including feature extraction, and CNNs are
mostly applied only to RGB images [32]. The basic principle is to select all bands of
multi-/hyperspectral images or select combinations and retrospectively verify the effect
on the accuracy of classification of the trees [47,69]. However, this approach requires
running the classification multiple times, which is counterproductive if the goal is to reduce
the dimensionality of the inputs to save computation time. One way to overcome this
issue is to analyze the spectral differences between disturbance classes using descriptive
statistics and statistical inference prior to classification, as suggested in this study. We
found that CNN models using only RGB bands (Xc3b) were superior to models using red
edges (Xc4b) because the red-edge band had higher spectral overlaps of spruce disturbance
classes, which resulted in lower classification accuracy metrics. The results are consistent
with a previous study focused on conifer tree species classification using hyperspectral
data [47]. The best results of the study were achieved using only RGB bands. However, the
explanation remains unclear because separability analysis was not performed. Moreover,
Miyoshi et al. [46] implemented a band selection module in a CNN classifier, resulting in
the reduction of 25 original bands into a linear combination of 5 bands, including RGB.
Therefore, there is no evidence to date that adding more bands into the CNN model
improves the classification of conifer species or the infestation status compared to the
RGB-based model. In contrast, the higher accuracy of RF models was reached by Xc4b
versions, and the poorest performance was achieved using the 4c3b RF model because the
RF algorithm generally benefits from more feature layers [32,71].

4.3. Considerations about Bark-Beetle Disturbance Classification Using CNN

The differences between model performances were higher when the trees were clas-
sified into four categories (pine, sbbd, sbbg, sh). The best performance was achieved by
the Nez4c3b model and Safaugu 4c3b model. The overall scores of Nez4c3b had a mean
F-score of 0.84 and kappa of 0.80. The F-scores of the sbbd, sbbg and sh classes were
0.79, 0.83 and 0.78, respectively. The overall scores of Safaugu 4c3b had a mean F-score
of 0.81 and kappa of 0.76. The F-scores of the sbbd, sbbg and sh classes were 0.80, 0.77
and 0.75, respectively. Nez4c3b reached the highest learning rate and high accuracy for
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our task within 40 epochs because of batch size 1 and model architecture. Nez CNN was
originally designed to quickly decrease the dimensionality of the hyperspectral inputs
with similar spatial resolution and ultimately perform classification tasks [47]. The small
batch size intensified the learning process. Data augmentation had a positive effect on
the classification metrics of the Saf model, consistent with the original paper [31]. In
the original paper, the F-scores increased by 0.24 and 0.15 for two infested classes of firs
corresponding to our mixed sh + sbbg class and sbbd class after data augmentation. In
our study, the data augmentation resulted in almost no improvement of F-scores, but it
reduced the dangerous misclassification of sbbg trees to sh class. Nevertheless, both CNNs
achieved performance superior to pretrained convnets and transfer learning in the original
papers, similar to our results [31,47]. Moreover, both 4c CNN models outperformed the 4c
RF models for the detection of bark beetle disturbance at the tree level, which is consistent
with previous findings of Sothe et al. [69,70]. This result reflects the main advantage of
deep learning methods. CNNs perform effective automatic feature extraction learning of
hierarchical features during training from the original images [72,73]. Therefore, they can
learn hidden features from the original spectral bands, resulting in better classification
accuracy compared to RE.

The main classification problem was to separate the transitional category of sbbg
(trees under green attack) from sbbd (longer infested trees when needles turn yellow) and
marginally sh because of the similar spectral responses. However, the most important
aspect of forest management is the identification and destruction of infested trees before
the new generation of bark beetles starts swarming [74]. The first (spring) swarming occurs
in the green attack stage [75]. Nevertheless, cutting trees at the beginning of yellow stage
prevents summer swarming [74,76]. Moreover, previous studies used coarser classification
into infested (up to red needles) and healthy (not infested) categories. For this reason, we
decided to merge the sbbd and sbbg classes into the infested tree class (sbb) and performed
the classification with three classes (pine, sbb, sh).

The decreasing complexity of the problem caused by merging sbbd and sbbg classes
made the selection of model type less important. The best classification metrics were
achieved by the Safaugu3c3b model (mean F-score 0.92, kappa 0.92) followed by the
Nez3cb classifier (mean F-score 0.91, kappa 0.87). The F-scores of pines, sbb and sh classes
reached 0.95, 0.93 and 0.78 for Safaugu3c3b and 0.92, 0.94 and 0.86 for Nez3cb. However,
all tested model types, including 3c RF, were able to detect the most important class of
infested trees with an F-score of the class over 0.90. The evaluation metrics of pine and sh
classes remained the same. Merging affected only the concerned classes.

The evaluation metrics of the best performing 3c models were higher or comparable
to previous studies focused on the detection of individual not infested /infested (up to red
needles, including green attack) trees. Ortiz et al. [21] and Kampen et al. [23] reached kappa
coefficients of classification of 0.74 and 0.73, respectively, using machine learning classifiers.
Brovkina et al. [26] reached a kappa of 0.75 using object-oriented image analysis in eCogni-
tion software. Dash et al. [22] reached kappa 0.69 using a machine learning algorithm and
time-series analysis. Nguyen et al. [45] reached a kappa of 0.73, and Qin et al. [77] achieved
a mean F-score of 0.88 for infested trees using a deep learning algorithm but using a large
dataset of approximately 5000 samples. In contrast, we reached higher or comparable
evaluation metrics of models using ten times fewer samples. Safonova et al. [31] achieved
F-scores over approximately 0.90 for infested tree categories.

The more detailed classification of infested trees to different stages of infestation,
such as sbbg and sbbd, is rare and less accurate (published only by [17,31]), because it is
challenging to separate trees under green attack. The common approach is to detect green
attack retrospectively from time series of multispectral imagery [17,22,28]. This approach
requires repeated flights during season, and the infestation is detected retrospectively,
which could be a drawback for rapid calamity mapping. Moreover, these studies classified
the trees only into infested /not infested categories for simplification of classification task.
In our study, we propose the workflow that detect the green attack and provide information
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about disturbance dynamics by classifying to different stages of infestation at once based on
precise timing and CNN. We conducted the imaging after summer swarming in the study,
because vegetation stress caused by bark beetle is detectable from multispectral images after
14 days since infestation [22,78]. Therefore, it is possible to detect and eliminate infested
trees early after infestation using timed UAS imaging. However, it demands the knowledge
of approximate dates of swarming in the area during season. This is the potential limitation
of our approach. To overcome the limitation, it is possible to use terrestrial methods of
swarming detection like pheromone slit traps [74]. Nevertheless, the proposed workflow
can be used to automatically monitor bark beetle disturbance development, because the
performance of the Nez4c3b and Safaugu4c3b models is comparable or superior to previous
work employing machine learning focused on green attack phase detection even if they
used coarser classification and time series [17,19,21,22,28,79].

Another challenge of our workflow is to collect more training samples for classifi-
cation. We hypothesize that using more training samples would improve the distinction
between categories of infestation status (sbbd and sbbg) similarly to distinction between
tree species that was documented by Natesan [41]. In addition to increasing the number of
experimental sites, another possibility is to extract more training samples from repeated
imaging of multiple swarming within one season or from different seasons. It could im-
prove the generalization of disturbance class-specific patterns found by CNN classifier
thanks to slightly different spectral response of the trees resulting in possible accuracy
improvement. For now, high generalization of class-specific patterns is guaranteed by CNN
architecture itself that iteratively optimize the transformations of feature space during
training process [32,55]. We plan to combine our classification methodology with time-
series analysis for monitoring bark beetle disturbance, detecting hotspots and predicting
infestation spreading in our future work.

5. Conclusions

This study examined the potential of CNN for the detection of individual trees in-
fested by the bark beetle on a very high-resolution dataset from multispectral images. We
compared the performance of three CNN architectures and the random forest (RF) model
to classify the trees into four categories: pines, sbbd (longer infested trees when needles
turn yellow), sbbg (trees under green attack) and non-infested trees (sh).

The best performance was achieved by the Nez4c3b model (mean F-score 0.84, kappa
0.80) and Safaugu 4c3b model (mean F-score 0.81, kappa 0.76) using only RGB bands.
The main misclassifications were between sbbd and sbbg because of the similar spectral
responses. We decided to merge sbbd and sbbg into a more general class of infested trees
because both classes described the relatively early infestation stage. Merging sbbd and
sbbg made the selection of model type less important. All tested model types, including RF,
were able to detect the most important class of infested trees with an F-score of the class
over 0.90. Nevertheless, the best classification metrics were achieved by the Safaugu3c3b
model (mean F-score 0.92, kappa 0.92) followed by the Nez3cb classifier (mean F-score 0.91,
kappa 0.87) using only RGB bands.

Better performance was achieved by the RGB models because the best spectral separa-
bility of these classes was in the blue and red bands. Therefore, the usage of the raw RGB
spectral band is sufficient for the basic identification of infested trees using these CNNSs,
which makes data preprocessing more straightforward. We found no evidence that adding
more bands into the CNN model improves the detection of infested trees.

Based on our findings, we conclude that the Nez and Safaugu models are superior
to the RF models and transfer learning models for the identification of infested trees and
for distinguishing between different infestation stages. The performance of both models is
comparable, but the Nez model has a higher learning rate for this task. The performance of
the Nez and Safaugu models is comparable to previous work employing machine learning
classifiers and some deep learning studies classifying trees into healthy/infested categories,
even if the finer classification of tree infestation status is used. Therefore, CNNs are suitable
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for the automated identification of infested individual trees, as well as for monitoring bark
beetle disturbance dynamics.

We see the potential application of the proposed workflow in combination with multi-
temporal analysis for monitoring bark beetle disturbance, detecting hotspots and predicting
infestation spreading. Getting more training samples from appropriately timed repeated
imaging could also improve the generalization of disturbance class-specific patterns found
by CNN classifier and distinction between infestation stages thanks to variable spectral
response of the disturbed trees under different seasonal conditions.
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