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Abstract: Due to their great potential for a variety of applications, digital building models are well
established in all phases of building projects. Older stock buildings however frequently lack digital
representations, and creating these manually is a tedious and time-consuming endeavor. For this
reason, the automated reconstruction of building models from indoor mapping data has arisen as an
active field of research. In this context, many approaches rely on simplifying suppositions about the
structure of buildings to be reconstructed such as, e.g., the well-known Manhattan World assumption.
This however not only presupposes that a given building structure itself is compliant with this
assumption, but also that the respective indoor mapping dataset is aligned with the coordinate axes.
Indoor mapping systems, on the other hand, typically initialize the coordinate system arbitrarily
by the sensor pose at the beginning of the mapping process. Thus, indoor mapping data need to
be transformed from the local coordinate system, resulting from the mapping process, to a local
coordinate system where the coordinate axes are aligned with the Manhattan World structure of
the building. This necessary preprocessing step for many indoor reconstruction approaches is also
frequently known as pose normalization. In this paper, we present a novel pose-normalization
method for indoor mapping point clouds and triangle meshes that is robust against large portions of
the indoor mapping geometries deviating from an ideal Manhattan World structure. In the case of
building structures that contain multiple Manhattan World systems, the dominant Manhattan World
structure supported by the largest fraction of geometries was determined and used for alignment. In
a first step, a vertical alignment orienting a chosen axis to be orthogonal to horizontal floor and ceiling
surfaces was conducted. Subsequently, a rotation around the resulting vertical axis was determined
that aligned the dataset horizontally with the axes of the local coordinate system. The performance
of the proposed method was evaluated quantitatively on several publicly available indoor mapping
datasets of different complexity. The achieved results clearly revealed that our method is able to
consistently produce correct poses for the considered datasets for different input rotations with high
accuracy. The implementation of our method along with the code for reproducing the evaluation is
made available to the public.

Keywords: pose normalization; Manhattan World; indoor mapping; point cloud; triangle mesh

1. Introduction

The importance of digital models of building environments has been steadily increas-
ing in recent years [1,2]. Currently, many building projects are planned digitally in 3D
using Building Information Modeling (BIM) techniques [3]. Thus, a valid digital three-
dimensional model arises along with the construction of the respective building, which
can be profitably used during all the stages of its life cycle, i.e., usage and maintenance,
e.g., in the context of facility management, changes and modifications of the building, and
eventually, dismantling [4–7]. However, in the case of older, already existing buildings,
three-dimensional digital models often do not exist and two-dimensional plans are often
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faulty or outdated. Manually reconstructing digital models (as-is BIM models) for such
buildings is a tedious and time-consuming process [8,9].

However, there currently exists a broad range of sensor systems that can be deployed
in the task of accurately mapping indoor environments [10–13]. Terrestrial Laser Scanners
(TLSs), for instance, can provide a high geometric accuracy of acquisition depending on the
respective conditions, e.g., in terms of surface characteristics and scanning geometry [14,15].
In order to achieve a complete capture of an environment, however, multiple scans have
to be conducted from different positions. Especially in the case of mapping the interior
of building structures, this can be quite cumbersome as the device needs to be set up
at numerous positions, while the resulting scans subsequently need to be aligned in a
common coordinate system.

Mobile mapping systems, however, alleviate these restrictions by continuously track-
ing their own position and orientation with respect to an initial pose. Indoor mapping
geometries acquired over time can thus be projected successively into a common co-
ordinate system while the operator can achieve a complete scene capture by walking
through the scene. Mobile mapping systems encompass, e.g., trolley-based (such as NavVis
(https://www.navvis.com/m6, accessed on 22 November 2021)) or backpack-mounted
sensors [16–19], or even UAV-based systems [20], as well as hand-carried (e.g., Leica
BLK2GO (https://blk2go.com, accessed on 22 November 2021)) or head-worn devices
(e.g., Microsoft HoloLens (https://www.microsoft.com/de-de/hololens, accessed on 22
November 2021)). In particular, the Microsoft HoloLens designed as an Augmented Reality
(AR) system offers the additional advantage of directly visualizing the already captured
geometries within the view of the operator, facilitating the complete coverage of an indoor
environment.

While conventional TLS or mobile laser scanning systems provide indoor mapping
data in the form of point clouds, some consumer-grade systems such as, e.g. the mentioned
Microsoft HoloLens or the Matterport system (https://matterport.com/, accessed on 22
November 2021), sometimes provide indoor mapping data in the form of preprocessed,
condensed triangle meshes. Such triangle meshes being a derived product from the primary
point-based measurements were found to still provide sufficient accuracy for a wide range
of applications [21,22], while being significantly more compact in terms of data size and,
thus, more efficient in terms of the required processing time.

This broad range of available indoor mapping systems can provide an ample database
for the digital, three-dimensional reconstruction of built indoor environments. Instead
of having to take individual distance measurements in the respective building or having
to bridge the mental gap between conventional, two-dimensional floor plans and the
three-dimensional modeling environment, indoor mapping data representing existent
buildings can be loaded directly into the modeling environment. However, the manual
digital reconstruction on the basis of indoor mapping data can still be a time-consuming
endeavor. Hence, automating this process has become the focus of a currently quite active
field of research [23–25].

While recent approaches in the field of automated indoor reconstruction are becom-
ing more flexible regarding the building structure represented by the indoor mapping
data [26–31], restricting assumptions about the building structure are still oftentimes ap-
plied. A frequently applied simplification in this context is the Manhattan World assump-
tion, which was for instance relied on in the indoor reconstruction approaches presented
in [32–35].

The Manhattan World assumption, as first proposed by Coughlan and Yuille [36,37],
presupposes all surfaces to be perpendicular to one of the three coordinate axes. Applied to
the context of building structures, this assumption thus prohibits curved room surfaces, as
well as surfaces being oriented diagonally with respect to the main building structure, i.e.,
diagonal walls or slanted ceilings. The Manhattan World assumption was later extended
to the Atlanta World assumption by Schindler and Dellaert [38], which weakens the
Manhattan World assumption by permitting vertical surfaces to have arbitrary angles
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around a common vertical coordinate axis, while horizontal surfaces are still expected to
be perpendicular to the vertical axis. Thus, an Atlanta World structure can be regarded
as a composition of multiple Manhattan World structures varying by a rotation around
a common (vertical) coordinate axis. Besides in the context of indoor reconstruction, the
Manhattan World assumption, as well as the weaker Atlanta World assumption have been
used in a range of other application fields such as point cloud segmentation [39–41], the
extraction of road structures from low-resolution airborne imagery [42], or for stabilization
and drift reduction in the context of Visual Odomentry (VO) [41,43,44] and Simultaneous
Localization and Mapping (SLAM) [45–48].

The fact that a given indoor reconstruction approach relies on the Manhattan World
assumption does not only imply that the building structure to be reconstructed itself
must be compliant with the Manhattan World assumption. Rather, this also implies
that the geometric representation of the respective building in the indoor mapping data
must be correctly aligned with the coordinate axes in accordance with the definition of
the Manhattan World assumption, i.e., that the surfaces pertaining to the three main
directions (or six when considering oriented directions) are aligned with the three axes of
the respective local coordinate system in which the data are given.

In the context of indoor mapping, however, the pose of the captured building structure
with respect to the coordinate axes does not necessarily fulfill this requirement. Frequently,
the local coordinate system is determined by the initial pose of the indoor mapping system
at the beginning of the mapping process. Thus, the orientation of the indoor mapping
data can deviate from the Manhattan World assumption by a rotation around the vertical
coordinate axis even if the mapped building structure itself is totally compliant with the
Manhattan World assumption. Moreover, the orientation of the vertical axis itself can also
deviate from its optimal orientation according to the Manhattan World assumption, i.e.,
being perpendicular to horizontal ceiling and floor surfaces. This is generally not the case
when a leveled mounting of the respective indoor mapping sensor is used, e.g., in the case
of tripod-mounted systems such as TLS or trolley-based systems. In the case of hand-held
or head-worn indoor mapping systems where a perfectly leveled orientation at the start of
the indoor mapping process cannot be guaranteed, an eventual misalignment of the indoor
mapping data with respect to the vertical coordinate axis needs to be taken into account.

Aligning the Manhattan World structure of an indoor mapping dataset with the local
coordinate axes—horizontally and, depending on the used indoor mapping system, also
vertically—is thus a necessary preprocessing step for automated indoor reconstruction
approaches that rely on the Manhattan World assumption. Moreover, such an align-
ment process—also known as pose normalization [49]—can still be a reasonable choice,
even if the respective indoor reconstruction method does not presuppose a Manhattan
World-compliant building structure. This is for instance the case when a respective indoor
reconstruction approach makes use of a voxel grid or octree representation of the input
data [50–53]. Even if a voxel-based indoor reconstruction approach is able to handle build-
ing structures deviating from the Manhattan World assumption, having room surfaces
aligned with the coordinate axes and thus with the voxel grid will result in a cleaner and
visually more appealing reconstruction in the voxel space. Furthermore, spatially discretiz-
ing data that are not aligned with the coordinate axes can lead to aliasing effects, which
can impede a successful reconstruction process [49,54,55]. Besides, pose normalization
often—but not necessarily always, depending on the respective building structure—results
in a minimal axis-aligned bounding box circumscribing the indoor mapping data and thus
to the reduced memory size of the voxel grid structure.

Lastly, pose normalization of indoor mapping data can also be of benefit in the context
of the coregistration of multiple datasets representing the same indoor environment that
are to be aligned with each other [56–58]. The respective datasets to be aligned can be
acquired by different sensor systems or at different times, e.g., in the context of change
detection [59–61]. While pose normalization with respect to a Manhattan World structure
does not entirely solve this problem as the ambiguity of rotations of multiples of 90° around
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the vertical axis remains, it nonetheless can be reasonable to apply pose normalization
when coregistering indoor mapping datasets as it reduces the problem to finding the correct
one of only four possible states per dataset.

The same arguments speaking in favor of pose normalization—even if an indoor
reconstruction approach does not necessarily depend on it—also hold true for the case of
building structures that are only partly compliant with the Manhattan World assumption.
Thus, a pose normalization approach should be robust against a substantial amount of the
given indoor mapping geometries deviating from the Manhattan World structure of the
building. Particularly in the case of building environments that contain multiple Manhattan
World structures with different orientations with respect to rotations around a common
vertical axis (i.e., Atlanta World), the dominant Manhattan World structure (e.g., in terms
of the largest fraction of supporting geometries) should be used for alignment with the
coordinate axes. In situations where multiple Manhattan World structures have about the
same support, it might be reasonable to detect them all and create multiple solutions for a
valid pose normalization.

In a more general context, a range of pose normalization approaches has been pre-
sented, which aim at aligning arbitrary three-dimensional objects with the coordinate axes.
In this case, the concerned objects do not necessarily represent building structures [62–69].
These approaches are mainly motivated by the need to design rotation-invariant shape
descriptors in the context of shape retrieval, i.e., finding all similar three-dimensional
objects to a given query shape from a large database of 3D objects [70,71].

In this context, variations of the Principal Component Analysis (PCA) algorithm [72]
are often used [62–64,67]. Furthermore, symmetries in the geometry of the respective object
are often exploited as well [64,65,67]. Other approaches rely on the geometric property
of rectilinearity [66,68] or aim to minimize the size of a surface-oriented bounding box
circumscribing the target object [69].

More specifically concerning building structures, a recent pose normalization ap-
proach makes use of point density histograms, discretizing and aggregating the points
of an indoor mapping point cloud along the direction of one of the horizontal coordinate
axes [49,54]. The optimal horizontal alignment of the point cloud is determined by maxi-
mizing the size and distinctness of peaks in this histogram varying with the rotation around
the vertical axis.

Other approaches, including the one proposed in this paper, do not discretize the
data with respect to their position, but with respect to their orientation [73–76]. This is
conducted on the Extended Gaussian Image (EGI) [77], which consists of the normal vectors
of the individual indoor mapping geometries projected on the unit sphere. Besides its
application in the context of pose normalization, the EGI is also frequently applied to the
segmentation of point clouds [39,41,78–80] or plane detection [81], in particular with regard
to building structures.

In a straightforward approach, for instance, the points in the EGI are subjected to a k-
means clustering [82,83] to determine three clusters corresponding to the main directions of
the Manhattan World structure, while disregarding the absolute orientation of the normal
vectors (i.e., projecting them all in the same hemisphere) [74,75]. This, however, is not
robust to deviations of the indoor mapping point cloud from an ideal Manhattan World
structure. In contrast, using DBSCAN [84] for clustering on the EGI has been proposed [76],
which is more robust, as it does not fix the number of clusters to exactly three. This
allows for the presence of surfaces deviating from an ideal Manhattan World system. The
proposed approach however only aims at detecting dominant planes to remove them from
the point cloud and does not assemble the detected orientation clusters into Manhattan
World structures. In another approach, dominant horizontal directions are detected by
projecting the normal vectors to the horizontal plane and binning the resulting angles to a
horizontal reference coordinate axis in a similar manner to the approach presented in this
paper [73].
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All of the approaches mentioned above only concern themselves with determining
an orientation around the vertical axis to achieve an alignment of the Manhattan World
structure of an indoor mapping dataset with the axes of a reference coordinate system. To
the best of our knowledge, no approach to pose normalization of indoor mapping point
clouds or triangle meshes has yet been proposed that aims at determining an optimal
alignment with respect to the orientation of the vertical axis as well. Furthermore, the
presented approaches do not address the topic of robustness to deviations of the respective
building structure from an ideal Manhattan World scenario or the presence of multiple
Manhattan World structures in the same building.

In this work, we present a novel pose-normalization method for indoor mapping
point clouds and triangle meshes that is robust to the represented building structures being
only partly compliant with the Manhattan World assumption. In case there are multiple
major Manhattan World structures present in the data, the dominant one is detected and
used for alignment. Besides the horizontal alignment of the Manhattan World structure
with the coordinate system axes, vertical alignment is also supported for cases where the
deployed indoor mapping system is not leveled and the resulting dataset is thus misaligned
with respect to the vertical coordinate axis. In this context, we presumed that the indoor
mapping dataset is coarsely leveled to within ±30° of the optimal vertical direction, which
can usually be expected to be the case for hand-held or head-worn mobile indoor mapping
systems. We furthermore presupposed the individual indoor mapping geometries to
have normal vectors, which however do not need to be consistently oriented and can
thus be easily determined as a preprocessing step for point clouds, while triangle meshes
already have normal vectors inherent in the geometries of the individual triangles. Our
implementation of the proposed pose normalization approach along with the code for
the presented quantitative evaluation on publicly available indoor mapping datasets is
made available to the public at https://github.com/huepat/im-posenorm (accessed on 22
November 2021).

The presented approach for pose normalization is described in Section 2 along with a
method to resolve the ambiguity of a rotation of multiples of 90° around the vertical axis
and the procedure applied for the quantitative evaluation. The results of this evaluation
procedure applied to several publicly available indoor mapping point clouds and triangle
meshes are subsequently presented in Section 3 and discussed in detail in Section 4. Finally,
in Section 5, we provide concluding remarks and an outlook for future research.

2. Materials and Methods

In this section, we present a novel method for automatic pose normalization of indoor
mapping point clouds or triangle meshes that represent building structures that are at least
partially compliant with the Manhattan World assumption. The presented method aims at
rotating the given indoor mapping geometries to a pose with respect to the surrounding
coordinate system for which the largest possible fraction of normal vectors is aligned with
the three Cartesian coordinate axes. This comprises an optional leveling step to orient
horizontal surfaces such as floors and ceilings to be orthogonal to a chosen vertical axis if
this is not already achieved by the data-acquisition process (e.g., by using leveled tripod or
trolley-mounted acquisition systems). Subsequently, a second step determines the optimal
rotation angle around this vertical axis in order to align the largest possible fraction of the
building surfaces with the horizontal pair of orthogonal coordinate axes. The workflow of
the proposed method is visually summarized in Figure 1.

The presented method is applicable to all kinds of indoor mapping point clouds and
triangle meshes. However, we assumed the individual geometric primitives comprising
the input data to have normal vectors. While these are intrinsically given for the individual
triangles comprising a triangle mesh, the individual points of indoor mapping point
clouds do not generally have normal vectors. These can however be easily determined
by means of established methods such as in [85–88], which we assumed in this work as
a necessary preprocessing step. Note that these normal vectors need not be oriented, i.e.,

https://github.com/huepat/im-posenorm
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pointing consistently towards the inside or outside of the building. Determining such
oriented normals for indoor mapping point clouds is a more complex task compared to just
determining unoriented normals based on local neighborhoods [89]. However, as normal
vectors contribute to the same Manhattan World structure regardless of their orientation,
only their direction is of importance. Furthermore, we assumed the input data to be at
least coarsely leveled, i.e., we assumed the represented building structures to be coarsely
aligned with the vertical axis within the range of ±30°.
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Determine Vertical Normals

Discretize Vertical Normals in 
Weighted 2D (  ,  ) Grid

Cluster Normal Direction per 
(  ,  ) Cell and Retain Largest 

Cluster per Cell

Cluster (  ,  ) Cells 
above Threshold 

(75% of Highest Value)

Determine Cell Cluster with 
Largest Weight Sum

Determine Azimuth/
Inclination of Oriented 
Vertical Axis based on 
Normal Directions in 
Selected Cell Cluster

Rotate Dataset around 
Horizontal Axes  

Determine Horizontal Normals

Discretize Horizontal Normals 
in Weighted 1D Grid

Cluster Cells above Threshold 
(75% of Highest Value)

Determine Cell Cluster with 
Largest Weight Sum

Determine Angle of Oriented 
x-Axis based on 

Selected Cell Cluster

Rotate Dataset around 
Vertical Axis

<latexit sha1_base64="U+RSY+xcu4ty45N8Jfmd+E6x+Qs="></latexit>

'̃
<latexit sha1_base64="7vv/14U7W5zhu/NjRcHXntER9Xs="></latexit>

✓̃

<latexit sha1_base64="U+RSY+xcu4ty45N8Jfmd+E6x+Qs="></latexit>

'̃
<latexit sha1_base64="7vv/14U7W5zhu/NjRcHXntER9Xs="></latexit>

✓̃

<latexit sha1_base64="U+RSY+xcu4ty45N8Jfmd+E6x+Qs="></latexit>

'̃
<latexit sha1_base64="7vv/14U7W5zhu/NjRcHXntER9Xs="></latexit>

✓̃

Figure 1. Overview of our pose-normalization method as described in Section 2. The depicted
triangle mesh is the dataset “Office” from [31].

In the following,~ni denotes the i-th normal vector of N given input geometries (i.e.,
points or triangles), while, in the scope of this paper, 〈·, ·〉 denotes the dot product of two
3D vectors. Furthermore, the vector determining the initial vertical axis of the coordinate
system in which the indoor mapping data are represented is denoted by~z, while the initial
horizontal axes are denoted by~x and~y. The orientation of these initial axes in the input data
is however only vertical/horizontal within ±30° w.r.t. the represented building geometry.
Aligning these axes of the local coordinate system with the building geometry in such a
way that~z is optimally vertical w.r.t. the building is the aim of the presented method.

Different indoor mapping systems use different definitions of the respective local
coordinate system, i.e., the~z axis need not necessarily equal (0 0 1) T (with T denoting the
transpose operation in the scope of this paper). Thus, the vectors of the~z and ~x axes are to
be chosen by the user as an input parameter to the presented method. The chosen vectors
are checked for orthogonality, and ~y is determined as:

~y = ~z×~x (1)

In the following, Section 2.1 first presents the proposed method for determining an
optimal rotation around the vertical axis in order to horizontally align the indoor mapping
data with the coordinate system in case the dataset is already vertically aligned in relation
to the vertical axis. A suitable method for ensuring this vertical alignment that can be
applied as a preprocessing step to datasets that are only coarsely aligned with the vertical
direction (±30°) is subsequently presented in Section 2.2. As the proposed method for
determining the rotation around the vertical axis is ambiguous with regard to multiples of
90°, Section 2.3 presents an approach to solve this ambiguity. Lastly, Section 2.4 presents
the evaluation methodology applied in this study, and Section 2.5 gives an overview of the
datasets used for the evaluation.
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2.1. Rotation around the Vertical Axis

In this section, we preliminarily assumed that the given indoor mapping data (com-
prised of triangles or points) is already leveled with regard to a chosen vertical axis~z (that
does not necessarily need to equal (0 0 1) T). Thus, only one rotation angle around this
vertical axis is to be determined in order to align the two horizontal axes of the coordi-
nate system with the horizontal directions of the dominant Manhattan World structure
underlying the respective building represented by the input data.

In case the given input data are not entirely compliant with the Manhattan World
assumption, a best-possible solution in terms of the alignment of all normal vectors with
the horizontal coordinate axes is to be found. Even indoor mapping data that represent
building structures entirely compliant with the Manhattan World assumption can have
a significant amount of normal vector directions deviating from the directions of the
respective Manhattan World system. These deviating normal vector directions can be
caused by the actual unevenness of walls, by noise inherent in the data acquisition and
normal determination, as well as by clutter such as furniture objects being present in the
indoor mapping data, in addition to the building structure itself.

Besides being robust against these restrictions, the presented method is also applicable
to building structures that are only partially Manhattan World conforming. Building
structures with multiple Manhattan World systems such as the one depicted in Figure 2
are aligned according to the respective Manhattan World system supported by the largest
fraction of normal vector directions.

Figure 2. Exemplary triangle mesh of a building with multiple Manhattan World systems (dataset
“mJXqzFtmKg4” from Matterport3D [90]). The green bounding box on the top-down-view on the
right-hand side illustrates the alignment along the dominant Manhattan World structure, considered
as the ground truth pose, while the red bounding box illustrates the pose rotated by 30° around the
vertical axis, as exemplarily used in Section 2.1.

Thus, the task at hand is to determine an angle of rotation around the vertical axis~z
that leads to the largest positive fraction of normal vectors being aligned with the horizontal
axes~x and~y. To this aim, we first filtered the normal vectors that can be considered coarsely
horizontal with respect to the vertical axis~z. For this, we considered all Nh normal vectors
~nh

i that are within the range of ±45° of a horizontal orientation; thus:

45° 6 |^(~ni,~z)| 6 135° (2)

where ^(·, ·) denotes the smallest angle between two 3D vectors. For the indoor mapping
mesh depicted in Figure 2, the corresponding horizontal normal vectors~nh

i are depicted in
the form of an extended Gaussian image in Figure 3. In this example, the triangle mesh of
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Figure 2 is rotated by 30° around the vertical axis relative to the ground truth pose aligned
with the dominant Manhattan World structure.

Figure 3. The normal vectors ~ni of the triangle mesh shown in Figure 2 visualized as an extended
Gaussian image (thinned out by a factor of 25 for the sake of visibility). The normal vectors~nh

i that
are horizontal within the range of ±45° are visualized in black, while the others are visualized in
gray. The coordinate axes are visualized in red for ~x, green for ~y, and blue for the vertical axis~z.

These horizontal normal vectors~nh
i can subsequently be projected to the horizontal

plane formed by the horizontal axes ~x and ~y by:

~̃nh
i = ~nh

i − 〈~nh
i ,~z〉~z (3)

where their respective angles to the reference direction of ~x around~z as the axis of rotation:

γi = ~̂z(~̃n
h
i ,~x) = arctan

〈~z,~̃nh
i ×~x〉
〈~̃nh

i ,~x〉
∈ [−180°, 180°) (4)

can be determined.
The problem at hand can be formulated as determining the rotation angle γ ∈ [0°, 90°)

around the vertical axis that minimizes the sum of angular distances of each horizontal
normal vector to the respectively nearest horizontal coordinate axis, i.e.,

γ = arg min
γ̂∈[0°,90°)

Nh

∑
i=0

wi min


|γ̂− γi|

|γ̂− γi + 90°|
|γ̂− γi + 180°|
|γ̂− γi − 90°|

 (5)

Here, the angular distances of each angle γi to the nearest horizontal axis are weighted
by factor wi. This factor can be constantly set to 1 for the points of an indoor mapping
point cloud. In the case of triangle meshes, however, it allows weighing the individual
triangles by their respective area, as larger triangles imply a larger quantity of points in a
corresponding point cloud representation.

Equation (5) is not analytically solvable. It can however be solved numerically by
derivative-free minimization methods such as, e.g., Brent minimization [91]. This, however,
does not scale well with the size of the input data, as all the angles derived from the
horizontal normal vectors need to be iterated in each step of the respective numeric
method. Particularly in the case of indoor mapping point clouds, the amount of geometric
primitives and thus of angles to be processed can reach a tremendous size.

Consequently, in this work, we propose an approach that discretizes the input data
into a one-dimensional grid of fixed resolution by means of which the angle of rotation
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for aligning the input data with the horizontal coordinate system can be determined
noniteratively in one step. In this context, a resolution of 1° proved to be suitable for
a coarse initial determination of the rotation angle for horizontal alignment, which can
subsequently be refined. For each angle γi, the respective grid cell is determined, which is
incremented by the respective weight wi, which again is constantly 1 for points of point
clouds, but in the case of triangle meshes, weights the respective angle by the area of the
corresponding triangle.

Figure 4 visualizes such a one-dimensional grid representation of the horizontal
angles γi over the full circle of 360° for the mesh presented in Figure 2. The peaks in the
summarized weights per grid cell correspond to the eight horizontal main directions of the
two Manhattan World systems present in the dataset depicted in Figure 2.

~x

~y

0°

−90°

90°

180°/
−180°

−180 −90 0 90 180
0

10

20

30

γi [°]

∑ wi

Figure 4. Visualization of a one-dimensional 360° grid corresponding to Figure 2. The grid cells
contain the summarized weights wi of the contained angles γi with value colorization ranging from
blue for low values over green and yellow to red for large values.

To decide about the dominance of the two Manhattan World systems involved and to
determine the corresponding rotation angle for an alignment of the input data with it, the
weights of the involved grid cells need to be summarized over all peaks pertaining to the
same Manhattan World system. To this end, the peaks belonging to the same Manhattan
World system and thus having an angular difference of a multiple of 90° between each
other need to be identified and associated. Thus, we map the angles γi ∈ [−180°, 180°) to
[0°, 90°) by:

γ∗i =

{
γi + 180° γi < 0°
γi else

∈ [0°, 180°) (6)

and:

γ̃i =

{
γ∗i − 90° γ∗i > 90°
γ∗i else

∈ [0°, 90°) (7)

The discretized grid representation of the angles γ̃i ∈ [0°, 90°) thus needs only a
quarter of the size in comparison to discretizing the angles γi ∈ [−180°, 180°) with the
same resolution. Furthermore, the resulting grid as visualized in Figure 5 enables the
coarse initial determination of the rotation angle γ. To this end, the weight sums per grid
cell are thresholded with a threshold value of 0.75-times the maximal weight sum of the
whole grid and subsequently clustered. While clustering, the fact that clusters can extend
over the discontinuity between 0° and 90° needs to be taken into account.
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Finally, the grid cell cluster with the largest weight summarized over the contained
cells is selected, and γ is determined as the weighted average of the angle values corre-
sponding to the cluster cells (with 1° resolution) weighted by their respective weight sum
values. Figure 6a shows the horizontal triangle mesh faces of Figure 2 corresponding to the
largest peak at 60° in Figure 5 that determines the dominant Manhattan World system of
that dataset. The faces corresponding to the second peak at 15° in Figure 5 are visualized
in Figure 6b.

~x

~y

0°

90°
Threshold

(75% of max.)

0 15 30 45 60 75 90
0

50

100

γ̃i [°]

∑ wi

Figure 5. Visualization of a one-dimensional 90° grid corresponding to Figure 2. The grid cells
contain the summarized weights wi of the contained angles γ̃i with value colorization ranging from
blue for low values over green and yellow to red for large values.

The resulting value for γ can subsequently be further refined by determining the
weighted median over all γ̃i within a certain angular distance of the initial value for γ
while applying the weights wi. A threshold of 5° was found to be suitable for this task.

Finally, the indoor mapping data can be rotated by the thusly refined angle γ around
the vertical axis to achieve the alignment of the building geometry with the horizontal
coordinate axes. In the case of a triangle mesh, it is sufficient to rotate the vertices of the
triangles, as the respective normal vectors of the rotated triangles can be calculated on the
basis of the triangle geometry. In the case of point clouds, however, the respective normal
vectors of the points need to be explicitly updated along with the coordinates of the points.

2.2. Orientation of the Vertical Axis

In the preceding Section 2.1, the rotation around the vertical axis was determined
under the assumption that the vertical axis is perfectly leveled with respect to the building
structure, i.e., that it is orthogonal to horizontal floor and ceiling surfaces. In the case of
tripod-mounted indoor mapping systems such as terrestrial laser scanners, this assumption
is justified as these devices are typically leveled before usage. However, in the case of
mobile indoor mapping systems such as hand-held or head-worn devices, this is generally
not the case. In these cases, the coordinate system of the indoor mapping data is often
defined by the initial pose of the mobile mapping device when starting the data acquisition
process. In consideration of the typical usage postures of such mobile systems, it can be
assumed that the respective vertical axis of the coordinate system is still roughly pointing
upwards within the range of ±30°. If this is not the case, a coarse leveling within this range
can easily be conducted manually.
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(a)

(b)

Figure 6. The horizontal faces of the triangle mesh presented in Figure 2 corresponding to the
horizontal normal vectors ~nh

i . The faces corresponding to the two peaks shown in Figure 5 are
depicted in red. (a) Faces corresponding to the largest peak at 60° in Figure 5 determining the
dominating Manhattan World structure. (b) Faces corresponding to the minor peak at 15° in Figure 5.

To justify the assumption made in the previous section, this section presents an
approach for automatically leveling indoor mapping point clouds or triangle meshes where
a chosen vertical axis~z corresponds coarsely within±30° with the actual upwards direction
of the building structure standing orthogonally on horizontal floor surfaces. As in the
preceding section, the input data for conducting this alignment of the input mapping data
with the coordinate system are again the N normal vectors~ni of the individual geometric
primitives comprising the indoor mapping data (i.e., points or triangles).

Analogous to Equation (5), we can formulate the task of vertically aligning the indoor
mapping geometries with the coordinate system axis~z as:(

α
β

)
= arg min

α̂,β̂∈[−30°,30°]

Nv

∑
i=0

wi min
{

|^(R(α̂, β̂)~nv
i ,~z)|

|^(R(α̂, β̂)~nv
i ,~z)− 180°|

}
(8)

where~nv
i are the Nv normal vectors that are vertically oriented within the range:

|^(~ni,~z)| 6 40°∧ |^(~ni,~z)| > 140° (9)

and wi again is a weighting factor, being constant for points of a point cloud, but corre-
sponding to the respective triangle area for the faces of a triangle mesh. Furthermore,
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R(α, β) denotes a 3× 3 rotation matrix determined by two rotation angles α and β around
the two horizontal coordinate axes ~x and ~y, respectively. Note that in Equation (9), we use
an angular range of±40° for filtering vertical normal vector directions, which is larger than
the assumed range of the coarse initial leveling of the input data within ±30°. This wider
angular range was applied because the horizontal building surfaces that are initially lev-
eled within ±30° can have a certain amount of variation in the directions of the respective
normal vectors in noisy indoor mapping data, as acquired for instance with the Microsoft
HoloLens.

The aim of Equation (8) is to find the optimal vertical axis~z∗ as a vector:

~z∗ = R(α, β)~z (10)

in the initially given coordinate system that has a minimal sum of angles to the vertical
normals~nv

i . This optimal vertical axis~z∗, as well as the initial vertical axis~z are exemplarily
depicted in Figure 7 for a building with slanted ceilings only coarsely aligned with the
actual vertical direction.

Figure 7. Exemplary triangle mesh of a building with a partially slanted ceiling (dataset “Attic”
from [31]). The green line visualizes the reference orientation of the vertical axis considered as the
ground truth, while the red line visualizes the vertical axis rotated by −25° around the horizontal ~x
axis and by 15° around the horizontal ~y axis, as exemplarily used in Section 2.2.

As already was the case with Equation (5) in Section 2.1, Equation (8) is not analytically
solvable. Solving Equation (8) numerically is even more inefficient than in the case of
Equation (5), as here, a two-dimensional minimization is concerned. Thus, as in the case of
determining the rotation angle around the vertical axis in Section 2.1, we again sought to
formulate the problem at hand as the task of searching a maximum peak within a discrete
grid representation of the relevant input elements.

The relevant input elements in this case are the three-dimensional vertical normal
vectors~nv

i . However, the problem at hand is actually two-dimensional, as a rotation around
the two horizontal axes ~x and ~y by the rotation angles α and β is sufficient for aligning the
vertical axis~z with the optimal vertical direction~z∗.

In an alternative formulation, this can also be considered as the task of finding the
position of the optimal vertical direction~z∗ on the surface of a unit sphere, i.e., within the
extended Gaussian image. The orientation of a normal vector with respect to the coordinate
system can be expressed via the polar angles’ azimuth:

ϕi = arctan
〈~ni,~y〉
〈~ni,~x〉

∈ [−180°, 180°) (11)
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and inclination:
θi = arccos 〈~ni,~z〉 ∈ [0°, 180°) (12)

indicating the position of a respective normal vector~ni on the unit sphere. The definition
of the azimuth and inclination with respect to the coordinate system is further illustrated
in Figure 8.

This representation allowed us to construct a two-dimensional azimuth/inclination
grid analogous to the approach presented in Section 2.1, whose cells are weighted by the
summarized weights wi of the contained normal vectors ~ni. Such a grid of a resolution
of 1° extending over the whole unit sphere is depicted in Figure 9, corresponding to the
exemplary case presented in Figure 7.

~x

~y

0°

−90°

90°

180°/
−180°

ϕ ~y

~z

90°

180°

0°

90°
θ

Figure 8. Azimuth ϕ and inclination θ.

~z

Floor

Wall1 Wall2

~z

Wall1

Wall2

Horizontal
Ceiling

Slanted
Ceiling1

Slanted
Ceiling2

Figure 9. Azimuth/inclination grid of a 1° resolution over the whole surface of the unit sphere
corresponding to Figure 7. The grid cells contain the summarized weights wi of the contained normal
vectors~ni at polar angles (ϕi, θi) with value colorization ranging from blue for low values over green
and yellow to red for large values.

As before in Section 2.1, we wanted to transform this grid over the full range of the
sphere surface to a smaller grid where the weights of cells pertaining to opposing normal
vectors become accumulated. This is achieved by:

ϕ̃i =
∣∣∣|ϕi| − 90°

∣∣∣ ∈ [0°, 90°) (13)

and:
θ̃i = 90°− |θi − 90°| ∈ [0°, 90°) (14)
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while restricting the extension of the grid in the dimension of the inclination to the range
of [0°, 40°] and, thus, only considering the vertical normal vectors~nv

i . A schematic visual-
ization of this transformation is depicted in Figure 10a, while Figure 11 shows the resulting
two-dimensional azimuth/inclination grid corresponding to the dataset presented in
Figure 7.

~x

~z

Ceiling

Floor

~nc

~n f

(
ϕc

θc

)

(
ϕc

θ̃c

)
(

ϕ f

θ f

)
=

(
ϕ̃ f

θ̃ f

)
=

(
ϕ̃c

θ̃c

)

(a)

~x

~z

δ

δ

Ceiling

Floor

~nc
~n f

(
ϕc

θc

)

(
ϕ f

θ f

)
=

(
ϕ̃ f

θ̃ f

)
=

(
ϕ̃c

θ̃c

)

(b)

Figure 10. Transformation of (ϕ, θ) positions on the whole unit sphere to (ϕ̃, θ̃) positions on one-
eighth of the unit sphere by Equations (13) and (14). (a) Generally, points corresponding to opposing
normal vectors are transformed to the same point. (b) In case the vertical axis~z is the angle bisector
between the directions of two normal vectors (same angle δ to the~z axis), these are transformed to the
same point even if they are not opposed. This needs to be dealt with by means of a cluster analysis
per (ϕ̃, θ̃) grid cell.
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ϕ̃

θ̃

0° 90°

40°

0°

Figure 11. Transformed azimuth/inclination grid of a 1° resolution corresponding to Figure 7. The
grid cells contain the summarized weights wi of the contained vertical normal vectors ~nv

i at polar
angles (ϕ̃i, θ̃i) with value colorization ranging from blue for low values over green and yellow to red
for large values. The larger peak corresponds to the floor and the horizontal part of the ceiling, while
the minor peak corresponds to one of the slanted ceiling surfaces.

Subsequently, peaks with cell grid weights above a threshold of 75% of the highest
weight value are again clustered as in the case of the one-dimensional grid of Section 2.1.
While doing so, however, not only the azimuth discontinuity between 0° and 90° needs to
be considered, but also the pole point at a 0° inclination, where all azimuth values merge
into one and the same grid cell.

While in the case of the one-dimensional grid of Section 2.1, the grid cell indices could
be directly mapped to the angles by multiplication with the grid resolution, here, it is
not possible to infer the direction of the optimal vertical axis from grid cell indices as the
transformed azimuth values ϕ̃ are ambiguous by multiples of 90°. This ambiguousness also
exists in Section 2.1. However, it did not affect the correctness of the resulting horizontal
alignment, as the case here.

Thus, to be able to deduce correct directions from peaks in the two-dimensional grid,
the respective normal vectors~nv

i need to be hashed per grid cell. Therefore, the correct di-
rection of the vertical axis can be initialized by a weighted average of all the hashed normal
directions weighted by their respective wi value of the cluster with the largest summarized
weight. In doing so, normal vectors pointing downwards need to be corrected by invert-
ing the direction to point upwards when calculating the weighted average vector. As in
Section 2.1, the initial result is further refined by a weighted median of all normal vectors
within ±5° of the coarsely determined resulting vertical axis.

Besides the need to deduce the correct direction from the detected maximum peak
grid cells, there is a second reason to hash normal directions per grid cell. As illustrated
in Figure 10b, two normal vectors that are oriented by the same angle around the vertical
axis~z in a way that the axis~z is the angle bisector between both normals become projected
to the same (ϕ̃, θ̃) grid cell by Equations (13) and (14). On the one hand, this can distort
the weight sums of the individual grid cells that are used for peak detection. On the other
hand, the presence of normal vectors with deviating orientations beyond the ambiguity
of ±180° between opposing surfaces can severely distort the initial determination of the
vertical direction from the largest peak in the grid.

For this reason, a cluster analysis was conducted among the hashed normal vectors
per grid cell. In doing so, all the normal vectors in a grid cell are assigned to clusters. A
normal vector can be assigned to an existing cluster if its direction coincides within ±2°
with the average direction of the cluster (with the consideration of an ambiguity of ±180°).
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Else, the respective normal vector initializes a new cluster. Finally, for each grid cell, only
the largest cluster of normals is retained, while the others are discarded. The grid cell
weights and the hashed normal vectors are adapted accordingly.

2.3. Unambiguousness of the Rotation around the Vertical Axis

The alignment of indoor mapping point clouds or triangle meshes along the coordinate
axes as described in the preceding Sections 2.1 and 2.2 is ambiguous with respect to a
rotation around the vertical axis by multiples of 90°. This is per se not a problem, as
the aim of the presented approach is to align the indoor mapping data with respect to
their Manhattan World structure, which inherently implies this ambiguity of four possible
rotations around the vertical axis, i.e., all four possible result poses are equally valid in
hindsight for the stated aim.

However, in some situations, it can be desirable to derive an unambiguous pose of the
indoor mapping data. For instance, this can be the case when multiple indoor mapping
results of the same building environment are to be aligned by the proposed method. These
multiple datasets of the same building can, e.g., be obtained by different indoor mapping
systems or be acquired at different times in the context of change detection.

For this reason, we present a simple method for resolving the ambiguity in the rotation
around the vertical axis by reproducibly choosing one of the four possible horizontal
orientations. The proposed method presents a straightforward solution that does not
require any semantic interpretation of the indoor mapping data or any elaborate analysis. It
can however fail in cases of building layouts that are highly symmetric with respect to the
four inherent Manhattan World directions. We furthermore presupposed that two datasets
to be aligned unambiguously by this method cover approximately the same section of
an indoor environment. If this is not the case, an approach that incorporates semantic
knowledge of the represented indoor environment would be more promising. In this
context, constellations of detected openings such as doors or windows could, for instance,
be used.

Currently, however, we propose to resolve the unambiguousness between the four
possible horizontal orientations by first aligning one of the two possible horizontal Man-
hattan World directions with the chosen reference axis ~x that corresponds to a larger extent
of the bounding box of the respective dataset in this horizontal direction, i.e., the longer
horizontal edges of the bounding box should be parallel with the ~x axis. This is quite
straightforward, but can fail in cases where the bounding box is nearly quadratic.

The ambiguity is now reduced to a rotation of 180°. To resolve this, we propose to
consider the weighted count of indoor mapping geometries in both proximal 10% sections
of the bounding box in the ~x direction and to choose the rotation for which the proximal
10% section of the bounding box pointing towards the positive ~x axis has the higher weight
sum. In this context, the indoor mapping geometries are again weighted by a constant in
the case of points of point clouds and by the triangle area in the case of triangle mesh faces.
This approach will fail when the amount of mapped indoor structures in both proximal
sections of the bounding box along the ~x axis are about equal.

2.4. Evaluation Method

Quantitatively evaluating the proposed method is fortunately quite straightforward,
as ground truth data can be easily obtained. If an indoor mapping dataset is not already
correctly aligned with the coordinate system axes in the sense of the aim of this study, it
can be aligned manually without great effort. A thusly aligned dataset can then be rotated
to an arbitrary pose within the defined range applicable for the presented method. For this,
a 3× 3 ground truth rotation matrix RGT(α, β, γ) is created, determined by the rotation
angles α, β ∈ [−30°, 30°] around the horizontal axes ~x and ~y, respectively, and an arbitrary
rotation γ ∈ [−180°, 180°) around the vertical axis ~z. To create RGT , the rotation by γ
around the vertical axis is applied first and then successively the rotations by β and α
around the respective horizontal axis.
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Finally, the method presented in Sections 2.1 and 2.2 is applied to the rotated dataset,
which should return the rotated dataset back to its aligned state. The resulting 3× 3 rotation
matrix RTest is constituted by:

RTest = RTest
horizontal R

Test
vertical (15)

where first RTest
vertical is determined by aligning the rotated dataset vertically with the vertical

axis as described in Section 2.2, and subsequently, the rotation RTest
horizontal around the vertical

axis is determined as described in Section 2.1.
As an evaluation metric, the angular difference δv between the vector of the ground

truth axis~z and the resulting vector:

~zTest = RTestRGT~z (16)

is determined by:
δv = |^(~zTest,~z)| (17)

as well as the analogous angular difference δh for the horizontal axis ~x. In case of horizontal
deviation δh, the ambiguity of valid rotations around the vertical axis by multiples of 90°
needs to be considered. To this aim, we iteratively applied:

δh =

{
δh − 90° δh > 45°
δh else

(18)

until δh < 45°.
The proposed evaluation metrics δv and δh can be determined for multiple randomly

chosen rotations within the mentioned ranges of [−30°, 30°] for the horizontal axes and
[−180°, 180°) for the vertical axis in sufficient quantity to allow for a statistical analysis.

2.5. Used Materials

For evaluation purposes, a range of different publicly available datasets of varying
complexity were considered. Firstly, the four triangle meshes of the dataset presented
in [31] were used to this aim. These triangle meshes are depicted in Figure 12 along with
3D bounding boxes indicating their respective ground truth pose. They were acquired by
means of the augmented reality headset Microsoft HoloLens, providing coarse triangle
meshes of its indoor environment. In studies evaluating this device for the use case of indoor
mapping, its triangle meshes were found to be accurate in the range of a few centimeters in
comparison to ground truth data acquired by a terrestrial laser scanner [92–94].

The poses in relation to the local coordinate system of these datasets as they are
published were determined by the pose-normalization procedure presented here. Thus, for
evaluation purposes, we manually aligned the datasets with the axes of the local coordinate
system and used these manually derived poses as the ground truth within the scope of the
evaluation presented here.

All four represented indoor environments show a clearly defined Manhattan World
structure. While the dataset “Office” has mostly horizontal ceiling surfaces with the
exception of the stairwell, the datasets “Attic” and “Residential House” datasets have
slanted ceiling surfaces. The dataset “Basement”, on the other hand, shows a range of
different barrel-shaped ceilings.

Furthermore, the six indoor mapping point clouds of the ISPRS Indoor Modeling
Benchmark dataset presented in [95,96] were used for evaluation purposes. These point
clouds as visualized in Figure 13 were acquired by means of different indoor mapping
systems with a broad variety of sensor characteristics regarding accuracy and noise. Fur-
thermore, the represented indoor environments are characterized by varying amounts
of clutter.
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(a) “Office”. (b) “Basement”.

(c) “Attic”. (d) “Residential House”.

Figure 12. The Microsoft HoloLens triangle meshes published in [31] and used for evaluation in this
paper. The red box indicates the aligned ground truth pose.

While the other five datasets mostly adhere to the Manhattan World assumption, the
dataset “Case Study 6” has a high amount of horizontally curved wall surfaces and rooms
oriented diagonally with respect to the dominant Manhattan World structure defined by
three rooms. Furthermore, the point cloud includes a part of the surrounding outdoor
terrain with uneven topography and vegetation. As the dataset “Case Study 6” is quite
challenging with respect to the aim of this work, it is depicted in more detail in Figure 14.

The point clouds of the ISPRS benchmark dataset as they are published are already
aligned with the coordinate axes, in accordance with the aim of this work. Thus, the
poses of the point clouds could directly be used as ground truth poses without any manual
adjustment. Contrary to triangle meshes, however, point clouds do not intrinsically provide
a normal vector per point. Instead, the normal vector can be calculated for each point from
a subset of respectively neighboring points. This is also the case with the point clouds
of the ISPRS Indoor Modeling Benchmark. We thus computed normal vectors for the
points after subsampling the point clouds with a resolution of 2 cm using CloudCompare
2.10-alpha [97] (subsampling method “Space” with 2 cm as the minimal space between
points for subsampling and surface approximation “Plane” with default parameters for
normal estimation).

Lastly, we also considered some triangle meshes from the Matterport3D dataset [90].
Matterport3D includes 90 triangle meshes of various kinds of indoor environments ac-
quired with the trolley-mounted Matterport indoor mapping system consisting of multiple
RGBD cameras. Among the represented indoor environments are some for which the
proposed alignment approach is not applicable, as they are not subject to any clearly identi-
fiable Manhattan World structure. Many others do have a clearly identifiable Manhattan
World structure, but are to a large extent comparable to general building layouts already



Remote Sens. 2021, 13, 4765 19 of 34

covered by the HoloLens triangle meshes or ISPRS point clouds used in the scope of this
evaluation.

(a) “Case Study 1”. (b) “Case Study 2”.

(c) “Case Study 3”. (d) “Case Study 4”.

(e) “Case Study 5”. (f) “Case Study 6”.

Figure 13. The point clouds of the ISPRS Indoor Modeling Benchmark dataset [95,96] used for
evaluation. The red box indicates the aligned ground truth pose.
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(a) Side view.

(b) Top down view.

Figure 14. Detailed visualization of the dataset “Case Study 6” from the ISPRS Indoor Modeling
Benchmark dataset [96], also depicted in Figure 13f. The depicted axes represent the pose w.r.t. the
local coordinate system as resulting from the proposed approach. The vertical axis is visualized in
blue, while the two horizontal axes aligned with the dominant Manhattan World structure of the
building are depicted in red and green, respectively. Note that, despite the large amount of uneven
terrain, vegetation, and building structure deviating from the Manhattan World assumption, the
building is aligned w.r.t. the three rooms with the Manhattan World structure.

We thus selected 14 triangle meshes from the Matterport3D dataset that we deemed
particularly interesting and challenging in the context of pose normalization. This, for
instance, comprises triangle meshes representing indoor environments that contain more
than one underlying Manhattan World system, such as the one already presented in
Figure 2. In these cases, the presented alignment method is supposed to align the triangle
mesh with the most dominant of the Manhattan World structures at hand being supported
by the largest fraction of geometries. The 14 selected triangle meshes from the Matterport3D
dataset are depicted in Figure 15.

As with the ISPRS benchmark point clouds, we again treated the poses of the triangle
meshes as they are published as ground truth alignments without any manual adjustments.
To what extent this decision is justified will be discussed in Section 4.
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(a) “2azQ1b91cZZ”. (b) “759xd9YjKW5”. (c) “ac26ZMwG7aT”. (d) “fzynW3qQPVF”.

(e) “gTV8FGcVJC9”. (f) “mJXqzFtmKg4”. (g) “p5wJjkQkbXX”. (h) “PuKPg4mmafe”.

(i) “ULsKaCPVFJR”. (j) “ur6pFq6Qu1A”. (k) “VFuaQ6m2Qom”. (l) “Vt2qJdWjCF2”.

(m) “x8F5xyUWy9e”. (n) “ZMojNkEp431”.

Figure 15. The triangle meshes of the Matterport3D dataset [90] used for evaluation. The red box
indicates the aligned ground truth pose.

3. Results

In order to quantitatively evaluate the approach presented in Sections 2.1 and 2.2, the
evaluation procedure proposed in Section 2.4 was applied to the indoor mapping datasets
introduced in Section 2.5.

The different datasets used in the scope of this evaluation are listed in Table 1 along
with the respective number of points or triangles and the respective evaluation results. To
conduct the evaluation, the evaluation procedure was applied to the individual datasets.
In doing so, each dataset was rotated 50 times, while each time, the respective rotation con-
sisted of a randomly determined rotation angle γ ∈ [−180°, 180°) around the vertical axis
and two random rotations α, β ∈ [−30°, 30°] around the respective horizontal coordinate
axes.
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For each of the 50 random input rotations, the alignment procedure described in
Sections 2.1 and 2.2 was applied and the resulting vertical and horizontal angular deviations
δv and δh as defined in Section 2.4 were determined. Table 1 lists the mean values and
standard deviations for these evaluation metrics aggregated over all 50 samples per dataset.
Furthermore, the mean values and standard deviations for the processing time are given
as well. The stated values refer to a system with a i7-8550U CPU with 24 GB RAM and do
not include data import and export. The implementation, which will be released upon
acceptance for publication, is CPU parallelized.

As can be seen in Table 1, the resulting averaged vertical and horizontal angular
deviations were largely below 1°, with the corresponding standard deviations being in
a similar range. Some outliers marked in red will be discussed in further detail in the
subsequent Section 4.

Table 1. Evaluation results for the datasets presented in Figures 12, 13 and 15. The presented values represent 50 randomly
chosen orientations per dataset within the range of [−180°, 180°) for rotations around the vertical axis and [−30°, 30°] for
rotations around the horizontal axes. The reported numbers of points for the point clouds of the ISPRS Indoor Modeling
Benchmark refer to point clouds downsampled to a resolution of 2 cm as used in this evaluation. The values marked in red
are discussed in more detail in Section 4.

Source Type Dataset

Number
of

Points/
Triangles

Mean
δv [°]

Std.Dev.
δv [°]

Mean
δh [°]

Std.Dev.
δh [°]

Mean
Time [s]

Std.Dev.
Time [s]

HoloLens
[31]

Triangle
Mesh

Office 958,820 0.28 0.25 0.33 0.07 0.68 0.10

Basement 695,041 0.45 0.06 0.10 0.08 0.50 0.04

Attic 147,146 3.54 23.86 0.26 0.42 0.13 0.02

Residential House 252,820 0.16 0.05 0.71 0.42 0.30 0.04

ISPRS
Indoor

Modeling
Benchmark

[95,96]

Point
Cloud

Case Study 1 5,014,452 0.01 0.05 0.03 0.16 4.41 0.19

Case Study 2 8,202,319 0.01 0.02 0.01 0.13 7.40 0.26

Case Study 3 5,906,718 0.02 0.01 0.04 0.17 5.68 0.29

Case Study 4 4,846,736 0.01 0.26 0.03 0.44 4.19 0.27

Case Study 5 4,409,794 0.02 0.07 0.02 0.06 3.96 0.23

Case Study 6 11,760,325 0.02 0.02 0.06 0.77 8.65 0.53

Matterport3D
[90]

Triangle
Mesh

2azQ1b91cZZ 9,549,830 0.03 0.02 0.44 0.06 8.24 0.39

759xd9YjKW5 6,208,440 0.05 0.01 0.18 0.05 5.48 0.35

ac26ZMwG7aT 10,811,581 0.05 0.09 0.52 0.06 9.84 0.49

fzynW3qQPVF 9,105,979 0.09 0.02 0.05 0.06 10.75 0.60

gTV8FGcVJC9 14,436,867 0.05 0.05 0.11 0.07 12.29 0.96

mJXqzFtmKg4 8,237,802 0.07 0.33 2.73 14.29 6.90 0.54

p5wJjkQkbXX 10,678,539 0.07 0.02 0.40 0.03 10.35 0.68

PuKPg4mmafe 1,968,102 0.05 0.01 15.28 20.07 1.83 0.11

ULsKaCPVFJR 6,612,194 0.05 0.01 44.41 0.04 5.51 0.47

ur6pFq6Qu1A 9,277,187 0.02 0.01 12.85 0.05 9.42 0.42

VFuaQ6m2Qom 9,453,891 0.03 0.02 0.13 0.06 8.53 0.37

Vt2qJdWjCF2 6,429,106 0.10 0.01 0.05 0.09 6.40 0.38

x8F5xyUWy9e 2,862,858 0.07 0.01 0.21 0.08 2.66 0.16

ZMojNkEp431 4,690,777 0.06 0.05 0.18 0.08 4.31 0.27
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4. Discussion

Taking a closer look at the evaluation results presented in Table 1, the overall quite
low values for the horizontal and vertical angular deviations δh and δv with equally low
standard deviations indicate that the proposed alignment method works quite well for a
large range of different indoor mapping point clouds and triangle meshes with randomly
varying input rotations within the defined bounds. The consistently larger δv and δh values
for the triangle meshes acquired with the Microsoft HoloLens may be attributable to them
being less accurate and more affected by noise. Triangles pertaining to an actually smooth
planar room surface show a considerable variation in the normal vector direction. However,
the reported δv and δh values for these datasets are still mostly below 1°.

Some datasets however showed significantly higher averaged values for δv or δh,
sometimes with the corresponding standard deviation being significantly raised as well.
These outliers are marked red in Table 1 and will be discussed in more detail in the
following paragraphs. To analyze these cases, we take a closer look at the distribution of
the individual 50 deviations constituting the respective mean value and standard deviation.

In the case of the HoloLens triangle mesh “Attic”, for instance, the histogram of δv
values depicted in Figure 16 indicate that the heightened mean and standard deviation
values for the angular deviation in the vertical alignment were not caused by a large
variability in the resulting vertical alignment. The vertical orientations resulting from
the evaluated alignment method rather fluctuated between two clearly defined states,
one being the correct vertical orientation according to the ground truth pose at around
0° angular deviation δv of the vertical axis supported by 45 of the 50 measurements. The
other state is a vertical orientation with an angular deviation of about 30° occurring in the
remaining five measurements. As visualized by the red box in Figure 17, this corresponds
to an alignment where the vertical axis is oriented orthogonally to one of the slanted ceiling
surfaces.
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Figure 16. Histogram of the 50 δv values resulting in the mean value of 3.54°± 23.86° presented in
Table 1 for the triangle mesh “Attic” depicted in Figure 12c. Without the 5 outliers around 31°, the
mean δv results in 0.50°± 0.13°.
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Figure 17. Resulting vertical alignments of the triangle mesh “Attic” from Figure 12c for the two
peaks in the histogram of δv values depicted in Figure 16. The green bounding box corresponds to the
peak at δv ≈ 0° (i.e., the ground truth pose), while the red bounding box corresponds to the minor
peak at δv ≈ 30°.

This is the only case where the vertical alignment did not work satisfyingly in all
50 samples for all the datasets used in the evaluation. We suspect that the misalignments
occurring sporadically on this dataset can be ascribed to the noisy surfaces of the HoloLens
triangle meshes. The triangles comprising the large horizontal floor surface for instance
differ significantly in the direction of their normal vectors. Thus, only a fraction of the
triangles comprising the floor actually corresponds to the proper vertical direction with
respect to the applied resolution of 1°. Depending on the input rotation, a peak caused by
a slanted ceiling surface with a not insignificant area in comparison to horizontal surfaces
such as in the case of the dataset at hand representing only the attic story may thus induce
a larger peak and consequently a misalignment. In cases such as this, applying an angular
resolution of more than 1° may be more appropriate to prevent such misalignments.

Besides the discussed outlier in the vertical alignment, some outliers in the horizontal
alignment do exist. The Matterport3D datasets “mJXqzFtmKg4” and “PuKPg4mmafe” for
instance show heightened average δh values along with high standard deviations. The
histograms showing the distribution of all 50 δh values are again depicted in Figure 18
and Figure 19, respectively. As in the case before, it is apparent that the alignment results
fluctuated between two states depending on the input rotation for both cases, while each
time, one peak at 0° corresponds to the correct horizontal alignment according to the
respective ground truth pose. As can be seen in Figures 20 and 21, the respective second
peak corresponds in both cases to a valid second Manhattan World structure present in the
respective indoor environment.

In the case of the dataset “mJXqzFtmKg4”, this seems immediately plausible, as
both Manhattan World structures present in the indoor environment are supported by a
comparable amount of geometries, as was already demonstrated in Figures 5 and 6. Thus,
different input rotations may result in slightly different discretizations within the grid of 1°
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resolution, sometimes favoring one and sometimes the other Manhattan World structure as
having the largest peak of summarized geometry weights.

In the case of the dataset “PuKPg4mmafe”, however, the two Manhattan World
structures present in the indoor environment apparently do not seem to be supported by
an approximately equal fraction of geometries. Instead, the upper right section in Figure 21
constituting the one Manhattan World structure seems to be far smaller than the section on
the lower left constituting the other Manhattan World structure. In this case, the ground
truth pose of the triangle mesh as published in [90] is aligned with the apparently smaller
Manhattan World structure. It is thus not surprising that in the evaluation, a majority of
measurements resulted in high δh deviations, as the evaluated alignment method favors
the larger Manhattan World structure. However, it is surprising that a significant fraction
of 17 of the 50 randomly chosen input rotations resulted in a horizontal alignment along
the apparently significantly smaller Manhattan World structure.
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Figure 18. Histogram of the 50 δh values resulting in the mean value of 2.73°± 14.29° presented in
Table 1 for the triangle mesh “mJXqzFtmKg4” depicted in Figure 15f.
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Figure 19. Histogram of the 50 δh values resulting in the mean value of 15.28°± 20.07° presented in
Table 1 for the triangle mesh “PuKPg4mmafe” depicted in Figure 15h.
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Figure 20. Resulting horizontal alignments of the triangle mesh “mJXqzFtmKg4” from Figure 15f
for the two peaks in the histogram of δh values depicted in Figure 18. The green bounding box
corresponds to the peak at δh ≈ 0° (i.e., the ground truth pose), while the red bounding box
corresponds to the minor peak at δh ≈ 45°.

Figure 21. Resulting horizontal alignments of the triangle mesh “PuKPg4mmafe” from Figure 15h
for the two peaks in the histogram of δh values depicted in Figure 19. The green bounding box
corresponds to the peak at δv ≈ 0° (i.e., the ground truth pose), while the red bounding box
corresponds to the peak at δv ≈ 23°.
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This situation may be explainable by taking a closer look at the walls constituting
the respective Manhattan World structures. As can be seen in Figure 22, the smaller
Manhattan World section on the right-hand side consists of wall surfaces that are generally
smooth and completely covered with geometries. In case of the larger section on the left,
however, the wall surfaces comprise large window openings that are not represented
by geometries, as the Matterport system used for the acquisition of this dataset cannot
capture transparent glass surfaces. Furthermore, large parts of the actually represented wall
surfaces are covered with curtains or other structures, resulting in inhomogeneous normal
vector directions. In consideration of this, it seems plausible that the actual support for
both Manhattan World structures present in the building could be approximately equal and
the applied alignment method could thus be prone to fluctuate between both Manhattan
World systems with varying input rotations.

Figure 22. Detailed view of the triangle mesh “PuKPg4mmafe” from the Matterport3D dataset also
depicted in Figures 15h and 21. Note that in the case of the larger part of the building structure
determining the Manhattan World system visualized by the red bounding box in Figure 21, large parts
of the wall surfaces are missing as wall openings or constituted by curtains or other structures with
inhomogeneous normal direction. The smaller part of the building structure on the right-hand side,
which determines the Manhattan World system visualized by the green bounding box in Figure 21,
however, has largely closed, smooth wall surfaces.

Besides these two cases discussed so far, there are two further datasets with high
average horizontal angular alignment deviations in the evaluation results reported in
Table 1. These are the triangle meshes “ULsKaCPVFJR” and “ur6pFq6Qu1A”, which are
also part of the Matterport3D dataset. Unlike the cases discussed before, these however
only show heightened mean values for δh, while the respective standard deviations are
low in a range comparable to the other Matterport3D triangle meshes where the evaluated
alignment method proved to be consistently successful.

This suggests that the proposed method consistently results in the same horizontal
orientation for all 50 input rotations for both datasets. The respective resulting alignment
however deviates from the assumed ground truth pose in the rotation around the vertical
axis. This is further illustrated by Figures 23 and 24, where it is easily discernible that the
depicted buildings again respectively contain two Manhattan World structures and that the
evaluated alignment method consistently chooses the respective other Manhattan World
structure that does not coincide with the ground truth pose.

Arguably, it is disputable which of the two Manhattan World structures respectively
present in the datasets is the “correct” one, as again, in these two examples, both seem
to encompass more or less the same fraction of the represented building environment,
and it is not readily discernible which is the dominant one. Nevertheless, our proposed
method proved to find a reasonable alignment with high accuracy in almost all cases with
the only exception being the vertical alignment of the HoloLens triangle mesh “Attic”. In
all other cases where the resulting pose deviates from the ground truth pose, the resulting
alignment is still reasonable in the sense that it corresponds to another Manhattan World
structure inherent in the respective dataset that is readily identifiable by a human observer,
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even if it may differ from the given ground truth pose corresponding to another alternative
Manhattan World structure.

Besides aligning an indoor mapping dataset with the dominant Manhattan World
structure supported by the largest fraction of geometries, the proposed method can easily
be augmented to identify all major Manhattan World structures along with the respective
sets of associated geometries. Among other possible fields of application that will be briefly
discussed in the following Section 5, this allows for providing multiple possible alternatives
for alignment to the user to choose from in cases where multiple major Manhattan World
structures are present in the dataset at hand and it is not readily apparent which among
these to use for alignment.

Figure 23. The green bounding box represents the horizontal alignment of the triangle mesh “UL-
sKaCPVFJR” from Figure 15i as it is published in [90] and used as the ground truth pose for the
evaluation results presented in Table 1. The red bounding box, on the other hand, represents the
horizontal alignment resulting from our presented approach.
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Figure 24. The green bounding box represents the horizontal alignment of the triangle mesh
“ur6pFq6Qu1A” from Figure 15j as it is published in [90] and used as the ground truth pose for the
evaluation results presented in Table 1. The red bounding box, on the other hand, represents the
horizontal alignment resulting from our presented approach.

5. Conclusions

In this work, we presented a novel method for the automated pose normalization of
indoor mapping data such as point clouds and triangle meshes. The aim of the proposed
method was to align an indoor mapping point cloud or triangle mesh along the coordinate
axes of the local coordinate system in a way that a chosen vertical axis points upwards
with respect to the represented building structure, i.e., the chosen vertical axis is expected
to be orthogonal to horizontal floor and ceiling surfaces. Furthermore, a rotation around
this vertical axis is to be determined in a way that aligns the two horizontal coordinate
axes with the main direction of the dominant Manhattan World structure of the respective
building geometry. In case multiple Manhattan World systems are present in the data, the
dominant structure supported by the largest fraction of geometries should determine the
horizontal alignment. A CPU-parallelized implementation of the proposed method along
with the code for the automated evaluation procedure are be made available to the public
https://github.com/huepat/im-posenorm (accessed on 22 November 2021).

The proposed method was quantitatively evaluated on a range of different indoor
mapping point clouds and triangle meshes that are publicly available (4 datasets captured
with the Microsoft HoloLens [31], 6 datasets of the ISPRS Indoor Modeling Benchmark [95,96],
and 14 of the Matterport 3D datasets [90]). The presented results showed that the approach
is overall able to consistently produce correct poses for the considered datasets for different
input rotations with high accuracy. Furthermore, cases where high deviations with respect
to the given ground truth pose occurred were presented and discussed.

Concerning potential for future research, it has already been mentioned that the
proposed method offers the possibility to not only identify the dominant Manhattan World
structure along with the associated geometries in an indoor mapping dataset, but also to
detect multiple Manhattan World structures that are sufficiently supported by geometries.
Besides enabling presenting multiple reasonable alternatives for alignment to choose from,

https://github.com/huepat/im-posenorm
https://github.com/huepat/im-posenorm
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this could potentially also be used in the context of automated indoor reconstruction. In
particular, knowing the major Manhattan World structures and their associated geometries
could be beneficial for abstracting and idealizing indoor surfaces, i.e., reconstructing
suitable surfaces as planes that perfectly conform to the Manhattan World assumption. In
addition, automatically detecting the involved Manhattan World structures in a building
may also be of interest in the context of automatically analyzing the architectural structure
of buildings [98,99].

Furthermore, the presented methodology could possibly also be used in the context
of Simultaneous Localization and Mapping (SLAM) in indoor environments and indoor
mapping in general. Here, identifying Manhattan World structures during the mapping
process (or in postprocessing if the individual indoor mapping geometries have associated
timestamps to reconstruct the sequence of acquisition) could potentially be used to correct
or reduce drift effects by applying the assumption that building structures that apparently
seem to deviate only slightly from an ideal Manhattan World system are to be corrected
according to the Manhattan World assumption [41,43–46,48].
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