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Abstract: Synthetic-aperture radar’s (SAR’s) capacity to resolve the cloud cover concerns encountered
while gathering optical data has tremendous potential for soil moisture data retrieval using SAR
data. It is possible to use SAR data to recover soil moisture because the backscatter coefficient
is sensitive to both soil and vegetation by penetrating through the vegetation layer. This study
investigated the feasibility of employing a SAR-derived radar vegetation index (RVI), the ratios of
the backscatter coefficients using polarizations of HH/HV (RHH/HV) and HV/HH (RHH/HV) to an oil
palm crops as vegetation indicators in the water cloud model (WCM) using phased-array L-band
SAR-2 (PALSAR-2). These data were compared to the manual leaf area index (LAI) and a physical
soil sampling method for computing soil moisture. The field data included the LAI input parameters
and, more importantly, physical soil samples from which to calculate the soil moisture. The fieldwork
was carried out in Chuping District, Perlis State, Malaysia. Corresponding PALSAR-2 data were
collected on three observation dates in 2019: 17 January, 16 April, and 9 July. The results showed that
the WCM modeled using the LAI under HV polarization demonstrated promising accuracy, with the
root mean square error recorded as 0.033 m3/m3. This was comparable to the RVI and RHH/HV under
HV polarization, which had accuracies of 0.031 and 0.049 m3/m3, respectively. The findings of this
study suggest that SAR-based indicators, RHH/HV and RVI using PALSAR-2, can be used to reduce
field-related input in the retrieval of soil moisture data using the WCM for oil palm crop.

Keywords: leaf area index; leave-one-out cross-validation; oil palm; radar vegetation index; synthetic
aperture radar; soil moisture; vegetation descriptors; water cloud model

1. Introduction

Oil palm has long been recognized as a vital crop in tropical agricultural regions with
a consistently increasing output rate, especially in Indonesia and Malaysia, which export
significant amounts of crude palm oil to other countries [1]. In Malaysia, oil palm crop
production occupies 71% of the agricultural land [2]. Oil palm crop is the second most
important source of edible oil, behind soybean, in terms of production [3]. Beyond its
core role as an edible oil, palm oil has spawned other palm-based sectors, such as special-
ized fats, cocoa-butter alternatives, oleochemicals, soaps, domestic detergents, nutritional
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supplements and, most recently, bioenergy [4]. Tropical regions like Malaysia that have
sufficient rainfall and sunshine and appropriate soil conditions are ideal for oil palm culti-
vation [5]. Because of the increasing demand for palm oil, a major concern is maintaining
crop yields at optimum levels and minimizing labor and fertilizer usage [6]. Due to the
fact that the crops in oil palm plantations are linked directly with the ground, soil quality
is an important factor when it comes to crop uptake and health [7]. Soil characteristics and
climatic conditions are known to vary on a minute scale and are particularly site specific [8].

It has been well established that soil moisture and precipitation have the highest corre-
lations in arid and dry regions and weaker correlations in wet regions, indicating that soil
moisture and precipitation are more complex than what is viewed on the surface [9]. The
intricate interaction between soil moisture and precipitation has been noted as important
in the land-surface context. Correlations between precipitation and soil moisture are the
strongest in areas with sparse vegetation, whereas forests and heavily vegetated areas
have weaker correlations [10]. Understanding this enables study to focus on numerous
specific scientific challenges such as subsurface recharge assessment and the identification
of drought–flood cycles. Such studies are important for tropical countries—particularly
agricultural nations where widespread applications are possible for scheduled irrigations
and soil moisture modeling [11]. However, a lack of information on such topics makes it
difficult for the farmers in those countries to take appropriate precautions to ensure the
productivity of their crops. Furthermore, hydrological models are often developed for
use under static conditions [12]. Additionally, in areas where oil palms are cultivated, soil
moisture is equally important for supporting palm tree growth. Therefore, in order to
estimate soil moisture by conventional means, highly reliable gravimetric measurements
are taken, although this is regarded as time and resource intensive [13]. In response to
this, time–domain reflectometry sensors are widely preferred [14], which can provide
continuous measurements [15].

Soil moisture mapping is accomplished mostly through extensive point measure-
ments, which can be expensive [16]. Numerous interpolation techniques have been used
to produce gridded soil moisture data from field observations, including deterministic
approaches such as inverse distance weighting (IDW), local polynomial interpolation (LPI)
and radial basis function (RBF) as well as geostatistical methods such as ordinary kriging
(OK) [17]. Deterministic methods can be examined using measured points evaluated based
on their extent of similarity. It has been noted that model IDW, using soil moisture, is
capable of investigating the distribution of drought conditions [18]. When precipitation
is encountered on a catchment scale, it has been found that IDW, with the inverse dis-
tance to a power number, has a greater impact on simulated outcomes than the scale of
grid sampling [19]. In a separate case, the evaluation of soil moisture using deterministic
methods, such as IDW and RBF, using global polynomial interpolation, LPI and OK, have
been examined, with OK being found to be more effective due to the fact of its use of
geostatistical interpolation techniques that utilize the statistical properties of the measured
points [20]. As it reduces the variance of estimate error, OK is the most used geostatistical
interpolation approach and the best linear unbiased estimator [21]. In complicated terrains,
OK is highly dependent on the homogeneity and density of the soil samples [22]. Recently,
the topic of soil moisture has concentrated on the spatial and temporal variability of the
moisture content in hillslopes and catchments. Fluctuations in soil moisture on slopes are
more complicated because of the synergy and superposition effects of land use types, slope
gradient, slope aspect, slope position, and elevation [23]. Hilly areas often face the problem
of sparse rain gauge networks, which limits the accessibility of the data and affects the
interpolation accuracy [24]. Therefore, using remote sensing as a tool, satellite imagery can
provide useful information about the Earth’s surface, with images being one of the most
popular data sources for remote sensing.

Remote sensing is used in the oil palm industry in tree detection [25], monitoring for
pests and disease mapping [26], and in nutrient detection [27]. Optical imaging gathers
energy emitted from the surface of the Earth in the visible and near-infrared range [28],
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resulting in indices that represent the vegetation cover. The normalized difference vegeta-
tion index (NDVI), which is a normalized ratio of near-infrared to visible red, is the most
commonly used metric [29]. It is a flexible and an effective indicator for distinguishing
vegetation from non-vegetation and includes the ability to interpret the health of oil palm
trees [30].

On the other hand, microwave remote sensing, or active remote sensing, can produce
images regardless of weather or lighting conditions by using its own radiation for illumina-
tion, which can penetrate clouds and reach the Earth’s surface. Microwave remote sensing
has addressed the issue of cloud cover through optical sensors in remote sensing [31],
clouds being a major impediment, particularly in tropical areas where oil palms are com-
monly cultivated [32]. Microwave remote sensing using PALSAR-2 generates data based
on backscattered radiation from the ground, with a lengthier wavelength providing better
penetrative capability [33]. As the radar has better penetrative capacity, it can be used to
distinguish a smooth surface from a rough surface [34]. L-band SAR imagery provides the
optimum diagnostic of oil palm canopies for growth monitoring [35]. As a result, the L
band at a wavelength of 15–30 cm can penetrate tree canopies and offer information on
sub-canopy structures [36]; hence, because of this capability, SAR can be employed in the
categorization of oil palms.

Various types of information about the surface can be obtained from the vegetation
cover by studying the polarization of the emitted and received radar signal. In HH, the
signal is horizontally emitted and horizontally received; in HV, it is horizontally emitted
and vertically received; in VH, it is vertically emitted and horizontally received; in VV,
it is vertically emitted and vertically received [37]. Polarimetric SAR is a technique used
to extract information from vegetation, with important information for oil palm crop
categorization being carried by HH and HV signals [38]. In order to distinguish oil palm
cover from natural forest and acacia plantations, both the C band and L band can be
used to enhance the classification accuracy [39]. Moreover, using an optical sensor, object-
based classification was used to improve classification accuracy in oil palm and acacia
plantations [40]. Recently, SAR images have been shown to be capable of penetrating
oil palm trunks, where basal root disease can be distinguished using a machine-learning
model [41].

In the last decade, a better understanding of SAR has allowed the retrieval of soil
moisture data from woody plants [42] and agricultural crops [43,44] using vegetation and
soil parameters and the water cloud model (WCM). The WCM was proposed as a collec-
tion of similar spherical particles that are consistently distributed across the volumetric
vegetation layer [45]. Originally, the WCM established an equation for the total backscatter
coefficient as a function of soil volumetric moisture content, vegetation moisture content,
and plant height [45]. Field-based vegetation parameters, such as the LAI [46–49] and
vegetation water content [50,51], have been widely used in WCMs. The WCM has the
advantage of being able to explain complicated scatter patterns in a vegetated area using
simple bulk vegetation descriptors [52]. However, there is a lack of understanding or
agreement on the best collection of vegetation descriptors. Recent studies have shown that
using the NDVI [53], based on optical images and the radar vegetation index (RVI) [54,55],
and the ratio of backscatter coefficient polarization (e.g., HH/VV [56] or VH/VV [56,57])
as descriptors provides successful soil moisture data retrieval in both the C and L bands.
However, HV/HH has been used to understand the dynamics of soil moisture based on
radar data, which lessens the effect of soil surface roughness [58]. The HV backscatter
coefficient has been found to be sensitive, in the P and L bands, to plant biomass and plant
water content [59].

In this study, the main goal was to extract soil moisture data from the oil palm
cultivated site using the WCM and SAR-based vegetation descriptors, such as RVI and
the ratio of the backscatter coefficients HH/HV (RHH/HV) and HV/HH (RHV/HH), and
compare this with data from the LAI field-based vegetation descriptor.
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2. Study Area and Materials
2.1. Study Area

Chuping, in Perlis State, is a flat-terrain oil palm growing location. For this study, the
area of the oil palm crop was approximately 28 ha. As of the data collection date, it covered
4-year-old palm stands that had just begun to bear fresh oil palm fruits. The study area’s
central coordinates were 6◦31′07.2′′ N, 100◦19′07.7′′ E, located in the subdistrict called
Kilang Gula Chuping. The area has a relatively flat terrain with a slope angle of 4–12%
and an elevation of 21.6 m. The soil type was identified as Chuping and Dampar—sandy
clay loam and clay loam. The study was conducted over three periods during weather
conditions similar to those in which the SAR images were acquired (see Section 2.2.2). Early
in the year, precipitation rates were quite low. This was particularly true in January–March,
which are considered to be the driest months of the year, according to meteorological data
from a previous study conducted in the same area [60]. The latter months of the year
experienced sufficient precipitation, with the average precipitation being 1362.38 mm per
year [61].

2.2. Data Collection
2.2.1. Field Data

In order to determine the soil moisture content at a depth of 0–5 cm, a soil gravimetric
technique was used in a grid point shown in Figure 1. For this, fresh weights of soil were
taken in the field, with their dry weights being calculated in the laboratory, following oven
drying. The soil samples were obtained from 32 locations in the study area, resulting in
96 soil samples taken on three different dates. In addition, oil palm fronds were collected
for estimation of the LAI. For oil palm crop, the standard approach of destructive sampling
was used to determine the LAI. In addition to being an excellent predictor of a palm’s
nutritional condition, fronds are easy to identify and sample. In oil palm crop, using the
17th frond is widely accepted to estimate LAI [62]. According to the conventional method
for evaluating LAI, which was developed specifically for oil palm crop, it was determined
using the variables A f as leaf area per frond in m2 of the 17th frond from the palm crown,
Fn as the total number of fronds per sampled tree, and PDEN as the number of palm trees
per hectare, using the following equation [63]:

LAI
(

m2/m2
)
= A f × Fn ×

PDEN
10000

(1)

The leaflet area was measured using an LI-3100C area meter (LI-COR Inc., Lincoln,
NE, USA). The total leaflet area of each frond was calculated by multiplying one side of the
leaflet area by two.

2.2.2. Remote Sensing Data

The backscatter coefficient of the oil palms was extracted using PALSAR-2 data. High-
resolution PALSAR-2 images were collected through our participation with the Japanese
Aerospace Exploration Agency (JAXA) using the Earth Observation Research Announce-
ment 2 platform. Three 2019 PALSAR-2 images, from the HH and HV polarization on 17
January, 19 April, and 9 July, were used. The specifics of these SAR data are shown in
Table 1, with all three images having been acquired in Strip Map 3 mode, in ascending order
at 6.25 × 6.25 m resolution. All the PALSAR-2 images used in this study were constructed
using a 16 bit data type with each pixel containing a digital number (DN). These DNs did
not correspond to the radar signal of the ground features or objects. As a result, the DNs
had to be converted into backscatter coefficients and expressed in decibels, as described in
Equation (2). For the PALSAR-2 data provided by JAXA, the calibration factor (CF) was
−83.0 dB [64]:

σ0 = 10× log10

(
DN2

)
+ CF (2)
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Once the σ0
HH and σ0

HV for each field point were available, the images were radio-
metrically calibrated using the Shuttle Radar Topography Mission’s digital elevation model
(3 arc-second). Following that, the images were orthorectified with respect to geographic
locations in order to eliminate speckles and noise from the PALSAR-2 images; a Lee filter
was used with a 5 × 5 window size. It has been previously noted that the Lee filter works
very well in terms of maintaining an image’s spectral characteristics while decreasing
speckling [65]. The open-source Sentinel Application Platform version 6.0.0 was used to
commence all the SAR-related preprocessing presented in Table 1.

Table 1. PALSAR-2 satellite image acquisition and incident angle.

Date of Acquisition Polarization Incident Angle

17 January 2019 HH + HV 30.4–42.4◦

19 April 2019 HH + HV 41.2–53.3◦

9 July 2019 HH + HV 30.4–42.4◦
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In addition to the PALSAR-2 images, a DJI Phantom 4 Unmanned Aerial Vehicle
(UAV), equipped with a Micasense® RedEdge camera (Micasense Inc., Seattle, WA, USA)
multispectral sensor was employed to survey the study area on 17 January 2019. The
Micasense® camera gathers information in five spectral bands, spanning the visible through
red-edge and infrared spectrums. Specifically, red, green, blue, near-infrared, and red-
edge images were captured at central wavelengths of 668, 560, 475, 840, and 717 nm,
respectively. The sensor was calibrated on-site, prior to flight, using the reference panel for
accurate ground reflectance calibration. The imagery from the UAV platform enabled us to
compute the NDVI [66], as shown in Equation (3), in order to identify bare soil with NDVI
values of less than 0.2. To confirm the classification was indeed bare soil, ground-truthing
was performed.

NDVI =
ρ840 − ρ668
ρ840 + ρ668

(3)

3. Methodology

The WCM was first developed by Attema and Ulaby [45] for alfalfa, corn, and wheat
crops. It is a broadly applied model for vegetation-covered areas, because it is composed
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of two components: the direct contribution of vegetation and the attenuation compo-
nent. Many studies have successfully applied the WCM to various crops, such as winter
wheat [55], wheat and corn [50], multi-crop agriculture [54], and forests [67]. The WCM
was established on the assumption that the canopy’s “cloud” was composed of similar
water droplets, scattered randomly throughout the canopy [68]. In this study, the WCM
was used to retrieve soil moisture data from oil palm crop using PALSAR-2 data. Based on
the assumption that the influence of soil surface roughness on observed backscatter is con-
sistent over a short timespan at a given site, the temporal variation in SAR backscattering
will be solely a reflection of changes in vegetation and soil moisture [54]. Consequently,
in this study, a multi-temporal SAR data set was used in the WCM. With the input of
SAR-derived indices and field-gathered vegetation descriptors (from the LAI), it was possi-
ble to compare both the vegetation descriptors to evaluate the WCM and retrieve the soil
moisture parameter.

The WCM considered both soil moisture and vegetation characteristics, with Equation (4)
showing the four empirical coefficients: A and B are vegetative characteristics and C and D
are soil parameters [69]. In Equations (5) and (6), parameter A corresponds to the albedo of
the vegetation, with B being an attenuation factor. Parameter D indicates the sensitivity
of the radar signal to soil moisture, while C can be a calibration constant in Equation (7).
Equation (5) shows the backscatter coefficient from the direct contribution of vegetation,
whereas Equation (6) gives the attenuation component for the vegetation-covered surface.
Hence, the equation is modified to:

σ0
tot = σ0

veg + τ2σ0
soil (4)

where
σ0

veg = A ×V1 × cos θ
(

1− τ2
)

(5)

τ2 = Exp (−2× B ×V2 × sec θ) (6)

σ0
soil = CMv + D (7)

The moisture content held in the canopy and its geometry have an impact on the
backscatter coefficient in terms of both V1 and V2. The soil moisture (Mv) is described in
m3/m3 and θ represents the incidence angle of the SAR images. After solving for parame-
ters C and D using a linear model fitting procedure, the values of C and D are replaced in
Equations (5) and (6), allowing for the solution of parameters A and B using the nonlinear
least squares method (NLSM) [51,53]. It has been reported that A and B can be estimated
using Levenberg–Marquardt optimization in the NLSM [47]. However, descriptors relat-
ing to vegetation have varied implications for the WCM. Several experiments have been
conducted, employing plant height, the LAI, the leaf–water area index (LWAI), and the
normalized plant-water content (NPWC) as variables, to measure V1 and V2 [29,70,71].
In this study, the vegetation descriptors V1 = 1 and V2 = LAI were chosen because they
have contributed to the best model performance using other field-based descriptors such
as LWAI and NPWC [61]. This is referred to as Model 1 (see Table 2). The SAR-derived
indices were used for modeling the oil palm WCM and are referred to as Models 2, 3, and
4. The RVI, being derived from dual polarization [72], was used as shown in Equation (8).
The RVI equation was initially introduced by proposing the use of the four polarizations
(i.e., HH, HV, VH, and VV) [73]. However, it has been found that the RVI provides a good
approximation of surface scattering when only two polarizations are used [74].

RVI =
4σ0

HV

σ0HH + σ0HV
(8)

It has been noted that RVI values range from 0 to 1, with 0 being associated with bare
soil and 1 with higher vegetation [75]. In this study, along with the RVI, other vegetation
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descriptors, such as the calculated ratios RHH/HV = σ0
HH

σ0 HV
and HV/HH as RHV/HH = σ0

HV
σ0 HH

,
were used to evaluate the soil moisture (Table 2).

Table 2. Simplified WCM using modeled vegetation descriptors.

Model Vegetation Descriptors, V1 and V2

1 V1 = 1, V2 = LAI

2 V1 = V2 = RVI

3 V1 = V2 = RHH/HV

4 V1 = V2 = RHV/HH

To evaluate the WCM for soil moisture data retrieval using the models listed in Table 2,
the leave-one-out cross-validation (LOOCV) method was used—a deterministic validation
procedure that enables accurate replication using the same data set [76]. Each time the
model was evaluated, one of the data samples was omitted, with the remaining n − 1 data
sample being used to train the model. The LOOCV method has been demonstrated as
being superior to split-sample validation, especially when sample sizes are limited [77].
Model evaluation can be expressed in performance metrics, such as the coefficient of
determination (R2) and the root mean square error (RMSE) [78,79], calculated as shown in
Equations (9) and (10), respectively. For each parameter combination, a pair of predicted
and observed values were obtained.

R2 =

 ∑n
i=1
(
Xobs − Xobs

) (
Xsim − Xsim

)√
∑n

i=1
(
Xobs − Xobs

)2
∑n

i=1
(
Xsim − Xsim

)2

 2 (9)

RMSE =

√
∑n

i=1(Xsim − Xobs)
2

n
(10)

The RMSE was estimated using Equation (9), where Xsim is the simulated σ0
tot and

Xobs is the observed σ0
tot. The RMSE is widely accepted for assessing the gap between

model predictions and actual observations from the environment in soil moisture-related
studies [80,81]. Most scholars accept the RMSE for soil moisture data retrieval by referring
to the Global Monitoring for Environment and Security (GMES) requirement from the
European Space Agency for accuracy, with soil moisture values below 0.05 m3/m3 being
considered as favoring the guidelines [82,83].

4. Results
4.1. WCM Parameterization

In the WCM approach, vegetation parameters describe the scattering from the vege-
tation cover on the ground. Estimation of the WCM parameters first requires calibration
of the values for bare soil in order to obtain the soil-related parameters C and D from
Equation (7), then correcting for the effects of vegetation on the backscattering coefficients.
For parameters C and D, the input of field or SAR-based indicators, along with the incident
angle and soil moisture, are required in order for the total backscatter to be calibrated.
The WCM was calibrated differently for each model, for both σ0

HH and σ0
HV , in order to

localize the vegetation parameters as shown in Table 3 using the LOOCV approach for
cross-validation. The WCM parameterization is important for obtaining a good fit with
the field measurements, as described in Equations (4)–(7), enabling the retrieval of the soil
moisture values. Using the LOOCV method to estimate the actual error in the developed
model, all the steps in the algorithm, including parameter tuning, have to be repeated in
each cross-validation loop [83]. For the SAR-based vegetation descriptors, the RVI was
derived from the PALSAR-2 images, where it has been shown to describe the structural
vegetation characteristics, and the RVI correlates with the vegetation water content and
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LAI indicators [84]. The RHH/HV and RHV/HH were employed to evaluate the potential
use of these simple ratios as vegetation descriptors because the latter has been reported as
being able to distinguish fluctuations in soil moisture using SAR data, and also to identify
areas where the influence of soil surface roughness can be mitigated [58]. To evaluate the
model further, a comparison of the WCM-modeled backscatter coefficients was checked
against the observed backscatter coefficients using the respective polarization, as indicated
in Section 4.2.

Table 3. Fitting of the WCM using HH and HV polarization.

Vegetation Descriptor by Model
Model Coefficients

HH HV

V1 V2 A B C D n A B C D n

1 LAI 0.012 0.001 −26.015 −2.864 96 0.317 0.013 22.207 −23.866 96

RVI RVI 0.319 0.017 −13.648 −5.784 96 0.613 0.008 24.556 −23.894 96

RHH/HV RHH/HV 0.181 0.016 −11.663 −6.462 96 0.450 0.133 21.874 −22.487 96

RHV/HH RHV/HH 0.758 0.007 −15.200 −5.900 96 0.826 0.010 20.320 −23.500 96

4.2. Sensitivity Backscatter Coefficient vs. Vegetation Descriptors

To understand the suitability of vegetation descriptors in the retrieval of soil moisture
data over oil palm crops, four WCMs were used to evaluate the potential use of SAR-
based parameters. SAR backscatter coefficients are connected to vegetation features on the
ground, such as crop form, height, size, geometric arrangement, and density, all of which
vary per crop [85,86]. In this study, a simplified WCM was evaluated in terms of both
σ0

HH and σ0
HV to understand its polarization sensitivity to the oil palm crop. The results

were determined using the model metrics of R2 and the RMSE between the observed and
WCM-simulated backscatter coefficients as shown in Table 4. Overall, using the LOOCV
method, R2 ranged from 0.930 to 0.983 for the HH polarization and from 0.948 to 0.991
for the HV, with the RMSE being 0.425–2.257 dB and 0.635–1.282 dB, respectively. Using
the LAI field vegetation descriptor for the palms produced, a low RMSE value of 0.635 dB
under HV polarization with R2 = 0.983 (Table 4, Figure 2). For the RVI, the SAR-derived
descriptor RHH/HV and RHV/HH were evaluated for the same day as the LAI indicator
using Equation (1). Under the same polarization, when the RVI was used in the WCM,
the model showed a higher RMSE of 0.702 dB with an R2 of 0.975 recorded. The modeled
backscatter coefficient for the vegetation descriptor RHH/HV (Model 3, Table 4) had an R2

of 0.982 and an RMSE of 0.828 dB. For RHV/HH , the RMSE was higher than for RHH/HV , at
1.282 dB for σ0

HV , with an R2 = 0.930.

Table 4. RSME values for the WCM-simulated and observed backscatter using PALSAR-2 with
different vegetation descriptors.

Polarization
RMSE (dB)

Model 1 Model 2 Model 3 Model 4

HH 2.257 0.425 0.472 1.883

HV 0.635 0.702 0.828 1.282

Polarization
R2

Model 1 Model 2 Model 3 Model 4

HH 0.948 0.990 0.991 0.964

HV 0.983 0.975 0.982 0.930
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On the other hand, the HH polarization with the LAI vegetation descriptor had an R2

of 0.948, with a higher RMSE, at 2.257 dB, than the HV polarization in the Model 1 (Table 4,
Figure 2a). The Model 1 in HH polarization produced the highest RMSE values compared
to the other models. In Model 3, the RHH/HV , vegetation indicator was comparable with
the RVI model with both being comparable to the LAI model under HH polarization.
Both SAR-based model indicators showed a similar accuracy with RMSEs of 0.425 dB and
0.472 dB, respectively, as indicated in Table 4, and with an R2 of 0.990 and 0.991. In the
model using RHV/HH , an R2 value of 0.964 was observed with a higher RMSE of 1.883 dB.

4.3. Soil Moisture Data Retrieval

The purpose of this study was to retrieve soil moisture data from oil palm crops
where soil moisture is an important indicator of the water requirements of the crop, being
an important factor in crop development and yield [64,87]. Furthermore, the retrieval of
soil moisture data is useful in seasonal or agricultural drought monitoring in terms of
understanding the significant areas affected [28]. In this study, statistical metrics were
employed in order to understand soil moisture data retrieval from the WCM used. Table 5
and Figure 3 show the data retrieval using Models 1–4 under HH and HV polarization. It
was noted that, under both polarizations, the vegetation descriptors attempted to represent
the vegetation layer as carefully as possible. Numerous studies have demonstrated that the
type of vegetation, the geometric structure of its cover (including height, branch and leaf
forms, and density distribution) and its water content have an effect on radar backscattering
and radar wave transmittance in the plant canopy [88–90]. In order to minimize errors in
the soil moisture content data, multiple angles, and multitemporal SAR data inversion were
used to help to eradicate the consequences of the plant layer on the radar backscatter [90].
When the field-based LAI was used to retrieve the soil moisture data, the HV polarization
showed a high R2 of 0.949, with a low RMSE of 0.033 m3/m3. Under HH polarization,
however, the LAI indicator showed a higher RMSE of 0.087 m3/m3.
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Table 5. R2 and the RMSEs for the soil moisture data retrieved and observed from an oil palm crops
(in m3/m3) using PALSAR-2, given according to the proposed models.

Vegetation Descriptor
by Model

Statistics Metrics

HH HV

R2 RMSE
(m3/m3) R2 RMSE

(m3/m3)

Model 1 0.901 0.087 0.949 0.033

Model 2 0.973 0.036 0.960 0.031

Model 3 0.946 0.049 0.974 0.049

Model 4 0.898 0.128 0.898 0.066

The main reason for evaluating the SAR-derived indicators was to avoid the cloud-
cover concerns that arise from optical data, which mainly affects tropical regions [91]. From
the SAR-derived Models 2–4 (Table 5), it was found that the HV polarization showed
RMSEs ranging from 0.031 to 0.066 m3/m3. This suggested that the HV polarization was
consistent in retrieving the soil moisture data. This is similar to the mentioned descrip-
tors, which showed a lower RMSE from the backscatter model fit (Table 4). This finding
correlated with the field evaluation of the WCM, with the HV polarization providing a
more accurate estimation of soil moisture [92]. The RVI produced the lowest RMSE among
the other SAR-derived models at 0.031 m3/m3. For the HH polarization, SAR-derived
Models 2 and 3 had lower RMSE values of 0.036 and 0.049 m3/m3, and with comparable
R2 values (Table 5). The SAR-derived indicators performed better than the field-based
vegetation descriptor, according to Model 1, under HH polarization. However, the RHV/HH
showed low accuracy in the RMSE comparison for both the polarizations, being 0.128 and
0.066 m3/m3, respectively.

Our findings are in agreement with those of previous studies, in which it has been
reported that RVI indicators in the WCM have been successfully evaluated to replace
field indicators in order to overcome optical data concerns [41,62]. It was noted that
the RVI model has been posited as a new descriptor that can be used to distinguish the
backscattering from the crop canopy and the underlying soil surface in cases where the crop
parameter cannot be obtained from the field, with the RVI being directly calculated from
the SAR [55]. Overall, the soil moisture data retrieval in this study was successful, based
on the parameterization of the WCM for the oil palm crop, with the use of the RVI and
RHH/HV as vegetation descriptors proving as dependable as the LAI descriptors. However,
the SAR-derived indicators were noted as producing lower RMSEs under HV polarization,
similarly to the LAI descriptor under HV polarization. The scatterplots of the observed
and retrieved soil moisture data, based on the polarization of each model, are shown in
Figure 3.
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5. Discussion

The WCM is a semi-empirical model, founded on theoretical ideas and relationships,
but which employs a simplified method based on field- and SA-based parameters. In
order to build the WCM, a calibration process was performed using variables, including
LAI from the oil palm crop, soil moisture data from the field data collection as well as
the backscattering coefficients, the RVI, RHH/HV and RHV/HH , and the incidence angle
from PALSAR-2. Using these variables, the parameters A, B, C, and D were considered
in fine-tuning the WCM—important steps specific to each crop and location [49]. Adding
on, to improve the fine-tuning estimation of the parameters mentioned, LOOCV was
implemented using the concept of iteration. This fine-tuning of the parameters (Table 3)
is dependent on the sensor configuration, vegetation cover and soil characteristics. In
this instance, the terrain was relatively flat and, therefore, the oil palm backscattering
contributed to the radar signal as shown in Figure 2. It is important to note that the
vegetation parameters V1 = 1 and V2 = LAI were used for comparison to the ground
vegetation cover in this study, as these have previously been found to be the best soil
moisture indicators, among other vegetation parameters, such as the LWAI and NPWC, for
oil palm crop [61]. The results were in agreement with those of previous studies on other
crops, with the LAI variable being superior in sugarcane, cherry, rice [46], and wheat [93].
The accuracy obtained in the retrieval of soil moisture data using the LAI (Table 5) showed
that the HV polarization RMSE of 0.033 m3/m3 using the L band fulfilled the GMES
requirement of RMSE < 0.05 m3/m3. By contrast, the HH polarization produced a higher
RMSE in this study than in another study that used PALSAR-2, where the soil moisture
was variable, giving a retrieval accuracy of approximately 6.0% [94]. In relation to this, the
HV polarization in the L band is more sensitive to the vegetation structure and biomass
of oil palm when compared to HH polarization in peninsular Malaysia [95]. However,
comparable results were found under VV polarization using the LAI in wheat, with an
RMSE of 4.19% using the advanced SAR (ASAR) C-band sensor. For oil palm crop, using
LAI in the field is a destructive, manual method [96], but it is widely regarded as the most
accurate method for estimating the true LAI [97]. However, estimating LAI using this
direct method is time-consuming, tedious, and labor-intensive [63].

L-band backscatter interacts at the top of the canopy as well at the soil. Using this
capability, the L-band SAR-derived descriptors were considered worthy of evaluation in
order to obtain an understanding of the possibility of reducing this field-based variable
into the WCM to allow for simplified model fine-tuning and soil moisture data retrieval.
Positive correlations were found between all SAR-based descriptors and soil moisture
in oil palm under HH polarization using the RVI and RHH/HV ranging from 0.036 to
0.049 m3/m3 RMSE, followed by RHV/HH with a RMSE accuracy of 0.128 m3/m3. For the
RVI, RHH/HV and RHV/HH were employed where greater accuracy was found under the
HV polarization than the HH polarization. Under HV polarization, the RVI vegetation
descriptors used in multiple crops have demonstrated an accuracy of 0.085 m3/m3 [54],
which was improved in this study at 0.031 m3/m3.

Similarly, using RHH/VV , RVH/VV , RVI, and the generalized volume scattering model
based radar vegetation index, employed in a recent study, showed similar accuracies to
the findings of this study [56]. In addition, WCM studies using optical-based descriptors
(commonly the NDVI) have also been found to be accurate to within the GMES standards.
In comparing the NDVI with RVH/VV , crop phenology and crop growth changes have been
demonstrated and found to have an of accuracy of 0.12 cm3/cm3 in corn at the growth
level [57]. It was noted that the accuracy of soil moisture data retrieval can be affected
by the preprocessing and filtering process; hence, some consideration must be given to
evaluating the filtering window size, incident angle, and the SAR imaging resolution.
Soil moisture data retrieved from multi-polarized and multi-angled RADARSAT-2 images
have produced WCMs with accuracies of RMSE = 5.9% and 6.6%, respectively [98]. Using
the WCM, Zribi et al. [99] obtained comparable results for a semi-arid environment, at
RMSE = 0.06 m3/m3, using ASAR data. However, because crop structures vary in time and
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space, and radar interactions between the soil and vegetation are complex, the proposed
approach’s spatial and temporal transferability requires more measurements of soil and
vegetation properties, and corresponding radar observations, to provide more robust
results. On the other hand, cross-validation in this study was achieved using the LOOCV
method to enable fine-tuning of the parameters and error reduction in the evaluated
data set.

Based on the outcome of this study, we envisage that the WCM approach can be
embedded into crop automated irrigation systems, particularly in oil palm, where ap-
propriate soil moisture must be accessible, since insufficient or excessive moisture will
have a detrimental effect on nutrient uptake and yields. On the other hand, soil moisture
retrieval from PALSAR-2 can reduce laborious soil sampling work and result in time and
cost savings. Using the findings from this study, we were able to successfully reduce
field-based parameters, allowing the WCM approach to be evaluated further to develop an
efficient soil moisture model for the oil palm industry, particularly in rural plantation areas
with limited physical access for conventional soil sampling.

6. Conclusions

In this study, the WCM model was calibrated using L band SAR data, with the field-
based LAI indicator and SAR-derived RVI, RHH/HV , and RHV/HH as input vegetation
descriptors for an oil palm crop with in-field soil moisture. The aim was to evaluate
the SAR-derived indicators from PALSAR-2 for their suitability in reducing the need for
field-based parameter data collection. Our findings allow a simplification of the WCM that
enables SAR benefits to be adapted for soil moisture data retrieval in oil palm. The model
fit showed that with HV polarization, the RVI and RHH/HV produced a good replication
backscatter coefficient compared to using the LAI as the vegetation parameter. The WCM
modeled using the RVI and RHH/HV had accuracies of 0.425 and 0.472 dB RMSE. With HV
polarization, the field-based LAI indicator showed the model fit with an R2 of 0.983 and
RMSE of 0.635 dB, using PALSAR-2 data. Our results showed that the soil moisture data
retrieval was successful with an RMSE ranging as low as 0.033 m3/m3 using the field-based
LAI indicator under HV polarization. The SAR-based RVI indicator, however, gave better
accuracy with HV polarization at 0.031 m3/m3. The RHH/HV polarization demonstrated
an equally good capability of soil moisture data retrieval, at an RMSE of 0.049 m3/m3 with
the same polarization.

Based on these results, it was demonstrated that the WCM is applicable to oil palm
crop, with the performance of the model being evaluated using different vegetation de-
scriptors, providing an understanding of the potential use of SAR-derived vegetation
descriptors using PALSAR-2. It is suggested that full polarization of the L band to be used
for exploiting the SAR-based indicators in oil palm WCMs, and also to examine the impact
of the VH and VV polarization effects. For future work, C band backscattering from the oil
palm trees crown canopies can be more thoroughly evaluated to be implemented in the
WCM for biophysical estimation of vegetation cover. Investigation of the C band, using
field-based vegetation water content measurements in the oil palm canopy can be explored
using Equation (6) to study the accuracy of retrieving vegetation variable, e.g., LAI.
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