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Abstract: Deep learning is a promising method for image classification, including satellite images
acquired by various sensors. However, the synergistic use of geospatial data for water body extraction
from Sentinel-1 data using deep learning and the applicability of existing deep learning models have
not been thoroughly tested for operational flood monitoring. Here, we present a novel water body
extraction model based on a deep neural network that exploits Sentinel-1 data and flood-related
geospatial datasets. For the model, the U-Net was customised and optimised to utilise Sentinel-1
data and other flood-related geospatial data, including digital elevation model (DEM), Slope, Aspect,
Profile Curvature (PC), Topographic Wetness Index (TWI), Terrain Ruggedness Index (TRI), and
Buffer for the Southeast Asia region. Testing and validation of the water body extraction model
was applied to three Sentinel-1 images for Vietnam, Myanmar, and Bangladesh. By segmenting
384 Sentinel-1 images, model performance and segmentation accuracy for all of the 128 cases that
the combination of stacked layers had determined were evaluated following the types of combined
input layers. Of the 128 cases, 31 cases showed improvement in Overall Accuracy (OA), and 19 cases
showed improvement in both averaged intersection over union (IOU) and F1 score for the three
Sentinel-1 images segmented for water body extraction. The averaged OA, IOU, and F1 scores of the
‘Sentinel-1 VV’ band are 95.77, 80.35, and 88.85, respectively, whereas those of ‘band combination
VV, Slope, PC, and TRI’ are 96.73, 85.42, and 92.08, showing improvement by exploiting geospatial
data. Such improvement was further verified with water body extraction results for the Chindwin
river basin, and quantitative analysis of ‘band combination VV, Slope, PC, and TRI’ showed an
improvement of the F1 score by 7.68 percent compared to the segmentation output of the ‘Sentinel-1
VV’ band. Through this research, it was demonstrated that the accuracy of deep learning-based water
body extraction from Sentinel-1 images can be improved up to 7.68 percent by employing geospatial
data. To the best of our knowledge, this is the first work of research that demonstrates the synergistic
use of geospatial data in deep learning-based water body extraction over wide areas. It is anticipated
that the results of this research could be a valuable reference when deep neural networks are applied
for satellite image segmentation for operational flood monitoring and when geospatial layers are
employed to improve the accuracy of deep learning-based image segmentation.

Keywords: deep learning; U-Net; semantic segmentation; water body extraction; Sentinel-1; geospa-
tial data

1. Introduction

Floods, which make up 52.1% of natural disasters in frequency, occur unexpectedly
and cause devastating damage over broad areas [1–3]. It was reported that hydrological
disasters, including floods, were responsible for 19.3% of the total damage caused by
natural disasters and 20.4% of the number of total victims [4]. Thus, flood monitoring,
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including flooded area extraction and estimation, is critical to respond to, and recover from,
such damage. Satellite remote sensing techniques have been used to estimate flooded areas,
as they can provide visual information over wide areas [5–7] yet timely monitoring, and
estimating inundated areas in flood situations have been limited by satellite data acquisition
and analysing such data that includes the accuracy of classification for extracting flooded
areas from available satellite data. Poor classification accuracy could cause more flood
damages, as such damages depend heavily on the quality of flood forecasting, flood area
estimation, and settlement patterns [8].

As acquiring optical satellite data is mainly limited by natural constraints, e.g., weather
condition and cloud cover, during the rainy season [9], spaceborne Synthetic Aperture
Radar (SAR) data have been considered to be suitable for flood monitoring [10–12]. Such
data are almost independent of cloud cover, sunlight, and other weather conditions. For
SAR image classification, backscatter intensity, polarimetric parameters, and interferometric
coherence information have been mainly exploited [13]. For water body extraction using a
single image, SAR data has been analysed with supervised or unsupervised classification
methods that include thresholding, distance-based classification, decision tree/rule-based
classification, image clustering approaches, and machine learning techniques [5,12–14]. Yet,
threshold values and classification rules that are determined for a certain region were found
to be difficult to be applied to other SAR images or regions [15], and accurately extracting
flooded areas from SAR images is constrained by objects in the images that have similar
reflectance values, such as roads, airports, mountainous areas, and radar shadow [16–18].

It was reported that combining many layers that can provide more information on
targeted areas may allow for the discrimination of objects with similar backscattering
values [19], and the accuracy of extracting water body from satellite data can thus be
improved by the combined use of remote sensing data and other ancillary data, such as
digital elevation model (DEM) products and digital topographic maps [20–22]. Flooding
potential is determined by various conditions of river basins, including the characteristics of
the climatic system and drainage basin conditions [23,24]. For predicting flood-prone areas
by analysing spatial data, remotely sensed satellite data have been used in combination
with geospatial data, such as DEM, Slope, and Aspect [2]. Yet, when analysing satellite
data for water body extraction for flood monitoring, it seems that such factors have not
been fully reflected in the processes as a form of ancillary data. This means that the effects
of using geospatial layers for water body extraction remain uncertain, and further research
is thus needed.

In image classification and segmentation, previous research showed that deep learn-
ing models outperform aforementioned traditional classification methods [25–28]. Deep
learning methods such as convolutional neural networks (CNNs) have been widely ap-
plied for land cover classification, road extraction, ship detection, and other domains. Yet,
even advanced deep learning methods have difficulties in discriminating water bodies in
SAR images during image classification processes, due mainly to the misclassification of
objects that have similar backscattering values. It could be assumed that the backscattering
values of SAR data, which may contain insufficient information for clearly discriminating
water bodies from images, could be supported by other data. Yet, only a very limited
number of studies on such purpose have been conducted using SAR data [17]. For deep
learning-based flood monitoring models, although it was reported that geospatial datasets
could be used for spatial prediction of floods using machine learning approaches [29], the
actual influences of such datasets on model performance are still poorly understood. To
take account of such information in the geospatial datasets, existing deep learning models
need to be optimised for water body extraction from satellite data. Yet, existing research
focused mainly on producing more training data or on advancing network architecture
to improve classification accuracy. In addition, even existing deep learning models have
not been thoroughly tested and optimised for operational flood monitoring, as most of the
results are confined to analysing specific bands of available satellite images or research
sites [30]. Considering the existing literature, the synergistic use of geospatial data in deep
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learning-based water body extraction over wide areas has yet to be demonstrated. To the
best of our knowledge, this is the first research that demonstrates the synergistic use of
geospatial data in deep learning-based water body extraction over wide areas. The aim
of this research is to present a new deep learning-based flood monitoring model that has
better predictive ability by testing the effectiveness of combining geospatial layers. For that,
we conducted intensive and comprehensive experiments for examining synergistic use of
geospatial data for water body extraction from Sentinel-1 data using deep learning and
demonstrated that the accuracy of water body extraction from Sentinel-1 data is improved
by utilising such data. In the process, we also constructed a geospatial database that
contains structured and unified Shuttle Radar Topography Mission (SRTM) DEM, Slope,
Aspect, Profile Curvature (PC), Topographic Wetness Index (TWI), Terrain Ruggedness
Index (TRI), and Buffer layers for the Southeast Asia region and presented a novel flood
area monitoring model based on deep learning, which is automated and optimised to the
region for operational purposes.

This paper consists of six sections. Detailed explanations on producing input data and
developed methods for this research are presented in the Sections 2 and 3, and then the
experimental results of evaluating the effectiveness of using geospatial layers for water body
extraction are presented in Section 4. The results are discussed in the discussion section,
in addition to the relationship with other research, wider implications of the research, and
limitations of the research, before presenting concluding remarks in Section 6.

2. Producing Input Data and Geospatial Database
2.1. Pre-Processing and Modification of Input Data
2.1.1. Sentinel-1 and Ground Truth Data for the Southeast Asia Region

As almost all the countries in Southeast Asia suffer from floods during the rainy
season, the Southeast area region was selected as the research area for this research. Due
to the limited financial resources, infrastructure, and technological means to respond to
floods, the impact of floods on countries in the region tends to be more severe than for
other countries [2].

Sentinel-1 data and United Nations Satellite Centre (UNOSAT) flood datasets for
the region were used as the main input data (Figure 1). UNOSAT provides analysed
flood boundaries and flood extent in the shapefile spatial data format during and after
flood events [31,32]. The UNOSAT flood datasets were produced with a thresholding
method and validated through manual visual inspection and modification, which are freely
available through the UNOSAT flood portal for various purposes (http://floods.unosat.
org/geoportal/catalog/search/search.page, accessed on 18 September 2020), including
flood model calibration and supporting post-disaster field assessments. Based on the
locations and dates of the flood data, corresponding Sentinel-1 images were obtained from
the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home, accessed
on 21 September 2020).

Since empirical experiments showed that classification accuracy was not significantly
improved by using other SAR information, such as VH polarisation and incident angle, as
additional bands, and that VV polarization showed higher accuracy than VH polarization
in water body classification, VV band was selected as the main input satellite data [33]. To
use the data for extracting water bodies from multiple Level-1 Ground Range Detected
(GRD) Sentinel-1 images, which were acquired with interferometric wide (IW) mode at a
20 m × 5 m spatial resolution, digital numbers of the images were converted into Sigma0
by performing radiometric calibration [17]. Applied pre-processing procedures of the
Sentinel-1 images include ‘Remove GRD border noise’, ‘Radiometric Calibration’ (VV),
‘Speckle Filtering’, and ‘Terrain Correction’. Therefore, the output SAR data that were
pre-processed for further analyses have amplitude values in linear scale, with pixel spacing
of 10 m × 10 m. A total of 50 scenes of Sentinel-1 images acquired between 2015 and
2018 were downloaded and pre-processed for visual inspection, which correspond to the
dates and locations of the vector data of the UNOSAT flood datasets (Figure 1d). After

http://floods.unosat.org/geoportal/catalog/search/search.page
http://floods.unosat.org/geoportal/catalog/search/search.page
https://scihub.copernicus.eu/dhus/#/home
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completing the process, 30 scenes were finally used as input data to train and validate deep
learning models.

Figure 1. Sentinel-1 images used in this research and an example of UNOSAT flood data ((a) 50 scenes
of Sentinel-1 images acquired between 2015 and 2018 for visual inspection, (b) 30 scenes of Sentinel-1
SAR images for training deep learning networks and evaluating model performance, (c) 3 scenes (A–C)
for inference and validation, (d) flood data in shapefile format (yellow) overlaid on a Sentinel-1 image).

In accordance with geographical features and the locations of ground truth data, three
areas were selected for accuracy assessment, i.e., Padma river basin (A) in Bangladesh,
Lower Mekong river basin (B) in Vietnam, and Chindwin river basin (C) in Myanmar,
which are reported to often experience flash floods during rainy seasons and have different
topographical features. For reliable evaluation of model performance and segmentation
results, of the 30 Sentinel-1 scenes, three scenes for the three regions were used for inference
and validation (No.1–3 in Table 1).
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Table 1. Examples of Sentinel-1 images for training and inference of deep learning models.

No. Satellite Type/Mode Acquisition Time
(UTC) Product ID Usage

1 Sentinel-1A GRDH/IW 30 June 2016
23:55:28–23:55:53 0126A4_AB04 Inference

2 Sentinel-1A GRDH/IW 7 November 2017
22:45:31–22:45:56 0206FC_1842 Inference

3 Sentinel-1A GRDH/IW 18 July 2015
11:47:20–11:47:45 00942A_517D Inference

4 Sentinel-1A GRDH/IW 30 July 2017
11:04:20–11:04:45 01DA46_8ADC Training

5 Sentinel-1A GRDH/IW 15 June 2018
23:47:18–23:47:43 026C2D_EC7F Training

6 Sentinel-1A GRDH/IW 25 July 2018
11:04:26–11:04:51 027D94_F52C Training

7 Sentinel-1A GRDH/IW 11 July 2015
11:54:34–11:54:59 009133_64FC Training

8 Sentinel-1A GRDH/IW 6 August 2015
11:37:30–11:37:55 009BED_DE92 Training

9 Sentinel-1A GRDH/IW 11 August 2015
11:47:21–11:47:46 009DE4_C4E2 Training

10 Sentinel-1A GRDH/IW 6 August 2015
11:37:55–11:38:20 009BED_FB1C Training

11 Sentinel-1A GRDH/IW 24 July 2016
23:55:29–23:55:54 013213_0790 Training

12 Sentinel-1A GRDH/IW 12 October 2016
22:51:27–22:51:52 015847_FB42 Training

13 Sentinel-1A GRDH/IW 29 July 2018
22:44:19–22:44:44 027F8D_B944 Training

14 Sentinel-1A GRDH/IW 13 July 2018
11:04:25–11:04:50 02780D_7D6F Training

15 Sentinel-1A GRDH/IW 13 December 2016
22:36:07–22:36:32 01747F_68A3 Training

16 Sentinel-1A GRDH/IW 1 December 2016
22:36:08–22:36:33 016EE9_2752 Training

2.1.2. Data Modification and Producing Label Data

Although the original UNOSAT flood extent dataset has been verified by intensive
data cleaning and manual visual inspection, some mismatching between the satellite data
and the flood extent vector data was found during the labelling processes. Among the
initial 30 input data pairs, only 12 input data pairs were selected by intensive visual
interpretation. In the following cases, we excluded data pairs from input data: (1) the
extent of an SAR image and label data was not matched; (2) the quality of the label data was
low, as, for instance, water and non-water at flat beaches were mislabelled. We modified
and included some data pairs into input data for the following cases: (1) the label was
accurate but the ocean was not labelled as water. For this case, we modified the ocean part
into water, based on the ideas of sea masking. (2) Label shapefiles only exist for some parts
of SAR images. In such cases, the extent of SAR images was wider than that of label data,
so stacked SAR images were cropped on the basis of the extent of label shapefiles. Lastly,
rasterizing label shapefiles with the same spatial resolution of VV images was needed.
We designed a code that created an empty field, which had the same area and a spatial
resolution with Sentinel-1 VV band images, and executed in a way where pixels overlapped
on shapefiles had meaningful values. Therefore, corresponding flood extent boundaries in
the shapefile format were converted into binary raster data of 0 (non-water) and 1 (water),
which are used as label data for training and ground truth data for validation.
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2.1.3. Building a Geospatial Database

Geospatial data have been used to predict floods, manage flood emergencies, and
produce flood-related maps, including floods risk and susceptibility maps [29,34]. Relying
on the wealth of literature in hydrology and remote sensing sciences, geospatial layers that
have a possibility of providing topo-hydrographic information were selected and produced
for deep learning-based water body extraction [35–38], which had been evaluated to
be related to the feature of flooded areas [39] and to be geographical variables having
influence on river flood occurrence [19,23]. These layers include Digital Elevation Model
(DEM), Slope, Aspect, Terrain Ruggedness Index (TRI), Profile Curvature (PC), Topographic
Wetness Index (TWI), and ‘distance from water bodies’ (i.e., Buffer), which were expected to
improve discriminating land surface and terrain effects that are caused by various physical
characteristics (Figure 2).

Figure 2. Geospatial layers and digital map products produced for this research: (a) Digital Elevation
Model (DEM) for Southeast Asia, (b) Terrain Ruggedness Index (TRI), (c) Topographic Wetness Index
(TWI), (d) Profile Curvature (PC), (e) Buffer, (f) Aspect, and (g) Slope). All values shown in the
legends are before normalisation.

To produce geospatial layers as additional input layers, 1-ArcSecond Global Shuttle
Radar Topography Mission (SRTM) DEM tiles, which were freely available through the USGS
webpage (https://earthexplorer.usgs.gov/, accessed on 22 September 2020), were down-
loaded, mosaicked, gap-filled, and exported in the EPSG:4326 (WGS 84 latitude/longitude)
coordinate at 1-arcsecond (around 30 m) spatial resolution. Using the mosaicked DEM layer,
Slope, Aspect, and PC layers were produced at the same spatial resolution and coordinates.

https://earthexplorer.usgs.gov/
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In addition, TRI, which indicates terrain heterogeneity, and TWI layers were also generated
based on [40–43], respectively. To produce a Buffer layer, which shows the proximity to rivers,
digital topographic maps for the research area were merged, and then the water layers were
extracted based on the attributes of the vector data. Before stacking up, the Buffer layer
required an additional processing step, as the produced Buffer rings around river mouths
protruded into coast lines. We masked out sea to prevent errors around the mouths of rivers.
The size of each layer, which was produced for the extent of the whole Southeast Asia region,
is around 50 Gb, and the size of all the layers saved in a geospatial database is thus around
400 Gb, excluding satellite images and label data.

3. Development of a Deep Learning-Based Water Body Extraction Model
3.1. Deep Learning-Based Water Body Extraction Model for Operational Flood Monitoring

For this research, a deep learning-based water body extraction model for operational
flood monitoring across the Southeast Asia region was presented, as shown in Figure 3.
The model consists of four steps, including (a) producing input data and pre-processing,
(b) stacking and matching input data, (c) semantic image segmentation, and (d) accuracy
assessment (Figure 3). The first step is explained above, and detailed methods for steps
two, three, and four of the model are explained in the following sections. Using the model,
all 128 cases that were the possible combinations of satellite data and geospatial layers
were examined to evaluate the effectiveness of adding ancillary layers and to evaluate
model performance and segmentation accuracy.

Figure 3. Deep learning-based water body extraction model. The model consists of (a) producing
input data and pre-processing, (b) stacking and matching input data, (c) image segmentation with a
deep neural network, and (d) accuracy assessment. The architecture of the deep learning model in
the figure is built on U-Net [44].
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3.1.1. Customisation and Optimisation of the Deep Neural Network

For operational flood monitoring by extracting flood damage information from satel-
lite data, Convolutional Neural Network (CNN)-based deep learning methods may not
be effective if spatial resolutions of input satellite data are lost in the process of down-
sampling with pooling layers. For this reason, instance segmentation is required to perform
fine-grained inference, and by adopting fully connected layers, semantic segmentation
based on fully convolutional networks (FCNs) was able to achieve pixel-wise labelling [45].
Yet, the FCNs have limitations in achieving highly accurate pixel-wise class labelling, due
to difficulties in reconstructing the non-linear structures of object boundaries [28,46].

As the main purpose of this research is to present a reliable deep learning-based
flood monitoring model that has better predictive ability by testing the effectiveness of
geospatial layers, for this research, the U-Net architecture, which was developed for
semantic segmentation with a relatively small amount of training data [44,47] and has thus
been widely used to classify urban features with shorter training times and to minimise
the loss of spatial resolution [48], was customised and optimised to utilise Sentinel-1 data
and seven different types of geospatial layers. Unlike the original U-Net, our model can
take geo-located and multi-layered SAR images and other ancillary data in the GeoTiff
format as input data, and the optimised deep network presented for this research does
not lose any spatial resolution or location information of the multi-modal input data. In
addition, the size of the input data for inference is significantly larger than the U-Net to
reduce processing times and to achieve the seamless merging of segmented image patches
for inference.

The architecture of the model for semantic image segmentation consists of 18, 3 × 3
2D convolution layers, which have the Rectified Linear Unit (ReLU) as an activation
function, and one 1 × 1 2D convolution layer, which has Sigmoid as an activation function.
The convolution layers in the contracting and expanding paths are followed by four
2 × 2 2D max_pooling layers and four 2 × 2 up-sampling layers, which perform nearest
interpolation. The contracting and expanding processes are combined by concatenation,
and padding is added to the convolution layers to preserve the spatial resolution of input
data. The number of total trainable parameters for the model is 31,379,521. The architecture
of the model is presented in Figure 3c, and the hyper-parameters for training models are
explained in detail in Section 3.1.3.

3.1.2. Stacking Input Data for Matching Layers and Normalisation

The last procedure to generate georeferenced input data for model training was
stacking eight separate pieces of data into one single file with eight layers and normalising
layer values. Since the geospatial layers were georeferenced images at various pixel sizes,
geographic extents, datatypes and data formats, and deep learning models are trained
based on the information in the pixels, the main points of stacking input data were matching
such factors. The geospatial layers were georeferenced to the WGS 84 latitude/longitude
coordinate system but had different pixel spacing and extents. Therefore, it was necessary
to combine the other layers into a multi-band single image, and the first layer determined
the output size and extent of the layer stack as a reference layer. To achieve this, we clipped
input layers to input SAR data extent and stacked using Geospatial Data Abstraction
Library (GDAL) libraries. In order to do that, we firstly defined the common grid from the
input SAR data to which the auxiliary layers will be resampled and reprojected. Secondly,
each auxiliary layer is clipped with those common extents. Following that, we resampled
the geospatial layers that have different spatial resolutions to the target resolution and
different extents to the target extent (here, input SAR data extent and resolution). To
accurately clip without the influence of raster properties, a new python code was devised
using a shapefile made with the VV raster pixel coordinate. As SAR images were pre-
processed at 10 metre pixel spacing, the other bands were also interpolated at the same
pixel size. Finally, the resampled datasets were stacked into a single dataset with separate
eight bands using the gdal_merge algorithm. Through the procedure, the final input data



Remote Sens. 2021, 13, 4759 9 of 22

that consist of eight raster layers with the same pixel size and coordinate system were
produced for training (Figure 4a).

Figure 4. Producing and matching input data for model training and inference ((a) stacking geospatial
layers for matching, (b) extracting the stacked geospatial layers for Sentinel-1 images (around
30,000 × 20,000), and (c) producing 320 × 320 × 8 images for training and inference).

To train deep neural networks for semantic segmentation, all of the satellite images
and geospatial data were normalised and standardised. To obtain more accurate models
and reduce processing time, we reclassified all of the input layers into values between
0 and 1 by considering standard deviation and the histograms of the layer values. The
normalisation was performed based on more than 300 times of experiments conducted
to evaluate the effects of normalisation. To remove speckle values, the values of the VV
layer that get out of 0 to 1 were adjusted into 0 and 1. The values of Slope and Aspect had a
range by definition, so we divided the values by theorical maximum value to make a range
of 0 to 1. Therefore, VV, Slope, and Aspect layers contain continuous values between 0 and
1. Based on the real value ranges of the whole Southeast Asia region, the other bands were
reclassified into discrete values of 0 to 1 (Table 2) after evaluating the effects of employing
discrete values. The stacked dataset that was matched and normalised is exported to a
database in geotiff format to be analysed with the deep learning algorithm as described in
the following section.

3.1.3. Model Training

Deep learning models were trained from scratch using the stacked datasets produced
for this research. Before starting model training, band extract was performed. Combina-
tions of geographic information bands were automatically selected when the number of
elements was set as the input for systematic evaluation. When a combination to test is
chosen, stacked input data were copied only with a VV band and selected geospatial bands
(Figure 4b). Copied and stacked images were cropped into 320 × 320 pixels (Figure 4c)
and saved only if the border of the VV image were not included. In addition, rasterized
label data were cropped into 320 × 320 pixels and saved only if the proportion of water
pixels was between 10% and 90% (Figure 5). We matched cropped stacked images to
corresponding cropped label images and filtered out based on the two conditions. The
final number of pairs of SAR images and corresponding label images was 4326.
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Table 2. Matching spatial resolution and normalisation of Sentinel-1 VV and geospatial layers.

Layer Order Layer Name Pixel Size (m) Resampled
Pixel Size (m) Value Range Normalised Value

Range

1 Sentinel-1 data (VV) 10 10 0–1 0–1

2
SRTM Digital

Elevation Model
(DEM)

30 10 0–8220 0–1
(0, 0.2, 0.4, 0.6, 0.8, 1)

3 Slope 30 10 0–86.1 0–1

4 Aspect 30 10 0–360 0–1

5 Profile Curvature (PC) 30 10 −0.155093–0.122646 0–1
(0, 0.5, 1)

6 Terrain Wetness Index
(TWI) 500 10 40–132 0–1

(0, 0.2, 0.4, 0.6, 0.8, 1)

7 Distance from water
(Buffer) 30 10 0–3 0–1

(0, 0.5, 1)

8 Terrain Ruggedness
Index (TRI) 30 10 0–24,576 0–1

(0, 0.2, 0.4, 0.6, 0.8, 1)

Figure 5. Examples of cropping, selecting, and pairing training data for testing the flood monitoring
model developed for this research (452,000 pairs of label data (top) and Sentinel-1 image (bottom)
patches were initially produced, and part of them were excluded based on the principle of water rate
and the existence of borders in image patches).

The customised and optimised U-Net for water body extraction was trained for all
of the possible combinations of the Sentinel-1 images and geospatial layers. For deep
learning, hyper-parameters need to be tuned, which could often be set through heuristic
ways, and it thus requires repetitive empirical tests. Repetitive systematic experiments
were performed to decide optimal hyper-parameters for the model with minimum loss.
The selected hyperparameters are as follows (Table 3): The activation function used for
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each layer is RELU, and the activation function for the output layer is sigmoid. The kernel
size of the convolution layer is 3 × 3, 2 × 2, which is used for upsampling and maxpooling
layers, and 1 × 1 is used for the output convolution layer. To maintain the size of the input
layer, the stride is fixed to 1 × 1 and the same padding is used. Adadelta is used as an
optimiser with an initial learning rate of 1 and a decay rate of 0.95.

Table 3. Hyper-parameters for training the deep learning models and inference.

Hyper-Parameters for the Deep Neural Network

Kernel size (upsampling/output) 3 × 3/2 × 2

stride/padding 1 × 1/same

Maxpooling 2 × 2

Activation function RELU/sigmoid (output layer)

Learning rate/decay rate Adadelta optimizer 1/0.95

Validation frequency Every 20 iterations

Epoch/iteration 1000/170 per epoch

Early stopping Validation criterion
(No improvement of loss for five epochs)

Batch size 16

Patch size/channels 320 × 320/1–8

Pair numbers/Water body rate 4326/0.1–0.9

Among 4326 input pairs, we randomly split them into three sets, training, validation,
and test datasets [49]. The selected ratio of dataset split is 60%, 20%, and 20%. A minibatch
size for training is 16 patches and iterated over the whole training dataset 170 times. To
prevent overfitting, and to minimise training time, the early stopping function was adopted
in the training process. When validation loss does not improve for five continuous epochs,
the weights of the model with the minimum validation loss value are automatically saved
for the segmentation of new Sentinel-1 images.

3.1.4. Inference

For prediction, the same preprocessing and band extraction procedures were applied
to inference data. As mentioned in the model training section, combinations of geospatial
bands were automatically selected and copied into a separate folder. Those copied images
were cropped into patches and reclassified based on the same criteria for training input
data. The patches were predicted into binary outputs using trained models. Values of
outputs are 1 and 2, which are defined as non-water and water, respectively.

Meanwhile, VV images without other geospatial bands were copied into a result folder
on which the predicted output was overlaid. The purpose of this procedure is to make the
output georeferenced and to remove the borders of VV images. As SAR images are usually
inclined rectangular shape, there are margins that have no information. Cropped patches
had no geographic coordinates but predicted in the same way whether they were the part
of the border or not. The cropped output combined in an order and overlaid on copied VV
images only if the pixels in the patches were not part of margin. As a result, the outputs
had coordinates information that was predicted with meaningful data.

A new code was developed to improve the inference procedure, which includes
modifying: (1) the size of cropping for inference data and (2) the padding size for combining
cropped patches. First, the size of cropping for inference data is different from training
data. The size for trained patches is 320 × 320 pixels, but that for inference patches is
3040 × 3040 pixels. The reason for the different patch sizes is that increasing the patch
size leads to a reduction in inferencing time. More importantly, there was an essential
precondition to increase patch size that the quality of inference should be maintained. We
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tested various cropping sizes from smaller to bigger than that for training and verified
that increasing size does not interrupt the quality of outputs through visual interpretation
and evaluating numerical indicators, such as accuracy, precision, IOU, recall, and F1 score.
Second, for mosaicking predicted patches, the concept of overlapping of patches was not
used. Without padding, inference time became shorter and duplication errors on borders
were completely removed.

All experiments for testing the effects of geospatial data on image segmentation and
the training and validating of the deep neural network were conducted with a GPU server
that has four Nvidia GeForce RTX 3090 GPUs, which have 24 Gb memories and a 260 Gb
RAM. The server also has 72 Intel(R) Xeon(R) Gold 6240 CPU @ 2.60 GHz CPUs, one SSD,
and one 11TB HDD. The versions for NVIDIA driver, CUDA, and Python are 470.57.02,
11.4, and 3.9.4, respectively.

3.2. Accuracy Assessment

The performance of deep learning architectures can be evaluated with criteria such
as Overall Accuracy (OA) of pixel-wise classification, time, and memory usage [28]. For
evaluating image classification accuracy, OA has been commonly used, which is the
proportion of correct predictions among the total number of predictions. Although, for
supervised learning, using a confusion matrix for evaluating classification accuracy is
common as a statistical indicator, accuracy metrics could mislead if the class representation
for evaluation is unbalanced [28]. Therefore, in addition to OA, precision, recall, mean
intersection over union (IOU), and F1 score were selected for a more precise model and
inferenced output evaluation [2,48]. Precision is the proportion of correct water pixels
among the predicted water pixels, while Recall is the proportion of correct water pixels
among the correct predictions. Mean IOU indicates the degree to which predicted bounding
boxes are overlapped on ground truth bounding boxes. F1 score is derived with the
‘harmonic mean of precision and recall’ (see, [50]). The confusion table used in this research
and the mathematical formulas for the five criteria are shown in Table 4.

Table 4. Criteria and equations for pixel-wise evaluation and accuracy assessment for output images.

Confusion Matrix for Pixel-Wise Evaluation

Label Class
Predicted Class

Water Non-Water

Water True Positive (TP) False Negative (FN)

Non-water False Positive (FP) True Negative (TN)

Formulas for Accuracy Assessment of Output Images

Overall accuracy (OA) Accuracy (A) = TP + TN
TP + TN + FP + FN

Precision Precision (P) = TP
TP + FP

Recall Recall (R) = TP
TP + FN

Intersection over union (IOU) IOU = TP
TP + FP + FN

F1 Score F1 score = 2 ∗ R ∗ P
R + P

Trained models and segmentation accuracy were evaluated with those five-confusion
matrices and the binary cross-entropy confusion function. As aforementioned, input data
for training were divided into train: validation: test by a ratio of 6:2:2. Testing data were
used to calculate the values of loss and the confusion matrix to show how the model is
well-trained. The mathematical formulation of binary cross entropy is:

C = − 1
n ∑n

i=1[yi ln ai + (1 − yi) ln(1 − ai)] (1)
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where, C is the cross entropy, n is the total number of test data, y is the desired value, and
a is the predicted value. The reason we used cross entropy instead of mean square error
(MSE) is that MSE is a more time-consuming confusion function than cross entropy [51].

For inference evaluation, we relied on the same principle, i.e., the confusion ma-
trix, but by random sampling. As the three images for inference are composed of about
20,000 × 30,000 pixels, if the confusion matrix calculation is conducted on a pixel-by-pixel
basis between ground truth data and prediction results, the process is a time-consuming
task. As a shorter run time was required to efficiently compare between various band
combinations and operational flood monitoring, we adopted a random sampling method
for the calculation. Sample size was calculated on each inference datum, satisfying the
conditions of a 99% confidence level, the observed percentages of 0.5 and 0.01 margins of
error. From the population size, we randomly selected pixels with python code developed
for this task and only evaluated selected pixels. To avoid the effect of margin areas, the
number of total calculated pixels is far bigger than sample size. We checked the values of
the entire calculated confusion matrix, and the randomly sampled calculated confusion
matrix was statistically the same. In addition to the quantitative accuracy assessment,
intensive visual inspection was performed to evaluate the quality of output images at
various scales [28].

4. Results
4.1. Segmentation Results and Improved Cases

All of the 128 cases that had been determined by the combination of stacked layers
were evaluated through the training of models and the inference of the three Sentinel-1
images for image segmentation; therefore, the number of total Sentinel-1 images segmented
for this research is 384. Of the 128 cases being tested, 31 cases showed improvement in
Overall Accuracy (OA), and 19 cases showed improvement in both averaged IOU and
F1 score for the three images segmented for water body extraction, as shown in Figure 6.
Most of the cases that consist of six, seven, and eight layers showed lower OA, IOU, and
F1 scores, compared to those of the Sentinel-1 VV band image. In Figure 6, the numbers
under x-axes indicate band combinations consisting of 1-VV, 2-DEM, 3-Slope, 4-Aspect,
5-PC, 6-TWI, 7-Buffer, and 8-TRI, and detailed information on stacked geospatial layers are
in Table 1 above.

The training accuracy for model performance and the averaged inference results of
the three Sentinel-1 images for the 19 cases are shown in Table 5. For training, the Overall
Accuracy (OA), IOU, and F1 score of the Sentinel-1 VV band image are 94.91, 87.83, and
93.52, respectively, and those for inference are 95.77, 80.35, and 88.85, which were evaluated
based on comparing sampled pixels of the output to corresponding ground truth data. Of
the 19 cases, ‘band combination 1358’ (VV, Slope, PC, and TRI), and ‘band combination
1357’ (VV, Slope, PC, and Buffer) showed the best inference accuracy. The OA, IOU, and F1
score of ‘band combination 1358’ are 96.73, 85.42, and 92.08, and those of ‘band combination
1357’ are 96.89, 85.85, and 92.31, respectively. Compared to the Sentinel-1 VV band, ‘band
combination 1358’ (VV, Slope, PC, and TRI) showed improvement in segmentation accuracy
by 0.96, 5.07, and 3.23 in the three criteria.

4.2. Improvement in Inference Accuracy of the Three Cases

The F1 score of the 19 band combinations of the scenes A (Padma river basin in
Bangladesh), B (Lower Mekong river basin in Vietnam) and C (Chindwin river basin in
Myanmar), and the differences in F1 score between the 19 band combinations of those
scenes and the Sentinel-1 VV band images are presented in Table 6, in addition to averaged
OA, precision, recall, IOU, and F1 score for the 19 cases. The results show the improvement
of stacked images combining geospatial layers in segmentation accuracy compared to that
of the VV band images. For Scene A, minor improvements (up to 4.25) were observed,
whereas a minor decease (−2.46) in F1 score was observed in the difference between B-VV.
‘Band combination 1358’ (VV, Slope, PC, and TRI) for Scene C showed improvement by 7.68
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compared to the segmentation output of the Sentinel-1 VV band image for the same area.
Of the 19 cases, 4 cases (band combination 134 (VV, Slope, and Aspect), 1357 (VV, Slope,
PC, and Buffer), 1358 (VV, Slope, PC, and TRI), and 1578 (VV, PC, Buffer, and TRI)) showed
improvements in F1 score of all of the three scenes compared to that of the Sentinel-1
VV band images. The segmentation results of ‘band combination 1358 and 1357’ for the
three areas, which have different topographical features, are presented in Figure 7 for
comparison. Scene C (Chindwin river basin in Myanmar), which contains mountainous
areas, showed lower segmentation accuracy compared to that of Scenes A and B, but they
also showed the highest improvement in segmentation accuracy.

Figure 6. Averaged Overall Accuracy (OA), IOU, and F1 score of all of the 128 cases being tested.
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Table 5. Selected training and inference results of water body extraction models. (Numbers in the
band combination column indicate 1-VV/2-DEM/3-Slope/4-Aspect/5-PC/6-TWI/7-Buffer/8-TRI).

Band
Combination

Training Inference (Averaged)

Loss Accuracy IOU F1 Score Accuracy IOU F1 Score

1 (VV) 0.1398 94.91 87.83 93.52 95.77 80.35 88.85

134 0.1727 92.90 82.40 90.35 96.84 83.65 90.95

135 0.1280 95.06 88.02 93.63 95.81 80.41 88.89

148 0.1553 93.81 84.99 91.88 96.25 82.17 90.06

178 0.1414 94.55 87.21 93.17 96.08 80.89 89.19

1257 0.1653 93.32 83.29 90.89 96.87 81.58 89.49

1278 0.1659 92.87 82.02 90.12 96.75 82.09 89.95

1348 0.2095 91.50 79.09 88.32 96.35 81.71 89.81

1357 0.1458 94.49 86.76 92.91 96.89 85.85 92.31

1358 0.1682 93.18 82.82 90.60 96.73 85.42 92.08

1458 0.1596 93.78 84.46 91.58 96.35 80.96 89.19

1567 0.2331 90.94 77.79 87.51 96.83 81.68 89.74

1578 0.1216 95.06 87.79 93.50 96.23 82.58 90.28

12358 0.1446 94.14 85.69 92.30 96.64 82.02 89.87

12378 0.1489 94.26 86.17 92.57 97.12 83.65 90.86

12678 0.2186 91.33 78.17 87.75 96.32 81.29 89.57

13457 0.2086 91.12 77.64 87.41 96.88 82.21 90.04

13458 0.1463 94.06 85.86 92.39 96.68 82.69 90.32

14568 0.1701 93.08 82.96 90.69 96.33 80.49 88.96

Table 6. Selected training and inference results of water body extraction models by scene. (Numbers in the band combination
column indicate 1-VV/2-DEM/3-Slope/4-Aspect/5-PC/6-TWI/7-Buffer/8-TRI).

Band
Combination

Inference (Averaged) Scenes Differences

Accuracy Precision Recall IOU F1 Score A B C A−VV B−VV C−VV

1 (VV) 95.77 81.79 98.07 80.35 88.85 90.69 94.40 81.44 0.00 0.00 0.00

134 96.84 89.05 93.05 83.65 90.95 92.89 94.70 85.25 2.20 0.30 3.80

135 95.81 82.25 97.52 80.41 88.89 90.66 94.37 81.64 −0.03 −0.03 0.19

148 96.25 85.13 95.93 82.17 90.06 91.69 94.13 84.36 1.00 −0.27 2.91

178 96.08 82.79 97.39 80.89 89.19 91.61 94.15 81.80 0.92 −0.25 0.36

1257 96.87 88.09 91.11 81.58 89.49 93.50 94.67 80.29 2.81 0.27 −1.15

1278 96.75 92.35 87.72 82.09 89.95 92.51 94.33 82.99 1.82 −0.07 1.55

1348 96.35 88.77 90.98 81.71 89.81 92.90 91.94 84.60 2.20 −2.46 3.16

1357 96.89 88.43 96.80 85.85 92.31 92.79 95.53 88.61 2.10 1.13 7.17

1358 96.73 90.14 94.27 85.42 92.08 91.97 95.15 89.12 1.27 0.75 7.68

1458 96.35 84.72 94.58 80.96 89.19 94.03 92.48 81.05 3.33 −1.92 −0.39

1567 96.83 91.85 87.84 81.68 89.74 92.26 93.59 83.35 1.57 −0.81 1.91

1578 96.23 84.79 97.11 82.58 90.28 91.32 95.11 84.40 0.63 0.72 2.96

12358 96.64 87.36 93.29 82.02 89.87 94.64 92.55 82.41 3.95 −1.85 0.97

12378 97.12 87.71 94.66 83.65 90.86 94.95 93.99 83.65 4.25 −0.41 2.21

12678 96.32 88.31 90.89 81.29 89.57 92.06 92.00 84.66 1.36 −2.39 3.22

13457 96.88 90.67 89.52 82.21 90.04 93.30 93.45 83.36 2.60 −0.94 1.92

13458 96.68 86.11 95.22 82.69 90.32 94.39 93.09 83.47 3.70 −1.31 2.02

14568 96.33 84.88 93.67 80.49 88.96 92.62 92.62 81.63 1.92 −1.77 0.19
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Figure 7. Segmented images of the three cases described in Figure 1c (A-Padma river basin
in Bangladesh (first column), B-Lower Mekong river basin in Vietnam (second column), and C-
Chindwin river basin in Myanmar (third column); the first-second row show the Sentinel-1 image
and label data for the sites, and the third-last row show the classification results of VV, ‘band com-
bination 1358’ (VV, Slope, PC, and TRI), and ‘band combination 1357’ (VV, Slope, PC, and Buffer)
images of the corresponding site).

5. Discussion
5.1. Visual Interpretation

To evaluate semantic image segmentation accuracy at more detailed levels, visual
interpretation was conducted for the three segmented Sentinel-1 images. Some examples
of the evaluation of water body extraction results for the C-Chindwin river basin (‘band
combination 1358’—VV, Slope, PC, and TRI) are presented in Figure 8. Enlarged images
(a)–(d) in Figure 8 show: (a) Sentinel-1 images, (b) Label data, (c) Segmentation result
of VV band, and (d) Segmentation result of ‘band combination 1358’. As shown in the
dotted boxes in red in the output images, and compared to the segmentation result of VV
bands, the segmentation result of ‘band combination 1358’ showed a significant reduction
in mountain shadows, which are one of main sources of misclassification. As segmentation
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accuracy was improved and the terrain effects in the Sentinel-1 images and output images
were reduced, it can be said that the results of the qualitative accuracy assessment through
visual inspection is consistent with that of the quantitative accuracy assessment. Such
improvement was observed in other output images that were produced based on different
band combinations and showed improvement in segmentation accuracy that was evaluated
through quantitative assessment.

Figure 8. Segmentation results of C-Chindwin river basin (see the dotted boxes in red in the output
images; (a) Enlarged Sentinel-1 images, (b) Label data, (c) Segmentation result of the Sentinel-1 VV
band, (d) Segmentation result of ‘band combination 1358’ (VV, Slope, PC, and TRI)).

5.2. Training and Inference Time for Water Body Extraction

For operational flood monitoring through deep learning-based water body extraction,
the training and inference times for the selected 19 cases are presented in Table 7. The
training and inference times of the VV band were 1404.95 and 302.20 s, whereas those of the
‘band combination 1358’ (VV, Slope, PC, and TRI) were 590.25 and 847.41 s, respectively. The
averaged training time by the number of bands was: 3 bands—1008.44, 4 bands—1020.91,
and 5 bands—1150.58 s. Whereas the averaged inference time by the number of bands
was: 3 bands—627.38, 4 bands—856.19, and, 5 bands—1009.91 s. Training time was rather
decreased as the number of bands was increasing, while inference time was gradually
increased as the number of bands was increasing. It was assumed that the decreasing
training time is because of the ‘early stopping function’ that was adopted for training and
that the increasing inference time is because of the size of input data for inference that is
in proportion to the number of bands. It was shown that although the inference time for
water body extraction was increased by adding geospatial layers, it is still acceptable for
operational flood monitoring, even when geospatial layers are added to the Sentinel-1 VV
band as ancillary data.
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Table 7. Selected training and inference time of water body extraction models. (Numbers in the band
combination column indicate 1-VV/2-DEM/3-Slope/4-Aspect/5-PC/6-TWI/7-Buffer/8-TRI).

No. of Band(s) Band Combination Train Time (s) Inference Time (s)

1 1 (VV) 1404.95 302.20

3

134 1425.92 659.20

135 767.90 751.94

148 1323.38 602.16

178 516.57 496.22

average 1008.44 627.38

4

1257 833.97 1029.08

1278 1020.84 802.68

1348 1146.71 701.48

1357 621.58 738.80

1358 590.25 847.41

1458 1317.86 726.23

1567 1064.65 872.16

1578 1571.38 1131.64

average 1020.91 856.19

5

12358 874.71 914.28

12378 1182.14 995.53

12678 655.49 866.57

13457 1503.43 865.67

13458 1552.98 1060.59

14568 1134.72 1356.82

average 1150.58 1009.91

5.3. Summary and General Discussion

Considering the existing previous research, it is clear that the disciplines most directly
concerned with flood monitoring using satellite data, disaster management, or remote
sensing science have not fully examined how flooded areas can be extracted with the sate-
of-the-art technique for image classification, i.e., deep learning. To see if our assumption
that deep learning-based water body extraction could be improved by using geospatial
layers as additional input layers is valid, we advanced an existing deep learning model by
customising and optimising its network and processing procedures for more accurate and
faster image segmentation.

Through the experiment, a novel water body extraction model based on a deep neural
network that exploits Sentinel-1 data and flood-related geospatial datasets was presented
for flood monitoring across the Southeast Asia region. For the model, the U-Net was
customised and optimised to utilise Sentinel-1 data and other flood-related geospatial
data, including digital elevation model (DEM), Slope, Aspect, Profile Curvature (PC),
Topographic Wetness Index (TWI), Terrain Ruggedness Index (TRI), and Buffer, in GeoTiff
format for the Southeast Asia region. The main features of our deep neural network for
water body extraction from Sentinel-1 images are: (1) our model can take geo-located and
multi-layered SAR images and other ancillary data in GeoTiff format as input data, (2) the
optimised deep network presented for this research does not lose any spatial resolution
and location information of the multi-modal input data, and (3) the size of input data for
inference is significantly larger than the U-Net to reduce processing time and to achieve
the seamless merging of segmented image patches for inference.
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To test and validate the water body extraction model, it was applied to three areas in
Vietnam, Myanmar, and Bangladesh, and model performance and segmentation accuracy
for all of the 128 cases that had been determined by the combination of stacked layers were
evaluated in accordance with the types of combined input layers. Therefore, the number of
total Sentinel-1 images segmented for this research is 384. Of the 128 cases tested in this
research, 31 cases showed improvement in Overall Accuracy (OA), and 19 cases showed
improvement in both averaged IOU and F1 score for the three images classified for water
body extraction. Most cases that consist of six, seven, and eight layers showed lower OA,
IOU, and F1 score compared to those of the Sentinel-1 VV band image. The averaged
OA, IOU, and F1 score of the Sentinel-1 VV band are 95.77, 80.35, and 88.85 respectively,
whereas those of ‘band combination 1358 (VV, Slope, PC, and TRI)’ are 96.73, 85.42, and
92.08, showing improvements in all of the criteria for accuracy assessment. The degrees
of improvement of the three criteria are 0.96, 5.07, and 3.23, respectively. The improved
segmentation accuracy of ‘band combination VV, Slope, PC, and TRI’ showed a higher OA
and F1 score compared to other Sentinel-1-based flood monitoring models [33] or deep
learning-based flood monitoring models [17,30,49]. In addition, the averaged processing
time, i.e., training and inference time for a Sentinel-1 image, of the ‘band combination VV,
Slope, PC, and TRI’ is greatly shorter than that of [17,33].

Such improvement was clearer in the water body extraction results for the C-Chindwin
river basin, which contains mountainous areas. For the image, quantitative evaluation of
‘band combination 1358’ (VV, Slope, PC, and TRI) showed an improvement in F1 score by
7.68 percent compared to the segmentation output of the Sentinel-1 VV band, and it was
also demonstrated through visual interpretation. As segmentation accuracy was improved
and the terrain effects in the Sentinel-1 images and output images were reduced, the results
of the qualitative accuracy assessment through visual inspection is consistent with that of
the quantitative accuracy assessment. To the best of our knowledge, this is the first study
that demonstrates the synergistic use of geospatial data in deep learning-based water body
extraction over wide areas.

5.4. Novelty, Limitations, and Future Work

The main purpose of this research is to present a reliable deep learning-based flood
monitoring model that has better predictive ability by testing the effectiveness of geospatial
data. For this research, the U-Net architecture was customised and optimised to utilise
Sentinel-1 data and seven different types of geospatial layers. Through the research,
it was demonstrated that the accuracy of deep learning-based water body extraction
can be improved by using geospatial data, and based on the experiment, a new water
body extraction model is presented for flood monitoring across the Southeast Asia region.
While previous studies focused on producing more training data or advancing network
architectures to improve image classification accuracy, we focused rather on utilising
available flood data and flood-related geospatial data and demonstrated our assumption
that deep learning-based water body extraction can be improved by using geospatial layers
as additional input layers.

Although it was demonstrated that deep learning-based water body extraction can be
improved by exploiting geospatial layers, it does not mean that classification performance
is always improved by using geospatial layers, and the result of this research is applicable
to other existing deep neural networks without testing its applicability and transferability.
As per the research aim of this study, this research is confined to evaluating satellite data
and available geospatial layers. To derive more reliable water body extraction models for
flood monitoring, more geospatial layers and non-geospatial data need to be tested, and
the possibility of reducing misclassification of other factors, such as roads and airports,
needs to be verified to achieve better classification accuracy.
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6. Conclusions

Floods occur unexpectedly and cause devastating damage over broad areas. Yet
the timely monitoring and estimation of inundated areas using satellite data has been
limited by satellite data acquisition and classification accuracy. Although deep learning is
a promising method for satellite image classification, the synergistic use of geospatial data
for water body extraction from Sentinel-1 data using deep learning and the applicability
of existing deep learning models have not been thoroughly tested for operational flood
monitoring. To fill the knowledge gap, a novel water body extraction model was presented
based on a deep neural network that exploits Sentinel-1 data and flood-related geospatial
datasets, including digital elevation model (DEM), Slope, Aspect, Profile Curvature (PC),
Topographic Wetness Index (TWI), Terrain Ruggedness Index (TRI), and Buffer for the
Southeast Asia region. For the model, the U-Net was customised and optimised to utilise
Sentinel-1 data and other flood-related geospatial data in GeoTiff format for operational
flood monitoring in the Southeast Asia region. The testing and validation of the water
body extraction model was applied to three Sentinel-1 images for Vietnam, Myanmar, and
Bangladesh. Model performance and segmentation accuracy for all of the 128 cases that
the combination of stacked layers had determined were evaluated following the types of
combined input layers.

Through this research, it was demonstrated that the accuracy of deep learning-based
water body extraction can be improved up to 7.68 percent by using geospatial data, and
based on the experiment, a new water body extraction model that is further verified
through visual inspection and the evaluation of model performance, including training
and inference time, is presented for operational flood monitoring across the Southeast Asia
region. As per the research aim of this study, this research is confined to evaluating satellite
data and available geospatial layers. To derive more reliable water body extraction models
for operational flood monitoring, more geospatial layers and non-geospatial data need to
be tested, and the possibility of reducing misclassification of other factors, such as roads
and airports, needs to be verified to achieve better classification accuracy.
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