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Abstract: Contemporary forest-health initiatives require technologies and workflows that can mon-
itor forest degradation and recovery simply and efficiently over large areas. Spectral recovery anal-
ysis—the examination of spectral trajectories in satellite time series—can help democratize this pro-
cess, particularly when performed with cloud computing and open-access satellite archives. We 
used the Landsat archive and Google Earth Engine (GEE) to track spectral recovery across more 
than 57,000 forest harvest areas in the Canadian province of Alberta. We analyzed changes in the 
normalized burn ratio (NBR) to document a variety of recovery metrics, including year of harvest, 
percent recovery after five years, number of years required to achieve 80% of pre-disturbance NBR, 
and % recovery the end of our monitoring window (2018). We found harvest areas in Alberta to 
recover an average of 59.9% of their pre-harvest NBR after five years. The mean number of years 
required to achieve 80% recovery in the province was 8.7 years. We observed significant variability 
in pre- and post-harvest spectral recovery both regionally and locally, demonstrating the im-
portance of climate, elevation, and complex local factors on rates of spectral recovery. These find-
ings are comparable to those reported in other studies and demonstrate the potential for our work-
flow to support broad-scale management and research objectives in a manner that is complimentary 
to existing information sources. Measures of spectral recovery for all 57,979 harvest areas in our 
analysis are freely available and browseable via a custom GEE visualization tool, further demon-
strating the accessibility of this information to stakeholders and interested members of the public. 

Keywords: spectral recovery; forest harvest; Landsat time series; LandTrendr; Google Earth Engine; 
data democratization; open-access data; science-to-knowledge translation 
 

1. Introduction 
Forests are a vital element of the Earth’s environment, supporting biodiversity [1], 

maintaining soil health and clean air [2–4], providing cultural and ecosystem services 
[5,6], and mitigating climate change [7,8]. These facts are now well-established in the sci-
entific literature and, increasingly, in the broader public consciousness. This latter trend 
is evidenced by international initiatives such as the 2011 Bonn Challenge [9] and the 2014 
New York Declaration on Forests [10], which aim to restore hundreds of millions of hec-
tares (mha) of forest worldwide. More recently, the Strategic Plan for Forests 2017–2030 
adopted by the United Nations (UN) General Assembly in April of 2017 [11] provides a 
framework for global action on sustainable forest management and the halting of forest 
degradation and deforestation. 

Achieving these global forest initiatives successfully will require effective mapping, 
monitoring, and assessment of forest cover and health. As a result, we require accurate, 
comprehensive, up-to-date knowledge of baseline or current conditions, alongside subse-
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quent change. Forest ecosystems across the globe undergo continual change by both nat-
ural and anthropogenic forcing; thus, a critical component for supporting programs such 
as the UN’s Strategic Plan is the mapping of forest disturbance and recovery. 

Large-area mapping and monitoring of forests is most effectively undertaken 
through remote sensing. Earth observation (EO) satellites offer global-level synoptic, re-
peating views of the planet. Their use for gathering information on forested landscapes 
began with the launch of the first civilian EO satellite, Landsat, in 1972 [12]. Within twenty 
years, satellite remote sensing of the world’s forests was an established practice [13], and 
has only continued to expand in scope and maturity alongside technological advances in 
satellite sensors, computer hardware and software (e.g., cloud computing), and analytical 
techniques such as machine learning [14].  

The potential of EO remote sensing for mapping forest disturbance and recovery has 
likewise grown significantly, as evidenced by the literature. For instance, ref. [15] synthe-
sized published results on remotely sensed forest disturbance and recovery within the 
context of impacts on biomass and canopy cover, and estimated that roughly 400,000 to 
700,000 km2 of forest were disturbed each year across the globe by large-scale, abrupt 
events (e.g., fire, logging, conversion to agriculture). The more recent global, Landsat-
based analysis of forest extent, loss, and gain from 2000 to 2012 revealed a net loss of 1.5 
million km2 of forest cover over this period [16].  

1.1. Remote Sensing of Forest Recovery 
Forest gain is not as easily or as frequently measured and detected with remote sens-

ing as forest loss [17], because it is a slower, ongoing, and often more complex process 
than the sudden, abrupt events that comprise many disturbances [18,19]. Nevertheless, 
identifying forest gain is as essential to forest cover mapping as identifying forest disturb-
ance, and is often an outcome of post-disturbance recovery. This is especially true of Can-
ada’s northern boreal forests, where multifaceted disturbance regimes that include fires 
of varying intensities, insect outbreaks, petroleum resource extraction, and forestry lead 
to a complex patchwork of diverse and dynamic forest ecosystems at varying stages of 
recovery [20]. 

Mapping and monitoring forest recovery across Canada’s boreal forests, which are 
largely remote and cover 270 mha, is a challenging undertaking. Ref. [21] synthesized 
findings from roughly a dozen local-level, ground-based forest recovery studies that fo-
cused on post-fire or post-harvest canopy cover, tree height and/or stand stem diameter. 
Their study reported average recovery rates to 10% canopy cover and average heights of 
5 m to be five to 10 years after fire or harvest. However, the authors noted significant 
variability across ecozones, forest species composition, and between these two disturb-
ance types. While ref. [21] provided an informative analysis, the authors also acknowl-
edged the limits of their work, which was constrained to fine spatial scales, a limited num-
ber of studies, and limited stand age ranges [21]. These issues illustrated the difficulties of 
ground-based data collection in remote boreal forests, and the authors advocated for EO-
based remote sensing as a means of overcoming these challenges.  

The advantages of EO approaches for forest mapping in Canada are well-recognized, 
and leveraged by researchers, government, and industry alike. The Earth Observation for 
Sustainable Development of Forests, a partnership project between the Canadian Forest 
Service and the Canadian Space Agency, produced a EO-based landcover map of Can-
ada’s forested area circa 2000 [22]. The product’s aim was to support provincial- and na-
tional-scale sustainable forest management and biomass reporting, but has also been used 
elsewhere for numerous purposes such as wildfire susceptibility and habitat fragmenta-
tion assessments, to name a few [23,24]. Other large-scale applications of EO over Cana-
dian forests include burn mapping [25–27], forest condition monitoring [28,29], and bio-
diversity assessment [30,31]. However, it is important to note here that remotely sensed 
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forest condition, disturbance, and recovery capture changes in land surface spectral sig-
natures as a proxy for such things as fire severity, deforestation, or regrowth and regen-
eration, rather than direct estimates of particular vegetative or tree characteristics.  

Large-scale EO remote sensing of post-disturbance forest recovery in Canada has 
necessarily relied upon analyses of Landsat image time series. Not only is the Landsat 
program the longest running, continuous, systematic source of global land surface satel-
lite imagery, it also provides multiple images per year at a spatial resolution (30 m) suited 
to detecting many landscape changes of interest, including fire- and forestry-related dy-
namics [32,33]. For instance, ref. [17] examined Landsat-derived Tasseled Cap Greenness 
and Wetness [34] time series in stand-replacing forest disturbances across the eastern and 
western portions of the Canadian Boreal Shield, comparing spectral recovery trajectories 
post-wildfire and post-harvest to those of undisturbed areas. The authors noted not only 
different patterns of disturbance between these two regions, but also greater differences 
in recovery trajectories, suggesting that differences in disturbance regimes, climate re-
gimes, stand initiation processes, and soil conditions may all play a role. Ref. [35] used a 
different approach, reconstructing successional trajectories using multi-temporal Landsat 
image classifications in particular harvest and wildfire disturbances in Quebec, Canada, 
to compare changes in vegetation composition through time. They found that harvested 
forest generally started from a more advanced development stage and thus showed faster 
rates of succession. However, the greater heterogeneity of environments in which wild-
fires are located, which includes unproductive sites, led to overall slower rates of succes-
sion in these features [35]. The latter differences lessened when only productive forest and 
wildfire sites were compared. 

Both [17,35] provided important insights into remotely sensed post-disturbance for-
est recovery trajectories, and discussed how these vary across time and space alongside a 
number of important factors. However, both studies were limited in their geographical 
extent to a sample of Landsat scenes or a particular region. Ref. [19] provided a broader 
view of forest dynamics at a national level. In a Canada-wide remote sensing analysis of 
stand-replacing forest disturbance and recovery, the authors used the normalized burn 
ratio or NBR derived from Landsat time series [36] to identify 57.5 mha of disturbed forest. 
Analyzing spectral recovery at these sites, they found that harvested areas are generally 
recovering more rapidly than burned areas when disturbance magnitude is considered. 
Ref. [19] again noted variability in this recovery across Canada’s ecozones, finding lower 
rates of longer-term forest spectral recovery in the Taiga Shield East and Montane Cordil-
lera, than in others such as the Boreal Shield East. 

1.2. Motivation and Objectives 
National-scale forest spectral recovery information such as that compiled by [19] is 

critical for accurate forest cover mapping across Canada. As recovery is an ongoing pro-
cess, however, frequent updating is needed for continued monitoring, and these authors’ 
approach relies on specialized, high-performance computing. As a result, its implementa-
tion can be limited by access to such resources. New tools and technologies in the form of 
publicly accessible, cloud-based geospatial data storage and processing services (e.g., 
Google’s Earth Engine, Microsoft’s Planetary Computer, and Amazon’s Earth on AWS) 
have begun to democratize the use of large-volume EO datasets for landscape analyses at 
unprecedented spatial and temporal scales [37–39]. Such services offer a new opportunity 
for widely accessible, effective, repeatable, and adaptable approaches to mapping spectral 
recovery over extensive forested landscapes.  

In this work, we bring together publicly accessible, cloud-based services, the lengthy 
Landsat archive, open-access disturbance event layers, and published spectral recovery 
methods in a novel manner to produce large-scale, remote sensing-based information on 
post-disturbance forest recovery within a Canadian context. At present, no published 
studies have leveraged such cloud-based services to implement Landsat time series-based 
spectral recovery in Canadian boreal forest landscapes at large scales. In addition, our use 
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of existing information on forest disturbance location and extent for directing our analyses 
is unique—disturbance events are typically remotely sensed before recovery is extracted 
(e.g., [17,18,40]).  

Our objectives are as follows: (i) to develop easily reproducible, adaptable, and scal-
able methods for generating updated maps of spectral recovery in forest disturbances; (ii) 
to generate a publicly available forest spectral recovery dataset for the Canadian province 
of Alberta; (iii) to support the science-to-knowledge translation of our results through a 
data visualization tool; and (iv) to compare patterns of forest spectral recovery across dif-
ferent ecological regions within our province.  

We specify the term spectral recovery here to distinguish it from more specific, 
ground-observed forest compositional, structural, functional, or ecosystem recovery. 
Spectral recovery reflects the recovery of land surface spectral signals, which respond to 
the growth and development of green vegetation but are not necessarily a direct indicator 
of specific surface vegetation characteristics. Spectral recovery is nevertheless a useful in-
dicator for characterizing forested areas as they revegetate after disturbance, and has been 
shown to relate to vegetation structure and cover metrics derived from LiDAR and 
ground measurements [41,42].  

We use the province of Alberta, Canada and its harvested forest areas as a test case 
for this work. Not only does a large portion of the Alberta landscape comprise managed, 
harvestable forest, but the province is also uniquely rich in geospatial data. These include 
provincial LiDAR and multi-annual SPOT image mosaics, large volumes of environmen-
tal sensor data from audio and photographic devices, and most especially, up-to-date hu-
man footprint data layers (e.g., [43,44]).  

While both wildfire and harvest are primary sources of forest disturbance within Al-
berta [45] and are both easily detectable and monitored using satellite remote sensing, we 
focus here on recovery in forest harvest areas. This is for two reasons. First, they are an-
thropogenic in nature and thus managed—i.e., subject to government legislation and 
mandatory reforestation standards. As a result, their on-the-ground recovery is monitored 
at the local level, and these local-level understandings would benefit from broader, re-
gional- to provincial-level characterizations of recovery status and trends. Second, the re-
mote sensing of post-harvest forest recovery is less well studied than that of post-fire re-
covery, and there is, therefore, a larger knowledge gap in spectrally assessing levels of 
recovery in the former features. Developing a repeatable workflow and test case dataset 
of post-harvest forest spectral recovery offers a starting point for future research and 
study over national scales or in other jurisdictions.  

The following sections describe our workflow, largely undertaken using Google 
Earth Engine, our final forest harvest area spectral recovery output, and some tools for its 
dissemination and visualization. Finally, we present a short statistical analysis of post-
harvest forest spectral recovery across Alberta’s different ecological regions and subre-
gions. 

2. Materials and Methods 
2.1. Study Area 

Our study area comprises the harvested forest areas of Alberta, in western Canada 
(Figure 1). Approximately 60% or nearly 40 mha of Alberta’s 66 mha are forested, and 38 
mha or roughly 95% of this forested area is public land [46]. With the exception of parks 
and protected areas, much of this area is under active management through Forest Man-
agement Agreements [47].  

Ranging across both elevational (200 m to > 1200) and latitudinal gradients, Alberta’s 
harvestable forests cover a wide variety of climatic conditions, topographies, and ecosys-
tems. These include deciduous-leading upland mixedwoods in the central, eastern, and 
northeastern boreal, which experience short, warm summers and long, cold winters [48]. 
Deciduous-dominated upland forests in the northwestern and south-central boreal reflect 
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warmer summers and milder winters, while more diverse upland mixedwood forests are 
found in the northwestern boreal, where moister and cooler conditions prevail [48]. 
Mixedwood and coniferous-dominated harvestable forests dominate the foothills and 
montane regions of southwestern Alberta, where colder, snowier winters and shorter, 
wetter summers dominate the climate, and where large elevational gradients and aspect 
are a strong driver of forest composition [48]. Common coniferous tree species include 
white spruce (Picea glauca), black spruce (Picea mariana), jack pine (Pinus banksiana), lodge-
pole pine (Pinus contorta var. latifolia), and balsam fir (Abies balsamea), while common de-
ciduous species include trembling aspen (Polpulus tremuloides), balsam poplar (Populus 
balsamifera), white birch (Betula papyrifera), and tamarack (Larix laricina) [46,48]. 

 
Figure 1. Study area map showing forest harvest areas distributed across the Natural Regions and 
Subregions [48] of Alberta, Canada. 

2.2. Characterizing Spectral Recovery 
An overview of our workflow is shown in Figure 2. Much of this was implemented 

online in Google Earth Engine (GEE) using the JavaScript programming interface [49], but 
portions were conducted in a desktop environment using Esri’s ArcGIS 10.6.1 [50], and 
the R Statistical Package [51], implemented using RStudio [52].  

Our workflow compiled imagery from Landsat 5, 7, and 8 into an annual composite 
image stack, extracted a series of spectral metrics related to post-harvest vegetative recov-
ery, and derived per-harvest-area statistics. The following sections describe our datasets 
and pre-processing, spectral trajectory analysis, and quality-control measures. As one of 
our objectives is to produce a published, open-access dataset for Alberta harvest areas, 
this last step is an important one. 

2.2.1. Datasets and Preprocessing 
Unlike many other forest recovery remote sensing studies that first detected forest 

disturbance before describing recovery, we leveraged an existing dataset to inform the 
location and boundaries of the Alberta harvest areas that are the focus of this work. We 
used harvest-area polygons from the Alberta Biodiversity Monitoring Institute’s (ABMI’s) 
latest Human Footprint Inventory (HFI 2018) to define our units of analysis.  
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The HFI is a spatially explicit, digital database of visible human footprint features 
across the province in Alberta, and includes 20 categorical sublayers with over 110 specific 
feature types [53]. As the product of the careful compilation of multiple existing datasets, 
in combination with updating by trained interpreters using high-resolution satellite im-
agery, the HFI presents a uniquely consistent, comprehensive source of information on 
anthropogenic disturbance across Alberta’s forests. The product is updated annually, with 
yearly products from 2014 onward. The dataset contains 231,883 harvest-area polygons 
dating from the 1920s onward, and ranging in size from <1 hectare (ha) to >2000 ha. The 
HFI’s harvest-area sublayer is based upon digital forest inventories compiled by the forest 
industry itself, as part of Forest Management Agreements with the province of Alberta. 
Such agreements are the mechanism by which forestry land tenure and harvesting rights 
are granted in the province, and require the industry to provide accurate, up-to-date forest 
inventories as part of their management plan [54].  

To preprocess harvest-area polygons, we first extracted the harvest-area sublayer 
from the full HFI geodatabase and buffered it using a negative 30 m distance. This was 
intended to remove the outer 30 m of each polygon and, thus, minimize the risk of edge 
effects resulting from variations or misalignments with 30-m Landsat imagery. The buff-
ered polygons were then simplified by removing extraneous vertices while maintaining a 
15 m boundary shift tolerance. This was undertaken to reduce overall file size, and visual 
inspection of the result showed good similarity in size and form between pre- and post-
simplification polygons. Finally, harvest-area polygons of less than 900 m2 (the area of one 
Landsat pixel) were removed and excluded from further analysis. We then uploaded the 
result as a shapefile table asset into GEE. 

All image processing and spectral recovery calculations were performed using cus-
tom scripts in the GEE online environment [49]. Imagery from Landsat 5 Thematic Map-
per (L5-TM), the Landsat 7 Enhanced Thematic Mapper + (L7-ETM+), and the Landsat 8 
Operational Land Imager (L8-OLI) surface reflectance products, provided by the U.S. Ge-
ological Survey and spanning 1984 through 2018, comprised our satellite datasets. These 
data were atmospherically corrected using the Landsat Ecosystem Disturbance Adaptive 
Processing System [55] and were accompanied by cloud, shadow, water, and snow masks 
calculated using the CFMask algorithm [56]. We used the latter to remove affected pixels 
in all images and calibrated the L8-OLI imagery to spectrally match the L5-TM and L7-
ETM+ products, using published coefficients provided by [57]. We then combined the im-
ages from all three sensors into a single, chronologically ordered image stack. This stack 
was transformed into annual composites by extracting per-pixel, growing season spectral 
median values for each band and year, wherein only images from the months of June 
through September were used (Figure 2). The intent was to remove extreme values and 
remaining unwanted noise (e.g., remaining haze), and to minimize snow effects, to pro-
duce annual composites that approximated a “best” representative growing season value 
for each pixel.  

Our workflow next generated a normalized burn ratio (NBR) image from each annual 
composite multi-band image using Equation (1) [36], which uses the near-infrared (NIR) 
and shortwave-infrared (SWIR) reflectance Landsat bands (i.e., Bands 4 and 7, respec-
tively, for L5-TM and L7-ETM+; Bands 5 and 7, respectively, for L8-OLI). Following the 
observed interactions between these spectral bands and land surfaces, the NBR increases 
with more complex vegetative structures and greater land surface moisture content [58–
60], such as that found in forested landscapes. The index consequently drops as the 
amount and complexity of vegetation decreases (i.e., shrub or grassland) or is removed, 
and vegetative and soil moisture levels likewise decrease. The NBR thus shows good per-
formance in responding to forest disturbance and recovery [18], and is well used for these 
purposes in the literature [61–63]. As with other normalized difference indices, NBR val-
ues are unitless, ranging from -1 to +1 and calculated as: 
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NIRreflectance − SWIRreflectance
NIRreflectance + SWIRreflectance
�  (1) 

where NIRreflectance and SWIRreflectance are spectral reflectance in the NIR and SWIR bands, 
respectively.  

 
Figure 2. Flowchart showing the described workflow for deriving post-disturbance spectral recovery using Landsat time 
series. 
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Annual Landsat NBR image composites for the study were processed using the 
LandTrendr algorithm described by [18], and made widely available by the authors within 
the GEE environment [64]. LandTrendr iteratively fits a set of linear regression lines or 
segments and vertices to per-pixel annual spectral index time series to capture important 
shifts and trends in the time series, while also minimizing unwanted noise. This approach 
has been used successfully to not only detect forest disturbance [17,65–67], but also to 
examine post-disturbance spectral recovery [68–70]. After testing over a number of Al-
berta forest harvest areas, we chose to use LandTrendr’s default parameters for this work, 
with the exception of the recovery threshold. Based on our testing, we reset the latter from 
0.25 to 0.5, which we found allows for quicker recovery rates within a single segment of 
the time series. We found that this better captured post-harvest NBR spectral changes in 
our particular study area. Once generated, the LandTrendr-fitted NBR time series were 
used to extract spectral recovery information. 

2.2.2. Identifying Relevant Pixels 
Our use of an existing harvest-area polygon dataset in place of remote sensing-based 

disturbance detection for determining areas of harvest required us to be cautious in se-
lecting pixels that were used for calculating spectral recovery and generating per-harvest-
area summaries, for several reasons. First, while it is a detailed and comprehensive da-
taset, the ABMI HFI nevertheless contains errors in its delineations, and can include mul-
tiple distinct harvest events within the boundary of a single polygon. Secondly, reten-
tion—the practice of leaving intact patches within a harvest area—is a common practice 
in Alberta [54]. Third, it is not uncommon for other natural or anthropogenic disturbances 
such as fires or petroleum well pads to also occur in harvested areas, and to therefore 
influence spectral trajectories. Finally, the ABMI HFI comprises harvest areas that date 
back as early as the 1920s, meaning that a significant portion of them were harvested be-
fore our Landsat time series began in 1984, and many were spectrally recovered well be-
fore this date.  

For the purposes of this work, we removed pixels that fell within or intersected our 
processed harvest-area polygons and showed signs of influence from one or more of the 
factors listed in Table 1. As one of our objectives is to characterize post-harvest spectral 
recovery specifically, we did not want to include these confounding effects in our anal-
yses. Such effects are undoubtedly of interest for understanding full landscape post-har-
vest recovery trends, and should be studied further, but such analyses are not within our 
scope here. 

We also removed pixels for which detected harvest events occurred too early in the 
time series for us to calculate pre-harvest spectral conditions, or where they occurred too 
late in the time series for our spectral recovery metrics to be derived (i.e., within the first 
five years or last five years of our Landsat NBR time series). See Section 2.2.1 below for a 
description of how these metrics are calculated. 

Table 1. Description of the conditions under which pixels are flagged and removed from further analyses, and the final 
dataset. 

Flagged Condition Description 
No harvest detected When an inter-annual drop of 0.2 NBR units is not detected within a time series 

No recovery detected 
When a post-harvest increase in NBR values is not detected (e.g., reflecting permanent 
human footprint features such as a well pad within a harvest-area polygon) 

Multiple disturbance events 
detected 

When more than one inter-annual drop in NBR values is detected at least three years 
apart (one must be a drop greater than 0.2 NBR units, while additional drops must be 
greater than 0.175 NBR units)  

Harvest out of date range 
When a harvest is detected within an NBR time series, but is within five years of the 
start of the time series, or when the beginning of the recovery period is within five 
years of the end of the time series 
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2.2.3. Spectral Recovery Metrics 
While the ABMI HFI harvest areas possessed a year of harvest attribute, this infor-

mation had been compiled from a variety of sources, as were the polygons themselves 
[53], and could vary in its accuracy. Our workflow relied on within-pixel spectrally de-
tected harvest events as part of our metric calculations, as well as for post-processing (see 
Section 2.2.4). Therefore, we did not use the HFI year of harvest in our analyses, and used 
spectrally detected harvest events instead.  

We identified a harvest event as an inter-annual drop in NBR of 0.2 or greater in the 
temporally segmented trajectory. We assumed that this drop represented a spectrally de-
tectable forest harvest event since we were only examining pixels within or intersecting 
our preprocessed harvest-area polygons, and used the flags described in Section 2.2.2 to 
remove inappropriate pixels from our analysis. We selected the 0.2 NBR threshold after 
careful inspection of numerous harvest areas. Since we also observed that signals can de-
crease for more than one consecutive segment before beginning to increase (which signals 
the start of recovery), we identified the start of recovery (Recovstart) as the year after which 
we observed that the NBR had ceased to decrease, and had begun to increase (Figure 3). 
Given that spectral signals in our study area can drop over the course of more than one 
year during a harvest event, and that when a significant drop between two years is ob-
served we assume that a disturbance has already occurred by the time of that second year, 
we ascribed the year of the detected harvest event (Harvestyr) to the first year before the 
detected drop (Figure 3). The period between Harvestyr and Recovstart was defined as Re-
covlag. 

 
Figure 3. Graphic illustrating the methods for calculating various spectral recovery metrics from a 
sample normalized burn ratio time series. 

We used Harvestyr and Recovstart to calculate three post-disturbance spectral recovery 
metrics from LandTrendr-fitted NBR time series, on a per-pixel basis. The first was five-
year percent spectral recovery (Recov%5yr), which is a relative measure of short-term re-
covery that is very similar to the Recovery Indicator (RI) metric described by [61] and used 
elsewhere [19,40–42]. It represents the percent of pre-harvest NBR spectral signal that is 
regained after five years of recovery, and is calculated as: 

Recov%5yr = (NBR5yr − NBRmin)/(NBRtotDistb) × 100, (2) 

where: 
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NBRtotDistb = NBRpreDistb − NBRmin, (3) 

and where NBRpreDistb is the mean NBR value for the five years leading up to the detected 
harvest event, NBRmin is the NBR value occurring in the year of Recovstart (i.e., the lowest 
NBR value reached after the harvest), and NBR5yr is the NBR value reached five years after 
Recovstart (Figure 3). We chose to use a pre-harvest five year window for calculating NBR-
preDistb, rather than a shorter time period as is the case elsewhere (e.g., [19,62]), so as to 
minimize the effects of inter-annual variation due to atmospheric or other noise sources. 
As our calculation of this metric was slightly different from the original Recovery Indica-
tor [61], we here elected not to label it as such. Aside from using a longer pre-harvest 
period to characterize NBRpreDistb, our metric differed largely in that it used the five years 
following Recovstart—the point at which spectral signals began to increase—rather than 
simply using the five years directly following the detected harvest event, as is the case in 
calculations of the RI. The intent was to account for instances where spectral signals in 
NBR time series dropped over the course of more than one year, which we observed to 
occur for some harvest areas within our study area. We therefore included only those 
years where spectral recovery was occurring in our metric calculations. Nevertheless, our 
Recov%5yr was found to be comparable to the RI.  

Our second spectral recovery metric, which reflects longer-term rates of recovery, 
was years to 80% recovery (Y2R). Described by [62], and again, also used elsewhere (e.g., 
[19,41,42,71,72]), it represents the length of time a harvest area’s NBR spectral signal re-
quires to reach and exceed 80% of its pre-harvest levels as defined by NBRpreDistb. 

We selected our final spectral recovery metric as a means of providing stakeholders 
and users of the final dataset with information reflecting the current state of spectral re-
covery in Alberta harvest areas. Recov%endTS is the percent spectral recovery observed at 
the end of the time series (i.e., 2018), and is calculated as: 

Recov%endTS = (NBRlast − NBRmin)/(NBRtotDistb) × 100, (4) 

where NBRlast is the NBR value in the last year of the time series. Unlike our first two 
metrics, this measure of spectral recovery is not found in the published literature. As our 
time series spanned several decades, and the majority of harvest areas in our dataset were 
likely to have spectrally recovered by its end, this metric offered a recent glimpse into 
which harvest areas’ spectral signals were still recovering, and more particularly, which 
were showing delayed recovery. 

As the above metrics were calculated at the per-pixel level, we summarized these for 
each harvest-area polygon in our dataset by extracting the mean and standard deviation 
of each from the relevant pixels corresponding to each polygon (i.e., those that remained 
unflagged for any confounding conditions). We also summarized the percent of all pixels 
corresponding to each harvest area that were flagged for the various conditions, and cal-
culated the percent of all pixels that were used in final harvest-area summaries. The re-
sulting statistics were exported in text file format from GEE, and then were post-processed 
in the R/RStudio and ArcGIS environments before being rejoined with the ABMI HFI har-
vest area polygons as an additional set of attributes. 
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2.2.4. Post-Processing and Quality Control 
Since one of our objectives is a final dataset suitable for public distribution, our work-

flow included a set of post-processing and quality-control steps. These were performed 
on per-harvest-area summary outputs from GEE using R scripts written within RStudio. 
After formatting the output text files into a traditional data table, we calculated a series of 
relative confidence scores for the harvest areas. The intent of these was to provide relative 
measures of reliability, since our harvest area spectral recovery data were quite variable 
with regard to sufficient pixel representation, size, and within-polygon variability. We 
placed higher confidence, as reflected in higher scores, on greater pixel representation, 
larger sizes (i.e., greater numbers of pixels used for calculation), and greater homogeneity 
within a harvest-area polygon. We used descriptive statistical analyses (e.g., histograms) 
and personal observations of the data to create our confidence scores. They are further 
described in Table S1, found in our supplementary documentation. We summed the indi-
vidual confidence scores to produce per-harvest-area total confidence scores. These of-
fered an ordinal-level, relative ranking of harvest area metric reliability, which we used 
for quality control of the final dataset. 

On the basis of flag results and relative confidence scores, data for harvest areas 
meeting any of the following criteria were removed both from the final public dataset, 
and from further analyses: (i) >50% of the pixels within or intersecting the harvest area 
were flagged and removed; (ii) fewer than nine pixels remained within a harvest area for 
metric calculations; (iii) a Harvestyr confidence score below four suggested that the poly-
gon did not represent a single, homogeneous harvest event (Table S1); or (iv) the total 
confidence score was three or more standard deviations below the dataset mean. 

Following the above quality-control measures, the remaining harvest area spectral 
recovery metrics were rejoined to the original ABMI HFI harvest-area polygons, within 
the ArcGIS environment. The final steps of our workflow were designed to further mini-
mize additional human footprint and wildfire effects. Data from those harvest areas that 
overlapped other ABMI HFI human footprint features (e.g., mines, cultivation), and 
wherein this overlap constituted more than 20% of their area, were removed. We under-
took this step to reduce the risk that spectral signals had been affected by other anthropo-
genic activities post-harvest. Visual inspection showed that those harvest areas that were 
overlapped by other HFI features by less than 20% were often overlapped by roads or 
wellsites—features we assumed were not captured in our metric calculations due to the 
use of the previously described flagging system.  

The effects of wildfire on post-harvest spectral recovery metrics were reduced by 
removing data for those harvest areas overlapped by wildfires in the Government of Al-
berta’s most recent Wildfire Perimeter database [73] that had occurred within the 20 years 
prior to the detected harvest date or any time after the harvest date, and which occupied 
more than 10% of the harvest-area polygon. The 20-year threshold was chosen because, in 
most cases, we observed the spectral signals to have returned completely to pre-disturb-
ance levels by this time after a single disturbance event (i.e., the spectral signal had gen-
erally saturated after 20 years). 

The result of the above comprised our final, publicly distributable harvest area spec-
tral recovery dataset wherein those harvest areas for which spectral recovery was reliably 
extracted had these metrics provided as an additional set of new attributes. 

2.3. Public Dissemination of the Dataset 
Once compiled, we made our final dataset available online as an open-access GIS 

layer through the ABMI website (www.abmi.ca). We also summarized important infor-
mation pertaining to our methodology and the data themselves in a technical document, 
which we provided alongside the dataset. By making the dataset publicly available, we 
enabled its widespread use by a variety of stakeholders for diverse purposes, which could 
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include land and resource management, ecological or wildlife conservation efforts, or 
community knowledge and engagement, among others. 

Finally, we used GEE to develop and host an online data visualization tool or appli-
cation that allows users to browse maps of key spectral recovery metrics provided in the 
final dataset within an accessible and friendly environment. Such a tool is important in 
the science-to-knowledge translation of geospatial data for a broad set of users with var-
ying backgrounds and skill sets. While providing a dataset via a publicly available plat-
form is key to it use beyond a narrow range of applications, support in the form of an 
easily accessible data exploration tool greatly increases the data’s usability. Both these 
steps directly support the further democratization of EO-based information products for 
all audiences.  

2.4. Regional Analysis 
The final step in our analysis was to examine spectral recovery in Alberta forest har-

vest areas as it varies by Natural Region and Subregion, in the hopes that broad spatial 
patterns in recovery, reflecting variations in topography, climate, and vegetative commu-
nity, may be revealed. Ref. [48] divided Alberta’s varied landscapes into six Natural Re-
gions—Rocky Mountain, Foothills, Grassland, Parkland, Boreal Forest, and Canadian 
Shield—and 21 Natural Subregions. The province’s harvestable forests fell largely within 
the Boreal Forest, Foothills, and Rocky Mountain Regions. We summarized the spectral 
recovery for each of these and their corresponding Subregions, while restricting our anal-
yses to those harvest areas that fell completely within a single Subregion. It is important 
to note that some harvest areas did not reach 80% spectral recovery by the end of the 
studied time period; these were not included in any analyses of the Y2R metric. We used 
a one-way ANOVA for independent samples, and post-hoc Tamhane’s T2 statistics to 
check for statistically significant differences. The latter is a conservative pairwise compar-
ison that accounts for unequal variance between groups [74]. These tests were performed 
with IBM’s SPSS Statistics 27 [75]. 

3. Results 
3.1. Harvest Area Spectral Recovery 

Preprocessing of the 231,883 harvest-area polygons comprising the ABMI’s 2018 HFI 
dataset produced an output of 177,604 polygons, which we uploaded into the GEE envi-
ronment. After calculating spectral recovery metrics, processing and joining the resulting 
GEE outputs to HFI harvest-area polygons, and then conducting additional post-pro-
cessing, our final dataset provided spectral recovery information for 57,797 forest harvest 
areas. Table 2 presents general statistics summarizing our results, while Figure 4 shows 
key spectral recovery metrics mapped over Alberta. 

Table 2. Summary of statistics describing the harvest and recovery metrics extracted for the 57,797 
harvest areas in the final dataset. See Materials and Methods section for symbol definitions. 

Metric Units Minimum Maximum Mean Stand. Dev. n 
NBRpreDistb NBR 0.275 0.768 0.647 47.53 57,797 
Harvestyr year 1989 2013 2001.25 6.70 57,797 
Recovstart year 1989 2013 2001.51 6.69 57,797 
Recovlag no. years 1 9.50 1.26 0.43 57,797 
NBRtotDistb NBR 0.199 0.934 0.501 0.110 57,797 
Recov%5yrr % 1.86 168.47 59.90 18.31 57,797 
Y2R no. years 1.08 27.00 8.70 3.56 57,238 
Recov%endTS % 3.59 221.28 105.20 20.87 57,797 
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The distribution of pre-harvest spectral signatures (NBRpreDistb) was fairly narrow, 
falling for the most part between 0.600 and 0.700, given a mean of 0.647 and standard 
deviation (s.d.) of 0.048 (Table 2). This distribution was not surprising since harvested 
forest areas are generally likely to be similar in age and structure—i.e., mature, merchant-
able stands. This rendered comparisons of results across harvest areas more meaningful 
than if this metric were more dispersed in its distribution, as it indicated spectral homo-
geneity in pre-harvest conditions across our studied harvest areas.  

Year of spectrally detected harvest event (Harvestyr) filled the full range of possible 
harvest dates—1989 to 2013. These dates reflected the reserving of the first and last five 
years of the time series for metric calculations. The mean Harvestyr of 2001.51 fell directly 
in the middle of this 24-year range (Table 2). Our time period of interest was represented 
well within the final dataset. The mean number of years between the Harvestyr and start 
of recovery (Recovstart), referred to as Recovlag, was 1.26, with an s.d. of 0.43. This indicated 
that the majority of detected harvest events represented by our dataset were single-season 
timber clearing events.  

Harvest areas in our final dataset regained an average of 59.9% of their pre-harvest 
spectral signals after five years of recovery (Recov%5yr), though with considerable range 
and variability around this mean (s.d. = 18.3%; range = 1.86% to 168.5%; Table 2). We ob-
served a similarly high level of variability and range for the years to 80% spectral recovery 
metric (Y2R), with a mean of 8.70 years (s.d. = 3.56 years; range = 1.1 to 27.0 years; Table 
2). These results suggested that rates of spectral recovery differ considerably across the 
forest harvest areas of Alberta, in the shorter term as well as the more medium to longer 
term. This variability in both metrics is also evident in Figure 4, where we observed local-
level heterogeneity across both of these metrics in all three of the shown subsections. 

Somewhat less variability was found in Recov%endTS results than in Recov%5yr and 
Y2R (mean = 105.2%, s.d. = 20.87%; Table 2). Perhaps this was because this metric reflected 
a more static, current state wherein the majority of harvest areas were cut more than ten 
years before and had since reached or exceeded their pre-harvest spectral signatures. In 
our observations, it was not uncommon for NBR trajectories in our harvest areas to exceed 
pre-harvest levels. This was likely the result of differences in the successional stages of 
pre-harvest vs. post-harvest forest stands, which would include differences in species 
composition, plant or tree stem density, complexity, and overall vegetative and soil mois-
ture levels. NBR spectral signals also eventually saturate, as do other spectral indices (e.g., 
NDVI)—i.e., there is a point at which NBR values no longer continue to increase with 
vegetation growth [62]. It is likely that many of the harvest areas in our dataset had 
reached this point of saturation by the end of our time series. Nevertheless, there was still 
a level of variability in Recov%endTS across our dataset, as seen in the range of 3.59% to 
221.28%, and in the insets shown in Figure 4. 
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Figure 4. Inset maps showing Harvestyr (a,e,i), Recov%5yr (b,f,j), Y2R (c,g,k), and Recov%endTS (d,h,l) over three subsections 
of Alberta. 

3.2. Public Dataset and Visualization Tool 
One of our objectives was to make our final harvest area spectral recovery GIS layer 

open-access and publicly available online. We distributed the final dataset via the ABMI’s 
website (www.abmi.ca), alongside various other open-access geospatial information 
products that focus on landcover and human footprint. The data are accompanied by tech-
nical documentation that summarizes important metadata and the methods we used to 
produce the data, as described herein [76]. 
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The online visualization tool, which we developed to enable current or potential us-
ers to browse key spectral recovery metrics in harvest areas across the province, also ac-
companies our published dataset. We built this application (app) using the GEE platform. 
It is a GEE-powered app hosted through an ABMI Google account. Figure 5 shows a 
screenshot of the tool. In it, users can view maps of the Harvestyr, Recov%5yr, Y2R and 
Recov%endTS metrics in a linked, four-panel window. They are able to pan around and 
zoom into and out of the maps. The tool also provides an information panel that displays 
the metric values of any relevant harvest area that the user clicks. It can be accessed here: 
https://abmigc.users.earthengine.app/view/harvest-area-spectral-regen-2018. 

 
Figure 5. Screen shot showing the online visualization tool built for exploring the public 2018 harvest area spectral regen-
eration dataset. 

3.3. Spectral Recovery by Natural Region and Subregion 
We identified 53,880 forest harvest areas in our final dataset that fell completely 

within a single Natural Subregion of Alberta. The large majority fell within the Boreal 
Forest (45.3%) and Foothills (50.4%) Regions, with only 4.3% falling within the Rocky 
Mountain Region (Figure 6a). Within each of these, distribution across the corresponding 
subregions was also notably uneven (Figure 6a). The majority of Boreal Forest harvest 
areas fell within the Central Mixedwood (CM) Subregion (65.19% of Boreal Forest harvest 
areas), while the remaining harvest areas were largely split between the Dry Mixedwood 
(DM; 12.08%) and Lower Boreal Highlands (LBH; 21.15%). A similar majority of Foothills 
harvest areas fell within the Lower Foothills (LF; 64.12%), with the remainder falling in 
the Upper Foothills (UF; 35.88%). These unequal distributions must be kept in mind when 
considering the following results. 

https://abmigc.users.earthengine.app/view/harvest-area-spectral-regen-2018
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(a) (b) 

Figure 6. Distribution of harvest areas from the final 2018 spectral recovery dataset across: (a) natural Regions of Alberta; 
(b) natural Subregions of Alberta. Boreal Forest subregions include the Central Mixedwood, Dry Mixedwood, Lower Bo-
real Highlands, Northern Mixedwood, and Upper Boreal Highlands. Foothills subregions include the Lower Foothills and 
Upper Foothills. Rocky Mountain subregions include the Montane and Subalpine. 

Patterns of NBRpreDistb across the province’s Natural Regions and Subregions showed 
the highest values in the Boreal Forest with lower values in the Foothills, followed by the 
lowest values in the Rocky Mountain Region (Figure 7a). This is not surprising given the 
general increase in elevation and harsher environmental conditions as one moves from 
the Boreal Forest to the Foothills, and then to the Rocky Mountain Region. Since the NBR 
spectral index responds to vegetation complexity and moisture content [62,77], and there-
fore, is related to productivity, it would be expected that lower NBRpreDistb values be seen 
in landscapes with more limited growing conditions. This same pattern was observed 
across the Subregions of the Foothills and Rocky Mountain Regions, as well as the UF 
Subregion, which, with higher elevations than LF, showed overall lower NBRpreDistb values 
(Figure 7b). The SA, comprising the highest elevations and harshest environments of all 
the analyzed Subregions, showed the lowest overall NBRpreDistb values not only within the 
Rocky Mountain Region, but and across all Subregions represented here (Figure 7b).  

Distributions of Harvestyr appeared fairly even across the Regions and Subregions in 
our study area, with some clustering of dates around particular years (Figure 7c). This 
suggests that overall, similar numbers of areas were harvested from year to year between 
1989 and 2013 across our final dataset, though with some variability. Levels of Harvestyr 
variability may be exaggerated in some Subregions (Figure 7d) simply as a result of small 
sample sizes, rather than reflecting meaningful patterns. 

Levels of NBRtotDistb associated with detected harvest events appeared to increase 
from the Boreal Forest to the Foothills, to the Rocky Mountain Region (Figure 7e). We 
observed the largest difference between the Boreal Forest versus the other two: NBRtotDistb 
values were notably lower in the Boreal Forest region, particularly in the CM, DM, and 
LBH Subregions, while they were notably higher in the UF and Subalpine (SA) subregions 
of the Foothills and Rocky Mountain Regions, respectively (Figure 7f). The reason for this 
increasing magnitude of spectrally detected change across regions is uncertain, and war-
rants future investigation. It may reflect differences in the pre-harvest spectral signatures 
of vegetative communities in different environments, or it may reflect different harvesting 
methods or procedures that are followed under differing conditions or at different time 
periods. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Violin plots showing the distributions by Natural Region (a,c,e) and Natural Subregion (b,d,f) for NBRpreDistb 
(a,b), Harvestyr (c,d), and NBRtotDistb (e,f). CM: Central Mixedwood; DM: Dry Mixedwood; LBH: Lower Boreal Highlands; 
NM: Northern Mixedwood; UBH: Upper Boreal Highlands; LF: Lower Foothills; UF: Upper Foothills; MO: Montane; SA: 
Subalpine. 

With regard to measures of early spectral recovery, there was a distinct pattern of 
decreasing Recov%5yr values with increasing elevations and less favourable growing con-
ditions (Figure 8a). Harvest areas in the Rocky Mountain Region showed markedly lower 
Recov%5yr patterns than those in the Boreal Forest, with those in the Foothills falling in 
between the two. This can also be observed in Figure 8b, where all Boreal Forest Subre-
gions, with the exception of the Upper Boreal Highlands (UBH), which is a Subregion 
with a small sample size, show higher Recov%5yr values than the other Subregions. In ad-
dition, the SA showed notably lower values for this metric, indicating particularly slow 
early spectral recovery rates in this Subregion. As with previously discussed metrics, these 
patterns followed general expectations that rates of recovery would be generally faster in 
areas with more favourable growing conditions. 

The violin plots in Figure 9b,c show slower long-term rates of spectral recovery in 
the Foothills Region, and particularly, in the Rocky Mountain Region, than the Boreal For-
est, as reflected in higher Y2R values. In addition, Y2R results were more dispersed in 
their distributions across the ranges of values than Recov%5yr, in many of the Subregions 
(e.g., M and SA; Figure 8c), indicating more overlap between these Subregions for the Y2R 
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metric. This may suggest that spectral recovery as captured on the longer time scale may 
tend to converge across different environments and landscapes, despite more distinct dif-
ferences in early spectral recovery observations. 

We observed less variability across Regions and Subregions in the Recov%endTS metric 
than in either Recov%5yr or Y2R. Harvest areas in the Rocky Mountain Region showed a 
greater proportion demonstrating Recov%endTS at lower levels than in the other two Re-
gions (i.e., a greater range), but overall levels were not distinctly different between Re-
gions (Figure 8e). The same pattern existed between Subregions—the UF of the Foothills 
Region and both Subregions in the Rocky Mountain Region showed a larger dispersion in 
their distributions than the other Subregions, indicating a greater amount of variability in 
Recov%endTS in the former (Figure 8f). Perhaps this indicates that while overall climate and 
general environmental conditions in the Boreal Forest and, to some degree, in the Foot-
hills, create more favourable conditions across these regions in general, local factors play 
a larger role in generating within-Region variability in the Rocky Mountain Region in par-
ticular.  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Violin plots showing the distributions by Natural Region (a,c,e) and Natural Subregion (b,d,f) for Recov%5yr 
(a,b), Y2R (c,d), and Recov%endTS (e,f). See Figure 7 for Subregion abbreviation definitions. 
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Statistically Significant Differences 
Our statistical significance testing revealed that many of the differences we observed 

for the six variables shown in Figures 8 and 9 were significant (p < 0.001). Harvest areas in 
each of the three Natural Regions—Boreal Forest, Foothills, and Rocky Mountain—were 
significantly different from each other in terms of every variable, with the exception of 
Harvestyr. The latter was not significantly different between the Boreal Forest and Foot-
hills Regions (p = 0.949), but was between the Rocky Mountain Region and each of these 
two (p < 0.001). Thus, not only were the spectral pre-harvest conditions distinctly different 
across broad ecological regions, but spectral changes associated with forest harvest, and 
shorter-term and longer-term spectral recovery were likewise distinct.  

Within-Region variability as reflected by between-Subregion statistical comparisons 
revealed statistically distinct differences in all variables within the Foothills Region. Pre-
harvest spectral conditions, spectral changes with harvest events, and post-harvest spec-
tral recovery were all significantly different between harvest areas in the Lower Foothills 
(LF) and UF Subregions (p < 0.001). The LF harvest areas showed higher NBRpreDistb values 
and lower levels of NBRtotDistb than those in the UF, while the latter showed slower rates 
of spectral recovery as measured by all indicators. These differences likely reflect the 
higher elevations and harsher growing conditions in the UF than in the LF, similar to pat-
terns of differences observed between harvest areas in the larger Regions themselves. 

Comparisons between the Montane (MO) and SA of the Rocky Mountain Region re-
vealed that most variables were significantly different between harvest areas in these two 
Subregions (p ≤ 0.001), but the two longer-term spectral recovery metrics Y2R and Re-
cov%endTS were not (p = 0.548 and p = 0.309, respectively). Thus, despite contrasts in pre-
harvest spectral signatures, spectral changes at harvest event, and spectral signatures at 
early successional stages in harvest areas, levels of spectral recovery tended to converge 
over time. This contrasts with the results from the Foothills Region. 

Unlike the Foothills and Rocky Mountain Regions, Boreal Forest harvest areas fell 
within more than two Subregions. Accordingly, statistical comparisons between these 
showed more complex patterns, which are illustrated using matrices in Figure 9. NBRpre-

Distb was statistically distinct across all five Subregions in the Boreal Forest (p ≤ 0.001), while 
both NBRtotDistb and Recov%5yr showed statistically significant differences across all but 
one pair of Subregions each (Figure 9). NBtotDistb was statistically similar between the 
Northern Mixedwood (NM) and UBH (Figure 9c), whereas both the NM and DM showed 
similar levels of Recov%5yr (Figure 9d). Harvestyr was not significantly different between 
most Subregions, except between the NM and each of the CM, Lower Boreal Highlands 
(LBH), and UBH, and between the CM and LBH (Figure 9b). Y2R was the variable that 
was most similar between Boreal Forest Subregions, showing statistically significant dif-
ferences in this metric only between the NM and the CM and LBH (Figure 9e). This may 
be another indication of spectral recovery level convergence over the longer term. The 
Recov%endTS results did not support this, however, as the majority of Subregions showed 
statistically significant differences in these values (Figure 9f), with some exceptions.  
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Figure 9. Matrices showing statistically significant and insignificant differences in harvest area 
spectral recovery metrics between Subregions of the Boreal Forest Region, including (a) NBRpreDistb, 
(b) Harvestyr, (c) NBRtotDistb, (d) Recov%5yr, (e) Y2R, and (f) Recov%endTS. 

4. Discussion 
4.1. Spectral Recovery in Alberta’s Forest Harvest Areas 

Our published dataset of post-harvest spectral recovery across Alberta provides in-
formation for over 57,000 of the province’s forest harvest areas. While this equals only 
25% of all the harvest areas identified across the province by the ABMI’s most recent in-
ventory—the 2018 HFI—it must be remembered that the full dataset includes areas har-
vested as early as the 1920s, and many are, therefore, outside the date range for remote 
sensing-based recovery analyses. Our use of rigorous pixel selection, post-processing, and 
data cleaning also reduced the size of our dataset to some degree, but ensures that the 
final dataset is a reliable depiction of medium-scale spectral signal trajectories within its 
representative harvest areas. 

Spectral recovery results for the two metrics we derived from the published litera-
ture—Recov%5yr and Y2R—were reasonably comparable to those obtained elsewhere. The 
authors of [61] used their RI—comparable to our Recov%5yr, as we described above—to 
examine patterns of post-disturbance regrowth in the northwestern U.S. and answer ques-
tions related to variability in relation to ecoregion, land ownership types, and administra-
tive boundaries. While the authors did not offer precise numerical statistics of RI, values 
varied considerably across the different ecoregions, ownership categories, or states, and 
the authors’ graphical summaries indicated that our mean Recov%5yr of 59.9% with an s.d. 
of 18.3% (Table 2) matched up well their results. In addition, a mean RI of 0.61, or 61% 
(s.d. = 0.67) was reported by the authors of [19] for Canadian boreal forest harvest areas, 
who also reported that 64.9% of the harvest areas in their dataset had recovered at least 
half of their pre-spectral NBR signals after five years post-harvest. Our results align very 
well with these numbers, both in terms of mean Recov%5yr values and in that 69.9% of our 
Alberta harvest areas reached a Recov%5yr ≥ 50%.  

Ref. [19] produced a mean Y2R value of 6.6 years (s.d. = 3.9) for Canadian harvest 
areas, which is notably lower than our mean of 8.7 (s.d. = 3.6) for Alberta harvest areas 
(Table 2). This suggests overall slower rates of longer-term spectral recovery in our dataset 
than the national average. However, relatively broad standard deviations for both sets of 
results place the two average Y2R values within one standard deviation of one another. 
These authors also found that 92.5% of the harvest areas in their dataset had attained 80% 
of their pre-harvest NBR signals [19], whereas 99.0% of our analyzed harvest areas 
reached this threshold.  

It is interesting that our Alberta harvest areas showed overall higher Y2R values than 
those reported by [19], indicating greater numbers of years to reach this 80% threshold, 
but a higher percentage in our dataset had reached it nonetheless. We speculate that this 
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may result from: (i) the lower variability in environments represented by our Alberta da-
taset in comparison to [19]’s national-level dataset; and (ii) the different time periods cov-
ered by each. That is, while Alberta shows strong latitudinal and elevational gradients, 
these do not cover the variety found across Canada’s entire boreal forest, especially the 
more diverse maritime and central-eastern Hudson’s Bay plains. This could influence 
overall estimates of spectral recovery. In addition, since we performed our analyses more 
recently, our Landsat time series covers 1984 through 2018, as opposed to [19]’s end date 
of 2012. It was demonstrated that Y2R results are influenced by years since disturbance, 
in that those harvest areas with slower long-term rates of spectral recovery are less likely 
to have had enough time to reach the 80% threshold when shorter time periods are exam-
ined [62]. The additional six years included in our time series likely enabled the inclusion 
of a greater number of harvest areas demonstrating slower regrowth, which is likely to be 
an important factor in our longer mean Y2R.  

Another published use of the Y2R metric is found in [62]. In their comparison of sev-
eral spectral indices for forest disturbance and recovery assessments over a sample of 
Landsat scenes scattered over the Canadian boreal forest, these authors found the NBR to 
perform well and produce higher Y2R values than other tested indices, indicating a slower 
spectral saturation rate and an ability to capture longer-term spectral recovery. However, 
their mean Y2R for this spectral index was 3.9 years overall, with longer recovery rates in 
cold and mesic bioclimatic zones, at 4.2 years [62]. When limited to only those harvest 
areas disturbed 10 or more years previously, the authors reported a mean NBR Y2R value 
reaching 5.6 years. As this study covered 1985 to 2010, these smaller Y2R values further 
suggest that the length of the remote sensing time series used for calculating Y2R strongly 
influences the results.  

It is interesting to observe that the published Y2R results as well as those we present 
here are aligned to some degree with the attainment of some forest regrowth benchmarks 
as measured on the ground. From their meta-analysis of ground-based post-disturbance 
forest recovery studies across Canada, the authors of [21] used polynomial regression 
models to estimate that it takes 5.7 years for harvest areas in the boreal forest biome to 
reach a 10% canopy cover threshold, and 7.8 years for those in the temperate forest biome 
and Montane Cordillera ecozone. Both are time periods commensurate with Y2R values. 
The authors also estimated 4.7 years for boreal forest harvest areas to reach a 5m height 
benchmark, which is also commensurate with Y2R findings. Refs. [41,42] explored the re-
lationships between spectral recovery metrics, and LiDAR and ground-based forest struc-
ture measurements captured in southern Finland, respectively. They found the 80% 
threshold to provide the most realistic assessment of recovery, when compared to others 
(e.g., 60%, 100%), in that 88.9% of those harvest areas that reached spectral recovery as 
defined using this threshold also reached both a 10% canopy cover and a 5 m tree height 
benchmark [41]. If we were able to extrapolate these models to our own dataset, the results 
might suggest that a good portion of Alberta’s harvest areas have also reached common 
benchmarks for forest canopy and height. The modeling of ground-based stand develop-
ment classes with both RI and Y2R, alongside other metrics, [42] demonstrated an overall 
prediction accuracy of 73.6%. Conversely, using ground-based metrics to predict mem-
bership in defined spectral recovery groups (i.e., Y2R of 1 to 5 years, 6 to 10 years, or 11 to 
15 years), the authors reported an overall accuracy of 61.1%. They revealed that ground 
measurements of mean height, dominant species, and percent deciduous were the top 
predictors of spectral recovery [42].  

Through our Recov%endTS metric, we found that 68.3% of the harvest areas in our da-
taset had reached or exceeded NBRpreDistb as of 2018. This indicated that most areas in Al-
berta harvested in the past four decades had recovered to their pre-harvest NBR spectral 
signals. Recov%endTS is unlike other published spectral recovery metrics, and therefore, 
cannot be compared with results found in other jurisdictions or by other researchers. It is 
nevertheless an informative indicator of current or recent conditions that could be useful 
to a variety of users. It might be employed, for instance, to identify harvest areas that 
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could be considered to no longer be human footprint, according to a user’s definition and 
purpose, and which can, therefore, be removed from a human footprint map or database. 
While the ABMI’s HFI indicates over 238,000 harvest areas across Alberta, a large portion 
of these are, by this time, spectrally recovered and are no longer visible on the landscape. 
It is important to account for this when analyzing human footprint from a perspective of 
direct areal coverage, so as to avoid overestimation. Recov%endTS might also be used to 
identify areas showing different successional trajectories, either from neighbouring areas, 
or in comparison to pre-harvest conditions. As this metric is a percentage of pre-harvest 
NBR signals, the amount by which it exceeds 100% could suggest varying levels of differ-
ence in forest structure, density, or composition in a regenerating harvest area. 

4.2. Between- and within-Region Variability 
As is the case for other studies of forest harvest area spectral recovery, we noted var-

iability between different ecological environments. While we used Alberta’s Regions and 
Natural Regions, and other authors have used other ecoregions, ecozones, or biome enti-
ties that were suitable to their respective study areas, we found similar patterns to those 
described elsewhere. Our Recov%5yr results varied across Regions in Alberta, as they are 
known to across ecoregions of the U.S. northwest, and were lower in areas where growing 
conditions were less favourable. Ref. [61] observed lower regrowth rates in ecoregions 
where tree growth is limited by moisture availability, such as the drier East Cascade Slope 
and Klamath Mountain ecoregions. While moisture is an important variable in the north-
western U.S., we assumed that, in Alberta, temperature gradients resulting from ranges 
in latitude, and especially elevation, play a stronger role in post-harvest recovery.  

Ref. [19] also plotted RI values by broad ecozone. The majority of our harvest areas 
fell within the Boreal Plains, Taiga Plains, and Montane Cordillera ecozones of Canada 
[78]. The first two aligned roughly with Alberta’s Boreal Forest Region, and both showed 
generally higher RI values than in the Mountain Cordillera. This is comparable to our 
findings that Recov%5yr is on average highest in the Boreal Forest harvest areas of Alberta 
than in either the Foothills or Rocky Mountain Regions. The same pattern was found by 
[19] with respect to Y2R, which showed slower rates of spectral recovery in the Montane 
Cordillera ecozone in comparison to the Boreal and Taiga Plain ecozones. The Y2R results 
we present here also showed notably higher rates of spectral recovery in the Boreal versus 
the Foothills and Rocky Mountain Regions.  

Our statistical analyses showed significant variability among the majority Regions 
and Subregions for many of our derived variables (e.g., NBRpreDistb and NBRtotDistb; Figure 
9). Between the broader regions, all tested variables except Harvestyr showed significant 
differences. This indicates that general patterns of spectral recovery in Alberta are influ-
enced by broader environmental factors, such as topography and climate, as one might 
expect. It is encouraging to observe that such factors are likely playing a role in spectral 
recovery rates across the province in much the same way that they do for ground-based 
measures of forest recovery. Climatic conditions, namely temperature and precipitation, 
and topographic effects related to elevation as well as local landform, were shown to in-
fluence on-the-ground post-disturbance regrowth [21]. The observation of variations in 
spectral recovery across ecological regions defined by similarities in these same environ-
mental conditions suggested that their influence on forest recovery is reflected in land 
surface spectral signatures, as they are in ground measures. Further work is required, 
however, to determine the strength of these influences on forest spectral recovery. 

Within-region patterns showed greater complexity than did the broader regions 
themselves. While Recov%5yr was significantly different between the majority of Subre-
gions, Y2R was not. The latter showed far more homogeneity than the former across Sub-
regions within both the Rocky Mountain and the Boreal Forest Regions (Figure 9). This 
suggested that early successional spectral signals in harvest areas were more variable than 
those at later stages, and that spectral signals tended to converge over time as forest re-
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generation advanced. Interestingly, this convergence was not evident in the Foothills Re-
gion where Y2R remained different between subregions. This might reflect stronger dif-
ferences in topography, climate, and vegetative communities between Foothills subre-
gions in particular. Other studies have also found differences in regional similarities be-
tween short-term versus longer-term measures of recovery. Ref. [17]’s use of Tasseled Cap 
Wetness and Greenness to examine post-disturbance spectral recovery in the forests of 
Canada’s eastern and western Boreal Shield revealed differing patterns. They found that 
Wetness spectral trajectories were far more variable between east and west during the 
initial stages of recovery than at the later stages (i.e., 20+ years post-disturbance), though 
Greenness-based recovery showed an opposite, diverging trend. 

Trends of within-region statistically significant variability for our Recov%endTS likely 
fell in between those observed for the Recov%5yr and Y2R metrics. That is, we observed 
homogeneity between subregions in both the Rocky Mountain and Foothills Regions, and 
between most Boreal Forest subregions (Figure 9). However, the UBH Subregion, and to 
some degree the NM Subregion, showed differing distributions to other subregions in the 
Boreal Forest. Overall, the within-region consistency for Recov%endTS likely reflected the 
inclusion of harvest areas at all stages of spectral recovery in this metric. 

4.3. Public Access and Science-to-Knowledge Translation 
In addition to compiling a provincial-scale dataset of forest harvest area spectral re-

covery across Alberta, Canada, and conducting an analysis of between and within-region 
variability, we took the additional steps of making our final dataset available online for 
open public access, and of developing an accompanying data visualization tool. Our aim 
was to support wide, public use of the dataset, and to further democratize its use for a 
broader audience. 

The value of open-access geospatial data is increasingly recognized as key to a wider 
variety of applications and greater innovation [79–81]. As data become available to a 
wider array of users, new sets of questions in a diversity of fields are posed and new ap-
proaches to answering these, as well as existing questions, are explored. An excellent ex-
ample of open data in the realm of forest mapping is found in the Satellite Forest Infor-
mation for Canada (SFIC) online repository (http://opendata.nfis.org/mapserver/nfis-
change_eng.html (accessed on 4 October 2021)). Based upon published methods (e.g., 
[19,82–85]) and provided as national-scale open access datasets, available products in-
clude EO-detected harvest and wildfire masks for Canada’s forested regions, covering 
several decades, as well as a series of forest attributes and land cover for the year 2015. 
The website also includes a built-in data visualization tool wherein provided layers can 
be displayed at varying scales. Not only does the SFIC repository provide national-scale 
information for a number of forest parameters; it also enables potential users with differ-
ing levels of geospatial data know-how to browse the data directly. Tools such as this, and 
that developed in this study, promote more effective science-to-knowledge translation by 
rendering geospatial data accessible to a wider variety of potential users. 

4.4. Study Limitations 
We recognize that despite the successful development of an accessible, repeatable, 

and adaptable workflow for the EO-based characterization of spectral recovery in dis-
turbed forests, there is an important limitation to our work that must be acknowledged. 
This is the lack of comparisons with ground or other reference data. To be reliable and 
useful, remotely sensed measurements of any parameter or variable require calibration 
and validation with auxiliary datasets of reliable accuracy and quality. We did not have 
access to suitable reference data that would cover the geographical and spectral range of 
our Alberta-wide dataset, but comparisons with such data are an important next step for 
further research. Analyses of the relationship between spectrally based recovery measures 
and those collected on the ground or with more precise methods would provide important 
insights and support the appropriate use of remotely sensed metrics for forest recovery 
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mapping. We would advocate for analyses using both LiDAR and field plot measure-
ments, as was conducted by the authors of [41,42]. While the latter studies were not un-
dertaken in Canadian forests, the results nevertheless indicated a meaningful relationship 
between measures of forest spectral recovery and forest structural characteristics. It is 
likely that similar relationships would be revealed in other jurisdictions with similar en-
vironments, which is encouraging for the value and meaning of our own spectral recovery 
dataset.  

5. Conclusions 
We developed a workflow using open-access Landsat time series and easily available 

cloud-based geospatial processing tools—Google Earth Engine—for deriving post-dis-
turbance spectral recovery metrics that is effective, repeatable, and adaptable to other ju-
risdictions or abrupt forest disturbances. With this workflow, we produced and dissemi-
nated an open-access dataset of forest harvest area spectral recovery for the province of 
Alberta, Canada. This dataset contains measures of spectral recovery for over 57,000 har-
vest areas, and is easily browseable using a GEE-enabled data visualization tool. Compar-
isons with other studies using the same or equivalent metrics for characterizing post-dis-
turbance forest spectral recovery revealed comparable results, indicating that our meth-
ods produce similar information to what is currently published. We observed significant 
differences in pre-harvest spectral conditions, spectral changes coincident with harvest 
events, and in post-harvest spectral recovery between broad regions of the province, high-
lighting the influence of broad topographic and climatic factors on each of these. Within-
region variability was more complex, but significant differences between subregions were 
far more prevalent for early successional spectral recovery than over the longer-term. This 
work does not include analyses involving ground or other reference data on either pre-
harvest conditions or post-harvest recovery, and this is an important area of future re-
search. Previously published work showed meaningful relationships between spectral re-
covery metrics and forest structural measurements in Scandinavian forests, but similar 
relationships have yet to be tested within a Canadian context. Nevertheless, the methods 
we present here offer a means of examining broad patterns in post-disturbance forest re-
covery across large areas, and could be used to provide valuable regional or national-level 
data that complement existing forest maps and inventories. 
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