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Abstract: Oil tank inventory is significant for the economy and the military, as it can be used
to estimate oil reserves. Traditional oil tank detection methods mainly focus on the geometrical
characteristics and spectral features of remotely sensed images based on feature engineering. The
methods have a limited application capability when the distribution pattern of ground objects in the
image changes and the imaging condition varies largely. Therefore, we propose an end-to-end deep
convolution network Res2-Unet+, to detect oil tanks in a large-scale area. The Res2-Unet+ method
replaces the typical convolution block in the encoder of the original Unet method using hierarchical
residual learning branches. A hierarchical branch is used to decompose the feature map into a few
sub-channel features. To evaluate the generalization and transferability of the proposed model, we
use high spatial resolution images from three different sensors in different areas to train the oil tank
detection model. Images from yet another sensor in another area are used to evaluate the trained
model. Three more widely used methods, Unet, Segnet, and PSPNet, are trained and evaluated for
the same dataset. The experiments prove the effectiveness, strong generalization, and transferability
of the proposed Res2-Unet+ method.

Keywords: oil tank detection; high spatial resolution image; oil reservation

1. Introduction

The oil tank, as a storage container of oil products, is a widely used piece of equipment
in the petroleum, natural gas and petrochemical industries [1]. It is particularly important
in storing and transferring oil and its related products, such as petroleum products, that are
liquid at ambient temperature. The timely and accurate detection of oil tanks in a large-scale
area is important in estimating oil reserves and provides data support to formulate policies
related to oil production and reserves. Since oil tanks are usually located in residential
areas or beside harbors, real-time oil tank detection is essential in assessing the threat of oil
explosion and leakage. However, retrieving detailed records of oil tanks from the public
domain is very difficult in China, necessitating alternative retrieval methods.

Recently, with the continuous development and maturity of remote sensing technology,
increased amounts of high-spatial resolution satellite data, including from Quickbird,
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WorldView, SPOT, Gaofen-1, Gaofen-2, Gaofen-6, and Ziyuan satellites, have been widely
used in various object detection tasks, and have achieved fruitful results [2–4]. As an
important energy storage device, the oil tank has become key in remote sensing exploration
systems [5]. However, due to the variable illumination, viewing angles, and imaging
quality of different remote sensed images, the edges of oil tanks in the remote sensed
images are usually fuzzy, and their colors are not uniform. Moreover, oil tanks in different
places vary significantly in their distribution pattern and in their complex of background
objects, as shown in Figure 1. Oil tanks have different shapes, sizes, and roof materials.
Omission error is easy to trigger when oil tanks are small, and commission error is likely
to occur when background objects have similar spectral and geometrical characteristics.
To deal with these issues, it is necessary to carry out research on the efficient detection
technology of oil tanks from remote sensed images.
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There has been much research on oil tank detection based on high spatial resolution
images. Kushwaha et al. [6] proposed a knowledge-based strategy to detect bright oil
tanks after morphological segmentation from high spatial resolution images. The Hough
transform [7] and its related methods [8–10] have been widely used in oil tank detection [11],
as they are efficient in finding circles. The shapes of shadow has been successfully used
to supplement oil tank detection [12,13]. Owing to the development of image processing
techniques, saliency enhancement has been employed to highlight oil tanks in images to
reduce false detections [14]. Geometric characteristics, such as symmetry and contour
shape, are used as criteria to eliminate background objects [15,16]. The synthesis of saliency
enhancement and shapes promotes an unsupervised shape-guided model {Jing, 2018 #17},
but it is sensitive to the boundary of adjacent objects in the image. Most of the above
methods focus on the morphological characteristics of oil tanks using image segmentation
techniques, which heavily rely on manually determined thresholds and criteria pre-defined
by the researcher to detect oil tanks.

The advent of machine learning methods has made it possible to learn the criteria and
the thresholds from training samples. This has improved oil tank detection by enlarging
the study area with more diverse oil tanks. Support vector machines (SVMs) have been
used to construct models to separate oil tanks from other background objects [17,18].
Contrario Clustering has been proposed to reduce false alarms in oil tank detection [19].
Moreover, with the popularity and the outstanding performance of deep convolutional
networks in computer vision [20], convolutional networks have been employed to detect
oil tanks [1,18]. However, these networks are mostly used for extracting features after
image pre-segmentation based on the histograms of oriented gradients (HOGs) [21] and
speeded up robust features (SURFs) [22]. The synthesis with other manually engineered
features can enhance oil tanks, but can also remove other oil tanks as background objects.
Multi-scale feature learning of oil tanks with different background objects is lacking in the
models above. In this paper, we propose an end-to-end deep neural network Res2-Unet+ to
detect oil tanks with various shapes, sizes, and illumination conditions in a large-scale area
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based on high spatial resolution images. The network structure of Res2-Unet+ is modified
from the typical network structure of Unet [23], which has been widely used for detecting
various objects of interest based on remotely sensed images [24]. The main contributions of
our paper are listed below:

(1) An end-to-end deep neural network to detect oil tanks.
(2) An enhanced learning capability of multi-scale oil tank features by adopting a hierar-

chical residual feature learning module to learn features at a more granular level, and
to broaden the range of the receptive field of each network layer.

(3) An increase in the potential for applications by training and evaluating the proposed
oil tank detection model in different large-scale areas.

2. Related Works

We propose an end-to-end semantic segmentation framework, Res2-Unet+, to detect
oil tanks in high spatial resolution remotely sensed images. This section introduces research
concerning semantic segmentation deep learning models for object detection using remotely
sensed images.

Semantic segmentation is a widely used technique in land cover classification and
object detection, and assigns a semantic label to each pixel in an image [25]. A fully
convolutional network (FCN) [26] is a significant deep neural network framework proposed
for semantic segmentation. An FCN consists of three parts: a backbone convolution layer
composed of typical network structures, such as ResNet [27] and VGG [28]; an up-sampling
layer, which rescales the feature map to the size of the input image; and a skip layer, which
optimizes the output result image. However, FCN has many unavoidable drawbacks, such
as low precision, insensitivity to fine detail, and a lack of spatial consistency. In addition
to FCN, SegNet [29] and atrous convolution [30] have been proposed to improve the
segmentation resolution of the object of interest and capture multi-scale context information.
Based on atrous convolution, a series of DeepLab models have been developed to achieve
better segmentation by adopting multiple sampling rates [31]. Howeover, a conditional
random field (CRF) is required to finetune the segmentation results of the models above
for detecting objects in remotely sensed images [32]. Research has been conducted on
employing PSPNet [4] and CPAN [33] to detect buildings using corresponding multi-scale
feature learning modules, but such research requires considerable computation time. Unet
is a widely used semantic segmentation framework for various object detection tasks
concerning remotely sensed images, as it is easy and highly efficient to implement [34].
Many networks have been proposed by improvement of Unet structure for object detection,
such as Unet++ [35]. To the best of our knowledge, there has been little research on end-
to-end semantic segmentation frameworks to detect oil tanks for large-scale applications.
Therefore, this paper proposes an efficient and reliable end-to-end deep neural network
based on Unet to detect various oil tanks a large-scale area.

3. Methods

A detailed network structure of our proposed Res2-Unet+ framework is presented in
Figure 2. The input image, with a size of 3 × 512 × 512 pixels, is firstly convoluted using
an initial convolution module, and encoded to a feature map with 2048 channels using
continuous convolution steps. The map is decoded to an output result image with a size of
2 × 512 × 512 pixels. The initial convolution module is a set of three convolution operations
with a kernel of a 3 × 3 element and a stride of 2, 1, and 1. The concatenation between
features in the encoding and decoding stages at different scales integrates the characteristics
of oil tanks at different levels, which increases accuracy. Because the objective is oil tank
detection, the output result image is a 0–1 binary image, wherein 0 intensity indicates
background objects and 1 represents oil tanks.
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In line with the work by [36], a Res2Net module is adopted in the encoder section
to gradually learn the multi-scale features of oil tanks. A comparison of the structure of
a commonly used 3 × 3 convolution module and the detailed network structure of the
Res2Net module is demonstrated in Figure 3. In a typical 3 × 3 convolution module, the
input feature map is firstly convoluted by a 1 × 1 element kernel, generating Feature X,
which is further convoluted by a 3 × 3 element kernel, generating Feature Y. Feature Y is
concatenated with the input feature after convolution by a 1 × 1 element kernel to create
an output feature. Instead of a direct 3 × 3 convolution on Feature X, the Res2Net module
decomposes the n-channel feature map into four sub-channel feature maps, x1, x2, x3,
and x4. Each decomposed feature map has a channel size of n

4 , and experiences 3 × 3
convolution in a different way. The decomposed feature map x1 is directly assigned as the
output feature map y1. The decomposed feature map x2 is convoluted by a 3 × 3 element
kernel with stride of 1 to generate feature map m2, which is, in turn, used for generating
output feature map y2. As demonstrated in Figure 3, feature map m3 is generated by a
3 × 3 convolution with stride of 1 on the summary of feature map m2 and x3. Feature
map m3 is assigned as output feature map y3 and added with decomposed feature map x4.
Similarly, with the network branch of decomposed feature maps x2 and x3, output feature
map y4 is calculated and concatenated with output feature maps y1, y2, and y3 to create
Feature Y. Such multi-branch learning can enhance the multi-scale feature learning ability
by learning at a more granular level and enlarging the receptive field. This is in contrast
with the single-branch learning in commonly used 3 × 3 convolution modules.

In addition to the original Res2Net module from [36] in our proposed network Res2-
Unet+, the order of activation function and batch normalization after each convolution
operation in the convolution module has been transposed that activation function comes
before batch normalization, as demonstrated in Figure 2. Such an operation is conducted
according to the conclusion by [37]; that is, the non-negative response of the activation
function ReLU (as illustrated in Equation (1)) may update the weight of the model in an
unideal way.

yrelu = max(0, x) (1)
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4. Experiments and Results

In order to evaluate the robustness and transferability of the proposed framework for
oil tank detection, the proposed Res2-Unet+ is trained and evaluated using remotely sensed
images from multiple sensors in different places, obtained from the Center for Satellite
Application on Ecology and Environment, Ministry of Ecology and Environment. We used
images covering part of Dongying, Shandng Province, from the Ziyuan satellite (shown
in Figure 4); Cangzhou, Hebei Province, from the Gaofen-1 satellite (shown in Figure 5);
and Tangshan, Hebei Province, from the Gaofen-6 satellite (shown in Figure 6) to train
the model. Such a strategy can enhance model generalization for images with different
imaging conditions—different ground objects and distribution patterns. Images covering
part of Yantai, Shandon Province, from the Gaofen-2 satellite, (shown in Figure 7) are used
for evaluating the trained model. Detailed imaging information from the images used in
our study is listed in Table 1. The evaluation image has a different spatial resolution from
the training images, with different imaging sensors in different places. Such a strategy
can be used to evaluate the transferability of the trained model. The ground truth oil
tanks are visually interpreted by three experienced interpreters and validated by another
experienced interpreter.

Table 1. General information of images used in this study.

Sensor City Time Spatial Resolution Train/Validate

Gaofen-1 Cangzhou 14 March 2020 2 m Train
Gaofen-2 Yantai 20 July 2020 1 m Validate
Gaofen-6 Tangshan 2 June 2020 2 m Train
Ziyuan Dongying 29 April 2020 2 m Train

As shown in Figures 4–7, the oil tanks are located in both rural and urban areas. Back-
ground objects form a complex with large illumination variations and textural differences.
Figure 4 shows that the oil tanks are mostly located in fragmented areas within factories,
and neighboring background objects comprise small buildings with similar, bright spectral
characteristics. The case in Figure 5 is comparatively more easily to detect. Farmland is
the main background object, and the oil tanks are mainly located in open squares. How-
ever, the oil tanks in Figure 6 are scattered, and the background objects include densely
distributed buildings, open squares, and other objects with complex spectral and textural
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characteristics. In contrast with from the cases in Figures 4–6, the oil tanks in Figure 7 vary
largely in different sizes and the background objects are mostly bright buildings, which are
easy to be confused with each other. The oil tanks and background object distribution pat-
terns differ significantly among different study areas. Such complexity provides abundant
samples to enhance the generalization ability while training the model, and to evaluate the
transferability of the trained model.
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Gaofen-2 sensor.

The images used in our study comprise three channels: the near infra-red channel,
green channel, and blue channel, which is set through multiple trials A combination of the
channels can endow the background objects with distinctive spectral characteristics. Our
proposed framework is implemented by ourselves in the Pytorch environment, with the
operating system Ubuntu 16.04. The model is trained using three GPUs of TITAN X—each
has a storage memory of 2 GB. Due to limited of GPU memory storage, it is difficult to
load the original training and evaluating images directly. They are cropped into patches
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with a size of 512 × 512 pixels. Moreover, since training and evaluating images are from
different datasets, all the image patches in training and evaluating datasets have been used
for model construction and evaluation. Stochastic Gradient Descent (SGD) optimizing [38]
is adopted to optimize our model, and the initial learning rate is set at 0.01. However, an
unwanted local minimum or saddle point is easily obtained when converging the model.
A momentum of 0.9, therefore, is added to restrain SGD oscillation. Moreover, in order
to avoid overfitting, a weight decay of 0.0001 is added before parameter regularization.
Equation (2) encapsulates how our framework adopts BCEloss to train the oil tank detection
model. The model converges to a minimum loss at the 156th epoch in our study. For
comparative purposes, the original Unet, Segnet, and PSPNet frameworks are trained with
the same experimental settings to evaluate whether our proposed Res2-Unet+ improves
the detection performance of oil tanks compared with using other typical networks.

BCEloss(xi, yi) = −[yi log xi + (1 − yi) log(1 − xi)] (2)

In order to conduct a visual comparison of the detected oil tanks using our proposed
Res2-Unet+ method and other widely used methods, we randomly selected four patches
with oil tanks from the evaluation images. The corresponding original images, ground truth
images, and detected results using Res2-Unet+, Unet, Segnet, and PSPNet are displayed
in Figure 8. Clearly, the proposed Res2-Unet+ framework can detect most oil tanks accu-
rately. In the first case in Figure 8(a.1), Unet, Segnet, and PSPNet all falsely detect bright
background buildings as oil tanks, while Res2-Unet+ successfully distinguish the bright
buildings as background objects (shown in green squares). In Figure 8(c.1,d.1), the oil tanks
detected by PSPNet are easily confused with each other, and those with relatively small
apparent spectral differences with respect to the spectra in neighboring objects are easily
omitted by PSPNet, as shown in Figure 8(b.5). However, Unet, Segnet, and Res2-Unet+
can detect most oil tanks without many false alarms in the cases of Figure 8(b.1,c.1,d.1).
This indicates that the spatial pooling module adopted in PSPNet is not quite suitable
for oil tank detection, especially when oil tanks are small and among background objects
comprising small bright buildings.

To form an objective and comprehensive evaluation of the detection performance of
oil tanks, we calculate several evaluation statistics based on the detected result images,
referring to the ground truth oil tanks. In accordance with the evaluation strategy adopted
in recent published work in object detection [24,32–34], the precision, recall, F1-measure,
and Intersection-Over-Union (IOU) are calculated to evaluate the detection performance
of each method. As indicated in Equations (3)–(6), Precision is the percentage of detected
oil tank pixels that are ground truth oil tank, Recall is the percentage of ground truth oil
tank pixels that are detected, F1-measure is calculated as a general performance indicator to
balance precision and recall, IOU evaluates the performance concerning the overlap ratio
between detected oil tank pixels and ground truth pixels. The averages of the calculated
evaluation statistics for all the evaluation images from the Gaofen-2 satellite using each
method are displayed in Table 2. Moreover, to evaluate the implementation efficiency, FPS
(Frames per second) of each method is collected and listed in Table 2 as well.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 − measure =
2 × Precision × Recall

Precision + Recall
(5)

IoU =
TP

TP + TN + FP
(6)
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Table 2. Evaluation statistics of oil tank detection from the evaluation images of the Gaofen-2
satellite (%).

Method Precision Recall F1-Measure IOU FPS

Res2-Unet+ 94.03 89.78 91.57 85.14 103.28
Unet 90.96 89.11 89.69 84.22 105.32

Segnet 89.12 89.38 88.77 82.89 90.23
PSPNet 74.47 60.87 60.98 47.45 40.87

Clearly, Res2-Unet+ achieves the best performance with the highest precision, recall,
F1-measure, and IOU among the four comparing methods. The precision of Res2-Unet+ is
3% higher than the second-highest precision, found in Unet. This indicates that the Res2net
module is effective in capturing the multi-scale features of oil tanks at a granular level. By
enlarging the receptive fields during convolution operation, our proposed Res2-Unet+ can
increase the precision of oil tank detection and decrease the omission rate of oil tanks that
are difficult to distinguish from other complex background objects. Notably, PSPNet does
not perform satisfactorily in detecting oil tanks in the evaluation images. One possible
reason is that the spatial pyramid pooling module can filter out the multi-scale features
of oil tanks, especially when they are small, constituting a few pixels only. Moreover, as
shown in Table 1, since evaluation images have different spatial resolutions from different
imaging sensors of different study areas with training images, the proposed Res2-Unet+
has stronger transferability in oil detection. In terms of implementation efficiency, our
proposed Res2-Unet+ is similar high efficient with Unet due to both FPS higher than
100, while PSPNet is low efficient with FPS of lower than 50. Therefore, with a high
efficiency and transferability, our proposed Res2-Unet+ can be recognized as with stronger
applicability for practical applications.
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5. Discussion

The above analysis shows that the performance of our method relies heavily on
the size of an oil tank. Therefore, we analyzed the detection performance of our pro-
posed Res2-Unet+ as a function of oil tank area. The area of all the ground truth oil
tanks in the evaluation images ranges from 1 m2 to 19,326.5 m2. We grouped the oil
tanks into five categories according to the area of each oil tank with manually set criteria,
1–400 m2, 400–800 m2, 800–1200 m2, 1200–1600 m2, and greater than 1600 m2. The average
precision, recall, F1-measure, and IOU of all the oil tanks in each category are calculated and
summarized in Figure 9. The evaluation statistics increase immediately when the area
of oil tanks is larger than 400 m2. Our proposed method performs best with regard to
oil tank detection for the area 400–800 m2. The other three evaluation statistics decrease
gradually with increasing area, especially IOU. Precision stays high and smooth with the
continuously increasing size of oil tanks after the area getting greater than 400 m2. This
indicates that oil tank detection using the proposed method is accurate for areas greater
than 400 m2. However, the proposed method can easily omit oil tank pixels when they
have a large area. For oil tanks with an area larger than 800 m2, a major proportion of the
oil tank pixels can be easily detected by the proposed method; but the number of pixels that
are confused with neighboring bright background objects increases greatly with increasing
oil tank area. To deal with this problem, enlarging the variability of the training samples of
large oil tanks may be one possible solution in future studies.
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6. Conclusions

In this paper, we propose an end-to-end deep learning framework to detect oil tanks
in high spatial resolution images. The proposed Res2-Unet+ framework adopts a Res2Net
module in the encoder to learn the multi-scale features of oil tanks in a hierarchical manner.
Such granular level learning enlarges the receptive field in the residual convolution. This
improves the accuracy in detecting oil tanks with multiple sizes and colors. Compared
with three other widely used network structures, Unet, Segnet, and PSPNet, Res2-Unet+
achieves the best performance by detecting most oil tanks accurately with the smallest
number of false alarm pixels. The spatial pyramid pooling module employed in PSPNet
proves to be unsuitable in detecting small oil tanks from background objects with similar
spectral appearances. One possible reason is due to the small size of oil tanks, which is
easily to be omitted during the continuous pooling. Moreover, our proposed Res2-Unet+
framework performs best when oil tanks have an area of between 400 m2 and 800 m2.
The accuracy decreases gradually with increasing oil tank area from 800 m2. This may be
overcome by adding more training samples of large oil tanks in future studies. Generally,
our proposed Res2-Unet+ method has strong transferability and generalization when faced
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with images from different sensors in different study areas and with different background
object distribution patterns.
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