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Abstract: Landslides pose a constant threat to the lives and property of mountain people and may
also cause geomorphological destruction such as soil and water loss, vegetation destruction, and
land cover change. Landslide susceptibility assessment (LSA) is a key component of landslide
risk evaluation. There are many related studies, but few analyses and comparisons of models for
optimization. This paper aims to introduce the Tree-structured Parzen Estimator (TPE) algorithm for
hyperparameter optimization of three typical neural network models for LSA in Shuicheng County,
China, as an example, and to compare the differences of predictive ability among the models in
order to achieve higher application performance. First, 17 influencing factors of landslide multiple
data sources were selected for spatial prediction, hybrid ensemble oversampling and undersampling
techniques were used to address the imbalanced sample and small sample size problem, and the
samples were randomly divided into a training set and validation set. Second, deep neural network
(DNN), recurrent neural network (RNN), and convolutional neural network (CNN) models were
adopted to predict the regional landslides susceptibility, and the TPE algorithm was used to optimize
the hyperparameters respectively to improve the assessment capacity. Finally, to compare the
differences and optimization effects of these models, several objective measures were applied for
validation. The results show that the high-susceptibility regions mostly distributed in bands along
fault zones, where the lithology is mostly claystone, sandstone, and basalt. The DNN, RNN, and
CNN models all perform well in LSA, especially the RNN model. The TPE optimization significantly
improves the accuracy of the DNN and CNN (3.92% and 1.52%, respectively), but does not improve
the performance of the RNN. In summary, our proposed RNN model and TPE-optimized DNN and
CNN model have robust predictive capability for landslide susceptibility in the study area and can
also be applied to other areas containing similar geological conditions.

Keywords: landslide susceptibility assessment; deep neural network; recurrent neural network;
convolutional neural network; hyperparameter optimization; tree-structured Parzen estimator algorithm

1. Introduction

Landslides are the most common natural hazards in mountainous areas, and once
occurred, landslides may cause the destruction of roads and houses, change of large
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land use, and even bring death and huge economic losses, which seriously affect the
sustainable development of society and economy [1,2]. Landslides are caused by the
combined effects of internal and external dynamic geological action or human engineering
activities, resulting in some degree of damage to the geological environment. China is
a country where landslides occur very frequently and the damage is extremely serious.
According to the 2017 China Land, Mineral and Marine Resources Statistical Bulletin
released by the Ministry of Natural Resources of China, just in 2017, 7122 landslides caused
327 deaths, 25 persons missing, 173 injuries, and direct economic losses of up to CNY
3.537 billion in China.

There are about one million historical landslide sites, including topple, slide, debris
flow, ground subsidence, and other types. Among them, topples, slides, and debris flows
constitute 80% of the whole landslides [3]. Topple is the crumbling and rolling of a rock
and soil body on a slope after it has been suddenly detached by gravity, slide is the
overall downward sliding of a rock body on a slope under the action of gravity for some
reason along a certain weak surface or zone of weakness, debris flow is a special type of
flood with large quantities of sediment, rocks and other solid material conditions formed
by precipitation. Although the trigger conditions and thresholds of the three landslide
types are different, the geological and hydrological conditions (susceptibility factors) of
the areas where they may occur are extremely similar, and they are more frequent and
hazardous. Therefore, topples, slides, and debris flows are integrated to represent landslide
for susceptibility assessment in this paper.

Landslide risk assessment is a comprehensive analysis and evaluation of potential
losses from disasters based on landslides and integrated natural, social, and economic fac-
tors, and it results in regional disaster reduction planning and providing technical support
with operability [4,5]. Landslide susceptibility assessment (LSA) is a key component of the
landslide risk evaluation. There are many related studies that assess the susceptibility or
risk of landslides on a national scale, such as China [6,7], Portugal [8], Iran [9], and New
Zealand [10], and even on a global scale [11,12]. For national scale LSAs, these studies use
conventional models such as logistic regression (LR), random forest (RF), etc., and even
incorporate local policy orientations and considerations of the physical vulnerability of
buildings. Additionally, at the global scale, there are studies of landslide non-susceptibility
mapping, this literature offers a variety of ideas for large scale LSA studies. However, the
analysis is more often carried out for smaller scales such as counties and cities [13–17].
These studies allow for more targeted development of new methods and models to assist
local disaster management authorities.

In the past three decades, LSA methods and theories have made great progress, espe-
cially in shifting from qualitative analysis to quantitative assessment, which is attributable
to the development of spatial and information technology, making the originally complex
arithmetic process and tedious data acquisition easy to operate. With the continuous
development of mathematical models and computer technology, the research methods of
regional LSA are still being innovated. The majority of conventional studies are mathe-
matically and statistically based methods [18–21]. Some researchers used mathematical
statistical models such as hierarchical analysis, interval rough number-hierarchical analy-
sis, entropy power method-hierarchical analysis to evaluate and analyze the distribution
and development characteristics of landslides [22], others used information value, and
weight of evidence methods to determine the landslide susceptibility, and used validation
methods such as applying a receiver operating characteristic curve (ROC), proportional
correct classification, and seed cell area index (SCAI) for evaluation [23,24]. Frequency ratio
method was also used the to assess the response of individual elements to the landslide
incidence [25], even others have used the series-parallel model of physics to construct a
weighted indicator system [26].
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With the continuous iteration and development of computer science and technology,
many studies have started to introduce machine learning algorithms in the study of
LSA [27,28]. The LR is one of the most classic machine learning models that has been
introduced by many researchers into the study of landslide risk evaluation [29–31]. The
decision tree (DT) and RF were often compared for the effectiveness of models in LSA [32].
Neural network models, especially the basic artificial neural network (ANN) model was
used to map landslide susceptibility and obtained very high accuracy results [33,34]. In
addition, many other machine learning methods are already available for risk evaluation
studies of landslides, such as naive Bayesian [35], gradient boosting decision tree model [36],
support vector machine model [37,38], genetic algorithm [39], recurrent neural network
(RNN) model [40], and convolutional neural network (CNN) model [41], etc. Moreover, there
are many comparisons of different methods and some hybrid algorithms in LSA [42–44].
However, one of the most important steps of machine learning models is the tuning and
optimization of parameters, which is the focus and difficulty of future research [45]. In this
paper, we select the topic to focus on this literature gap and choose the latest three typical
neural network models (deep neural network (DNN), RNN, CNN) for hyperparametric
optimization research in order to fill certain academic gaps and broaden the horizon and
direction of LSA research.

For this work, the historical landslide data, geographical data, topographic data, and
telemetric data were gathered to build an integrated multi-source database. DNN, RNN,
and CNN models were used to assess the susceptibility of landslides for Shuicheng County,
China, and the performance of these three typical neural network models was compared
by various methods and indices. Based on the three models, the Three-structured Parzen
Estimator (TPE) algorithm in Bayesian optimization was introduced to adjust the initial
parameters (hyperparameters) of these models for achieving optimized performance of
three typical neural network models in LSA. For the validation analysis of the models,
we used the Accuracy, Precision, Recall, F-value, Matthews correlation coefficient (MCC),
Kappa value, ROC curve, and SCAI to evaluate the performance of different neural network
models and their TPE optimization in LSA from multiple perspectives. Based on the above
methods, we mapped the LSMs for reference in preventing and mitigating landslides. This
paper innovatively discusses the application of three typical neural network models in LSA
and introduces the TPE algorithm to optimize the hyperparameters of the models in order
to achieve better accuracy. The new techniques we propose are scientific and feasible in
LSA and have robust prediction ability and application prospects. This study can provide
guidance and suggestions for local disaster management decision-making, contribute to
the continuous innovation and development of LSA research, and has certain theoretical
and practical significance.

2. Study Area and Data
2.1. Study Area

Shuicheng County belongs to the central region of the Yunnan-Guizhou Plateau in
China, with an approximate area totaling 3605 km2 and a resident population of about
754,900. Its elevation range is from 633 to 2863 m, and about 32.5% of areas have a slope
above 20◦ (Figure 1). For landslides, extreme precipitation is the main triggering and
inducing factor. Sudden extreme precipitation in mountainous areas induces regional or
basin-based cluster landslides such as topples, slides, and debris flows which can cause
serious impact on social production life and ecological environment. Shuicheng County
belongs to subtropical monsoon climate, with abundant and frequent precipitation, often
accompanied by heavy rainfall. Furthermore, it also belongs to karst landscape, where
surface water easily seeps and the moisture content of the soil is high. Shuicheng County
is a concentrated and high-incidence area of landslides and is one of the landslide-prone
and serious counties in Guizhou Province. Hence, it is particularly important to carry out
risk assessment of extreme precipitation-induced landslides in Shuicheng County, and the
susceptibility assessment is the most essential content of it.
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Figure 1. Location and landslide points of Shuicheng County.

On 23 July 2019, a mega-landslide that killed 52 people occurred in the Jichang Town,
Shuicheng County [46,47]. Figure 2 shows the Google Earth satellite maps prior to and
following the landslide, and that can be seen more than 1 year after the landslide there is
still a very significant impact on natural factors such as vegetation and geomorphology, as
well as roads, houses, and other building sites.
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2.2. Landslide Historical Inventory

In this paper, we collected the landslide historical inventories recorded by China
Geological Survey [48]. Additionally, the three most frequent and serious forms of land-
slides, topples, slides, and debris flows, were extracted, and integrated with remote sensing
images and field survey, the centroids of landslide scarp of 240 historical landslide points
were finally identified and stored in the database, which has been proved the best landslide
sampling strategy [49].

2.3. Landslides Susceptibility Influencing Factors

The susceptibility is characterized as the spatial probability of occurrence of landslides,
and the selection of the influencing factors is significantly important to LSA. Combining
relevant studies and the accessibility of factors, we finally identified 17 factors. We input
these influencing factors into a uniform format database, according to the Digital Elevation
Model (DEM) map pixel size, all the factor’s pixel sizes were set to 30 × 30 m, regardless of
the initial data format.

Lithology is fundamental to the development of landslides and affects the shear
strength and water leakage of slopes [50]. The lithology in Shuicheng County can be
classified into five categories, Basalt, Claystone, Dolomite, Limestone, and Sandstone.
Geological age can reflect the degree of lithological development. Meanwhile, the distance
to the faults can reflect the active degree of geological structure. This part of vector data
was digitized from geological maps provided by the China Geology Survey. Topographic
factors are another major predisposing factor for landslides [2]. Elevation is a measure of
the absolute degree of elevation of regional terrain; slope is an important factor for landslide
development, especially for rockfalls and landslides. Slope and geotechnical stability are
not simply linearly related, it always works in conjunction with slope height, geotechnical
combination, slope structure, and other factors. Aspect generally combines with other
factors to form the slope structure, which in turn affects the development of landslides.
For landslides induced by extreme rainfall, the aspect affects the insolation and rainfall.
The slope type mainly includes concave, convex, and linear, etc. The degree of rainfall
infiltration into the slope body varies with the slope type, which can be characterized by
plan curvature and profile curvature. Land cover affects soil erosion, especially the degree
of vegetation cover, which can be expressed by the normalized difference vegetation index
(NDVI) [51,52]. The land cover was downloaded at Finer Resolution Observation and
Monitoring of Global Land Cover (FROM-GLC) and the NDVI was calculated from the
near infrared and red band values in Landsat8 OLI satellite remote sensing digital images
shot in April 2018:

NDVI =
Near infrared− Red
Near infrared + Red

(1)

Roads can reflect the influence of human activities on geological formations, so the
distance from the road was also selected as an influencing factor. Terrestrial hydrology
mainly refers to the development and distribution of river valleys, etc. Research shows
that the development of landslides is strongly linked to the river system configuration,
because river system integrally reflects the development of the free surface, the density
of gully, and some characteristics of slope. The river also has an erosion effect, mainly
downward cutting erosion, lateral hollowing erosion, and wave action, erosion will carry
away stones and clods at the slope toe, forming the free plane, and providing favorable
topographic conditions for landslides. Meanwhile, the rise and fall of river level will affect
the fluctuation of groundwater level, which will affect the stability of the slope. Based
on the above analysis, distance to rivers, average annual precipitation (AAP), and four
hydrological indices were selected for landslide studies [31]. Among them, the distance
to rivers was obtained by creating multi-loop buffer, the AAP was obtained by collecting
the AAP of seven meteorological stations around the study area from 1981 to 2018, and
then interpolating by the inverse distance weights, and the four hydrological indices
were calculated as shown below, and the four hydrological indices consisting of Stream
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Power Index (SPI), Sediment Transport Index (STI), Topographic Relief Index (TRI), and
Topographic Wetness Index (TWI) [53,54], these indices were calculated as shown below:

SPI = AS × tanβ (2)

STI =
(

AS

22.13

)0.6
×
(

sinβ

0.0896

)1.3
(3)

TRI = DEMMAX −DEMMIN (4)

TWI = ln
AS

tanβ
(5)

where AS represents the catchment area (m2/m), β is the slope [55], DEMMAX and DEMMIN
are the max and min DEM value surrounding every pixel, respectively.

The classification of each influencing factor value is shown in Table 1.

Table 1. The classification of each influencing factor value.

Influencing
Factors

Variable
Type Resolution Unit

Class

5 4 3 2 1

Lithology Discrete - - Claystone Basalt Sandstone Dolomite Limestone

Geological age Discrete - - Devonian Carboniferous Permian Triassic Jurassic

Distance to
Faults Continuous - m <500 500~700 700~1000 1000~2000 >2000

Elevation Continuous 30 × 30 m m 2079~2863 1827~2079 1570~1827 1248~1570 633~1248

Slope Continuous 30 × 30 m ◦ 40.05~74.74 28.58~40.05 19.70~28.58 11.56~19.70 0~11.56

Aspect Discrete 30 × 30 m - Sunny slope Semi-sunny
slope Flat Semi-shady

slope Shady slope

Plan curvature Discrete 30 × 30 m - >0.33 0.10~0.33 −0.10~0.10 −0.33~−0.10 <−0.33

Profile curvature Discrete 30 × 30 m - >0.42 0.11~0.42 −0.11~0.11 −0.42~−0.11 <−0.42

Land cover Discrete 30 × 30 m - Impervious
surface

Cropland, bare
land Shrubland Forest,

grassland

Wetland,
water,

snow/ice

NDVI Continuous 30 × 30 m - <0.111 0.111~0.162 0.162~0.201 0.201~0.247 >0.247

Distance to roads Continuous - m <500 500~700 700~1000 1000~2000 >2000

Distance to rivers Continuous - m <500 500~700 700~1000 1000~2000 >2000

AAP Continuous 30 × 30 m mm 1272~1353 1212~1272 1150~1212 1080~1150 981~1080

SPI Continuous 30 × 30 m - >1000 500~1000 100~500 0~100 0

STI Continuous 30 × 30 m - >20 10~20 1~10 0~1 0

TRI Continuous 30 × 30 m - 91~342 58~91 38~58 22~38 0~22

TWI Continuous 30 × 30 m - 11.87~23.50 8.73~11.87 6.61~8.73 5.00~6.61 1.85~5.00

All the maps of the spatial distribution of influencing factors of landslides are shown
in Figure 3.
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(L) distance to rivers, (M) annual average precipitation, (N) SPI (O) STI, (P) TRI, (Q) TWI. 
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ventory and the landslide susceptibility influencing factors through multiple sources. 
Stage B is data processing; we divided the study area into grids, unified data to the same 
pixel size, and prepared the samples. Stage C is model construction; we used the DNN, 
RNN, and CNN models to train and generate LSMs. Stage D is TPE optimization, we used 
the TPE optimized DNN (DNN_TPE), RNN (RNN_TPE), and CNN (CNN_TPE) to train 
the models and generate LSMs as well. Stage E is model validation and comparison; we 
validated and compared the performance and the TPE optimization effect of different 
neural network models by multiple methods. 

Figure 3. Maps of the spatial distribution of influencing factors. (A) Lithology, (B) geological age, (C) distance to faults,
(D) elevation, (E) slope, (F) aspect, (G) plan curvature, (H) profile curvature, (I) land cover, (J) NDVI, (K) distance to roads,
(L) distance to rivers, (M) annual average precipitation, (N) SPI (O) STI, (P) TRI, (Q) TWI.

3. Methods

Our research of LSA can be separated in the five stages as follows, which can be
observed in Figure 4. Stage A is data collection; we collected data of landslide historical
inventory and the landslide susceptibility influencing factors through multiple sources.
Stage B is data processing; we divided the study area into grids, unified data to the same
pixel size, and prepared the samples. Stage C is model construction; we used the DNN,
RNN, and CNN models to train and generate LSMs. Stage D is TPE optimization, we
used the TPE optimized DNN (DNN_TPE), RNN (RNN_TPE), and CNN (CNN_TPE) to
train the models and generate LSMs as well. Stage E is model validation and comparison;
we validated and compared the performance and the TPE optimization effect of different
neural network models by multiple methods.
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3.1. Data Pretreatment
3.1.1. Geodatabase Construction

First, the factors were classified into 5 categories, where continuous variants used the
Natural Breaks Method (NBM), and discrete variants were ranked by calculating the ratio
of historical landslide points (R) to the area for each category:

R =
Xij/XA

Sij/SA
× 100% (6)

where Sij and SA represent the area of category j of factor i and the study area, respectively.
Xij and XA are the number of historical landslide points in Sij and SA, respectively.
R actually represents the amount of information in each category, and the higher the
R value, the higher the category rank.

3.1.2. Sample Selection

In the neural network modeling process, the number of positive samples (landslide
points) and negative samples (non-landslide points) should not be unbalanced by orders of
magnitude, because when the data are extremely unbalanced, samples from the majority
category are easier to predict, and the prediction performance for minority category is
poorer. Meanwhile, a total of 240 historical landslide points in Shuicheng County were
identified in this study. Too few numbers may lead to poor model prediction and cannot
correctly reflect the vulnerability of landslides in the study area, while too many may
cause overfitting of the model. After several tests, when the landslide points are doubled
and then an equivalent number of non-landslide points are selected as samples, a certain
accuracy can be maintained without overfitting.

Considering the above, this paper used the hybrid ensemble oversampling and under-
sampling techniques for sample selection. The specific steps are as follows: (1) 240 non-
landslide points were selected using random undersampling and repeated twice, 480 nega-
tive samples were obtained; (2) these 480 non-landslide points and the 240 landslide points
were selected as input data and the Borderline-Synthetic Minority Over-sampling Tech-
nique (Borderline-SMOTE) algorithm was used to oversample the positive samples which
is an enhanced method of SMOTE [56]. The principle of SMOTE is by selecting a minority
class sample A, choosing a sample B from its nearest neighbors, and then generating a new
minority class sample randomly on the line of the two points, while Borderline-SMOTE is
based on this, but only safe samples (A, B are the same class) are selected for the sample
synthesis. In this paper, a new 240 landslide points were generated; (3) 70% of the positive
and negative samples were chosen at random for training while the remaining 30% were
used for validation, respectively.

3.2. Multi-Collinearity Analysis

Multi-collinearity analysis is a prerequisite to test whether multi-dimensional factors
can be used simultaneously. In this paper, variance inflation factor (VIF) was selected as
the determination conditions:

VIF =
1

1− R2
j

(7)

where R2
j is determinable co-efficient of the auxiliary regression model of the explaining

factors Xj on the others. The closer the VIF is to 1, the weaker the multi-collinearity.
Experience shows that VIF ≥ 10 indicates severe multi-collinearity between the variables
and the remaining variables, and this multi-collinearity may overly affect the least squares
estimates. Tolerance is the inverse of VIF, which means that severe multi-collinearity exists
when Tolerance ≤ 0.1.
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3.3. DNN Model

DNN can be understood as neural networks with many hidden layers [57]. DNN
extends the simple perceptron by: (1) adding multi-layer hidden layers to enhance the
expressiveness of the model; (2) the output layer neurons can be more than one and
can have multiple outputs, so that the model can be flexibly applied to classification,
regression, dimensionality reduction and clustering, etc.; (3) the activation function can
be extended. The activation function of the perceptron is sign(z), which is simple but has
limited processing power, while the neural network generally uses Sigmoid, tanh, ReLU,
softplus, softmax, etc., to add nonlinear factors, which can improve the expressiveness of
the model. The structure of the DNN constructed in this paper is shown as Figure 5.
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3.4. RNN Model

RNN is a special neural network structure that not only considers the input at the
previous moment, but also creates a “memory” of the previous content. In other words, the
present output is correlated with the preceding output as well [58]. The specific expression
is that the network remembers the prior information and applies them in the computation
of the present export, which means that the nodes between the hidden layers are no longer
connectionless but connected, and the input of the hidden layers also contains the output of
the hidden layers in the preceding moment. Based on this property, RNNs are commonly
used in speech recognition research [59]. Figure 6 shows the layer unfolding of the hidden
layers of the RNN model.
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t− 1, t, t + 1 denote the time series. x denotes the input sample, ht denotes the hidden
state vector at time t, St denotes the memory of the sample at time t,
St = f (W × St−1 + U × xt). W denotes the weight of the input sample, U denotes
the weight of the input sample at this moment, and V denotes the weight of the output
sample. When t = 1, the general initialization input S0 = 0, random initialization W, U, V,
and proceed to the following Equation:

h1 = Ux1 + Ws0

s1 = f (h1)

o1 = g(Vs1)

(8)

where, f (x) and g(x) are both activation functions, f (x) can be Tanh, Relu, Sigmoid and
other activation functions, g(x) is usually used by Softmax. and so on, the final output
value can be obtained as:

ht = Ux1 + Wst−1

st = f (ht)

ot = g(Vst)

(9)

There are various variants of RNN models that may have surpassed performance of the
basic RNN model [40,60,61]. However, since this paper aims to compare the applications
of different typical neural network models, the basic RNN model was selected and the
default neurons in the hidden layer were set to 50, and the structure of the RNN model is
shown in Figure 7.
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3.5. CNN Model

CNN is essentially a multilayer perceptron proposed by Yann Lecun of New York
University in 1998 [62]. CNN is characterized by local connectivity and shared weights, which
decreases weight counts making this network easy to optimize, while reducing the model
sophistication, that is, risks for overfitting. The special feature of CNN construction is that
it has a unique convolutional layer and pooling layer. Convolutional layer is functioned to
extract features, in the convolution operation, a matrix of size F× F (F× 1 in one dimension) is
set, called the filter or convolution kernel, and the matrix size is receptive field. The interior
of the convolutional layer contains multiple convolutional kernels, and each element that
makes up the convolutional kernel is associated with a weight and a bias. Every neuron
within a convolutional layer is connected to several others near its position in the preceding
layer, and the region magnitude is determined by the receptive field. The convolution
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kernel works by regularly sweeping through the input features, multiplying and summing
matrix elements within the convolution kernel, and superimposing the bias. Then, the
exported feature graph is delivered into the pooling layer to be used for feature selection
and informational filtration. The pooling layer includes pre-defined pooling functions,
Max pooling and average sampling are the most common. It can replace the value for a
point within a feature map with the statistical value of the adjacent areas. The pooling
layer selects the pooling region at the identical manner as the convolutional kernel scans
the feature map, determined by the padding, size of pooling and step. The pooling layer is
equivalent to converting a higher resolution image into a lower resolution image, it also
reduces the node count in the final fully connected layer, thus reducing parameters of the
entire neural network and hence decreases overfitting risk. The fully connected layer is the
final component of the CNN hidden layer, which equals the hidden layer in a classical feed-
forward ANN model. The fully connected layer is responsible for transmitting information
to the output layer where the feature maps will lose their spatial topologies, be extended as
vectors, and passed through the activation function. As the most excellent and popular
neural network model in latest decade, CNN was extensively adopted for various fields,
especially image recognition [63,64].

For LSA, based on the influence factor rank of each pixel, each sample can be made
into a 17 × 1 array format as the input layer, therefore, in this paper, a one-dimensional
CNN, which is often applied to the data processing of sequence class, was used to construct
the model. The specific CNN structure is shown in Figure 8. This structure is referred to
the one-dimensional CNN presented by Wang et al. [41]. The input layer is the dimension
n of the factor, which is 17 × 1, the initial value of the convolution kernel m is set to 3,
and N feature vectors of length (n−m + 1) are obtained, with N set to 20. The size of the
maximum pooling layer is a × 1, and the initial value of a is set to 2. The result consists of
N vectors of length (n−m + 1)/a. Then, a fully connected layer with 50 neuron units is
set up for the extracted features. Finally, we set 2 neurons in the output layer to achieve the
problem of binary classification.
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3.6. TPE Optimization

Hyperparameter optimization has been extremely important for machine learning
models, especially for neural network models which are typically black box models [65].
Since it cannot intervene during model training, tuning hyperparameters before the model
runs formally becomes an important means to enable the improvement of model precision.
From the initial manual tuning to the later evolution of grid and random search, it was very
time consuming and inefficient [54]. Based on the idea of accuracy and efficiency, many



Remote Sens. 2021, 13, 4694 16 of 31

methods for automatic tuning of parameters were later generated. Bayesian optimization
is a function minimization method using a model to find the value that minimizes the
objective function [66]. It is highly performant and very time-efficient since it refers to the
previous evaluation results when trying the next set of hyperparameters.

TPE is a Bayesian optimization algorithm proposed by [67], to learn hyperparameter
models using the Gaussian Mixture Model. Firstly, the concept of conditional probability from
Bayes theory is introduced. p(x|y) is the conditional probability that the hyperparameter is
x when the model loss is y. In the first step, we select a threshold y∗ for the loss based on
the available data, e.g., according to the median. Two probability densities `(x) and g(x) are
learned for data greater than the threshold and less than the threshold, respectively.

p(x|y) =
{

`(x) i f y < y∗

g(x) i f y ≥ y∗
(10)

where `(x) is the density formed by using the observations
{

x(i)
}

such that corresponding loss

f
(

x(i)
)

was less than y∗ and g(x) is the density formed by using the remaining observations.
The parametrization of p(x, y) as p(y)p(x|y) in the TPE algorithm was chosen to

facilitate the optimization of Expected Improvement (EI).

EIy∗(x) =
∫ y∗

−∞
(y∗ − y)p(y | x)dy =

∫ y∗

−∞
(y∗ − y)

p(x | y)p(y)
p(x)

dy (11)

By construction, γ = p(y < y∗), and p(x) =
∫
R p(x | y)p(y)dy = γ`(x)+ (1− γ)g(x),∫ y∗

−∞
(y∗ − y)p(x | y)p(y)dy = `(x)

∫ y∗

−∞
(y∗ − y)p(y)dy = γy∗`(x)− `(x)

∫ y∗

−∞
p(y)dy (12)

The final EIy∗(x) can be expressed as:

EIy∗(x) =
γy∗`(x)− `(x)

∫ y∗
−∞ p(y)dy

γ`(x) + (1− γ)g(x)
∝
(

γ +
g(x)
`(x)

(1− γ)

)−1
(13)

Therefore, we can minimize g(x)/`(x) to get a new x∗, then put x∗ back into the
function and iterate again to fit `(x) and g(x), keep minimizing g(x)/`(x) until we reach
the predetermined number of iterations, and finally complete the optimization of the hy-
perparameters.

In this paper, we used the Hyperopt library in python 3.7 environment to complete
the TPE optimization. There are four main components of TPE optimization: (1) objective
function: we select the loss of the model using the set of hyperparameters on the validation
set; (2) domain space: that is, the search range of the hyperparameters; (3) optimization
algorithm: that is, the TPE algorithm; and (4) the result record. In these four items,
the objective function and optimization algorithm have been determined. Additionally,
the domain space is another important part of TPE optimization. The basic principle of
choosing the search space is scientific and efficient, the space range should not be too
large or too small. Too small optimization effect is not obvious, too large is easy to cause
overfitting and long computing time and other problems. The domain space selected in
this paper is based on the above principles and related research.

For the selection of parameters, although there are many parameters of neural network
models, many of them are nested in their selected activation functions, and the default values
of these parameters can be chosen, which have little impact on model optimization and are
generally not considered in Bayesian optimization. Only hyperparameters that directly affect
the structure and operation of the network, such as the number of neurons, dropout rate,
convolutional kernel size, and class of activation function, are selected for adjustment.
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The hyperparameters of DNN and RNN are the same, but there is a difference in the
“units”, which refers to the neuron count of the two fully connected layers in DNN, and
the neuron count of the hidden layer in the RNN model. Dropout rate is an important way
to reduce overfitting in neural network models, especially when the training samples are
small [68]. “batch size” is the number of samples selected for training at one time, and is a
means of batch processing of neural networks, which can greatly improve the learning effi-
ciency by processing samples in batches, especially for large-scale samples. If “batch size”
increases, the gradient becomes accurate, and after a certain degree, it is useless to increase
the “Batch Size”. “Epoch” refers to the number of times all samples in a neural network
model are trained, the more epochs, the more adequate, but too many epochs also tend to
cause overfitting. Therefore, we set the initial values of “batch size” and “epoch” of DNN
and RNN to 50, while the domain space is 10–100. The essence of machine learning training
is in minimizing the loss, and after we define the loss function, we need the optimizer to
perform the gradient optimization, and the goal of optimization is the loss value θ in the
network model. In this paper, the most common optimizer algorithm Adaptive Moment
Estimate (Adam) was chosen as the initial value, and introduced Adamax, Stochastic
Gradient Descent (SGD), Root Mean Square Prop (RMSProp), Adaptive gradient algorithm
(Adagred), Adadelta, Nesterov-accelerated Adaptive Moment Estimation (Nadam) as the
domain space of the optimization algorithm in the process of TPE optimization. Each
optimization algorithm has its own advantages and disadvantages, so TPE optimization is
needed to search and find the optimal algorithm.

The hyperparameters of CNN model are more complicated than DNN and RNN.
Firstly, the number of convolutional kernels “Filter” is also the number of convolutional
layer feature map, the initial value is set to 20, and the domain space is 10–100. The “Kernels
size” is the size of the convolution kernel, and we set the search range from 1 to 9, and the
domain space of “pooling size” from 2 to 5. In addition, “Units”, “Dropout rate”, “Epoch”,
and “Optimizers” take the same range of values as DNN.

The initial values of hyperparameters and their domain spaces for each model to
perform TPE optimization are shown in Table 2.

Table 2. Hyperparameters of TPE optimization and their initial values and domain space of DNN, CNN, and RNN models.

Model Hyperparameter Initial Value Domain Space

DNN

Units 35 [10, 100]
Dropout rate 0 [0, 0.50]

Batch size 1 [1, 100]
Epoch 50 [10, 100]

Optimizers Adam [Adam, Adamax, Sgd, Rmsprop,
Adagrad, Adadelta, Nadam]

RNN

Units 50 [10, 100]
Dropout rate 0 [0, 0.50]

Batch size 1 [1, 100]
Epoch 50 [10, 100]

Optimizers Adam [Adam, Adamax, Sgd, Rmsprop,
Adagrad, Adadelta, Nadam]

CNN

Fitters 20 [10, 100]
Kernel size 3 [1, 10]
Pooling size 2 [1, 10]

Units 50 [10, 100]
Dropout rate 0 [0, 0.50]

Epoch 100 [10, 200]

Optimizers Adam [Adam, Adamax, Sgd, Rmsprop,
Adagrad, Adadelta, Nadam]
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3.7. Model Validation Methods

The goodness of the model needs to be judged by evaluating. In this paper, for
the binary classification problem of whether it is a landslide or not, various validation
methods were used from different perspectives. First, the most basic method is the Accuracy,
as well as the Precision and Recall values for validating positive and negative samples,
respectively [69]. Second, there are validation methods for binary classification problems
such as F-value, MCC, and Kappa coefficient [49,70]. The third is the most common and
visualized ROC curve, which evaluates model merit by measuring the area under the curve
(AUC) [71,72]. Finally, SCAI was used to analyze the percentage of each class and the
proportion of historical landslide points in each class [73]. The formulae for each of the
above evaluation methods are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 = 2× Precision× Recall
Precision + Recall

(17)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(18)

Pa =
TP + TN

TP + TN + FN + FP
(19)

Pexp =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)√

(TP + TN + FN + FP)
(20)

Kappa =
Pa − Pexp

1− Pexp
(21)

where TP, FP, TN, and FN are true positive, false positive, true negative, and false negative,
respectively.

The value domain of Accuracy, Precision, Recall, and F-value is from 0 to 1, and a
greater value results in stronger performance. For MCC and Kappa coefficient, the results
are between −1 and 1, and again, larger value means better.

The ROC is drawn according to the “Sensitivity” and the “1-Specificity” [74]:

Sensitivity =
TP

TP + FN
(22)

Speci f icity =
TN

TN + FP
(23)

The value domain of AUC ranges from 0.5 to 1, and the better performance is reflected
by higher values [75].

The SCAI is calculated by the following Equation:

SCAIi =
PA

PHGP
(24)

where, i is the landslides susceptibility class, PA is percent for each class, and PHGP is the
proportion of historical landslide points in that class to total points. This method can show
the density of historical landslide points in each class. The higher classes should have
lower SCAI values.



Remote Sens. 2021, 13, 4694 19 of 31

4. Results
4.1. Factors Multi-Collinearity Analysis and Importance

The collinearity analysis between these influencing factors at 95% confidence level
is illustrated in Table 3. The results indicate that no multicollinearity relationship existed
among factors (all the VIF values were below 7). That means the selected 17 factors can be
adopted simultaneously for these neural network models.

Table 3. Multi-collinearity analysis results of explanatory variables.

Explanatory Variable
Multi-Collinearity Statistics

VIF Tolerance

Lithology 1.533 0.652
Geological age 1.234 0.810

Faults 1.666 0.600
Elevation 1.775 0.563

Slope 2.911 0.343
Aspect 1.078 0.928

Plan curvature 1.502 0.666
Profile curvature 1.483 0.674

Land cover 1.249 0.801
NDVI 1.193 0.838
Roads 1.122 0.891
Rivers 1.150 0.869
AAP 1.864 0.537
SPI 6.085 0.164
STI 5.132 0.195
TRI 3.257 0.307
TWI 4.802 0.208

The neural networks are black-box models, the factors importance ranking cannot
be performed by them. Therefore, we input the training set into the RF model for the
analysis of factor importance study. Figure 9 shows the radar plot of factor importance,
the importance value of elevation is much more than other factors that means elevation
is highest priority for development of landslides. As the most important trigger factor
for landslides in the study area, APP has an importance of more than 0.7, second only to
elevation. Plan curvature and NDVI are the third tier (importance value > 0.6), while the
distance to rivers and SPI have little effect on landslides (importance value < 0.4).
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4.2. The Optimization Process of TPE

The principle of TPE optimization is to continuously loop through searching for the
minimum objective function value, therefore, this paper iterates with accuracy as the
return value of TPE optimization for 500 iterations, and its optimization process is shown
in Figure 10. The minimum return value of DNN is −0.7535, which is generated after
367 iterations, while the initial return value of RNN is the largest and converges to −0.7604
after 258 iterations, and the return value of CNN is the smallest, reaching −0.7708 after
358 iterations. Overall, CNN has the best TPE optimization effect, and RNN and DNN
have similar effects. If combined with the analysis of optimized initial values, RNN is
slightly better than DNN.
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Table 4 shows the hyperparameter results of TPE optimization for the three neural
network models. The optimization results of DNN and RNN are very similar, including
the neurons (units) in the hidden layer, dropout rate, batch size, and only the epoch values
are different. Moreover, Adam algorithm is the best optimizer in DNN and RNN, which
proves its universality to some extent. For the CNN, the kernel size is increased to 6 and
the RMSProp algorithm is chosen for the optimizer, which ensures less oscillation in the
return value during optimization and also makes the network function converge faster.

Table 4. The TPE optimization result of hyperparameters in the DNN, CNN, and RNN models.

Model Hyperparameter Initial Value TPE Optimization Result

DNN

Units 35 96
Dropout rate 0 0.395

Batch size 1 38
Epoch 50 42

Optimizers Adam Adam

RNN

Units 50 95
Dropout rate 0 0.357

Batch size 1 42
Epoch 50 69

Optimizers Adam Adam

CNN

Fitters 20 20
Kernel size 3 6
Pooling size 2 2

Units 50 69
Dropout rate 0 0.177

Epoch 100 177
Optimizers Adam RmsProp
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4.3. Landslide Susceptibility Assessment and Mapping

In this study, three typical neural network models were constructed using the Keras
library (Version 2.3.1) in Python 3.7 environment. Keras is a high-level API for TensorFlow 2
that facilitates machine learning especially deep learning through easy operation [76].
The different models constructed based on the training set predicted the probability of
occurrence of landslides (i.e., susceptibility) for each pixel in the study area, respectively.
Coupled with MATLAB 2018b and ArcGIS 10.6 softwires, we plotted the LSMs thus
visualizing the spatiality for susceptibility. For better visualization of LSMs, they were
reclassified via NBM to 5 levels (Figure 11).
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The distributions of high susceptibility areas of different models are similar, all of
them are near faults, and the lithology is mostly claystone, sandstone, and basalt, while for
the topography, the greater the slope, the higher the probability of landslide occurrence. In
terms of elevation, high susceptibility areas are mostly concentrated in mid-high elevation
areas rather than in very high elevation areas. The main reason is that human activities in
this elevation range may change the surrounding geological environment and thus affect
the occurrence of landslides, which matched the actual situation with high reliability of
the results. For lithology, limestone and dolomite are dense and hard blocky rocks, which
are brittle and have great shear strength and can withstand large shear forces without
deformation, while claystone, mudstone, and basalt have much clay or gravel soil, which
have plasticity and relatively low shear strength and are easily deformed and landslides
occur. For the slope, the greater the slope, the greater the potential energy of the landslides,
the higher the sliding speed, and the landslides are more likely to occur induced by
external forces. The results will provide an important reference for the zoning of landslide
susceptibility and the setting of disaster prevention policies in Shuicheng County.

To facilitate comparison between models, we calculated PA and PHGP in each LSM, which
is the most important step required to calculate SCAI values, as shown in Figure 12. For the
DNN model, the area share of each class is very close, but the distribution of landslide
points is obviously concentrated in the high-class area. The TPE optimization did not
change the structure of the distribution of each class in the DNN model, but the number
of landslide points in the “very high” class increases, which can reflect the optimization
effect of TPE. For RNN, the grade distribution is U-shaped, with “very low” and “very
high” accounting for 32.79% and 21.83%, respectively, and after TPE optimization, the
percentage of “very low” reached 52.43%. Meanwhile, the “very high” class of RNN has
the highest PHGP (47.08%), which decreases after TPE optimization, but the “high” class
has a significantly higher PHGP. The rank distribution of PA in CNN models decreases from
“very low” to “very high”, with “very high” accounting for nearly half (46.55%), and the
CNN has the worst performance for PHGP results. By TPE optimization, the percentage
of extreme classes is significantly increased, while the PHGP of high-class regions was
increased and low and medium classes were decreased, which indicates that the TPE
algorithm has good effect on the optimization of the CNN model.
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4.4. Model Validation and Comparison

Properties and applicability of these models need to be validated and evaluated by
different perspectives and methods. Table 5 displays validation results for different models.
The Accuracy values of the models in descending order is DNN_TPE, CNN_TPE, CNN,
RNN, DNN, RNN_TPE, which indicates that the TPE algorithm significantly optimizes the
accuracies of DNN and CNN models, but has no effect on RNN. Differentiated into Precision
and Recall analysis, TPE optimization significantly improves the performance of three typical
neural network models for the correct rate of positive sample prediction according to the
metric “Precision”. For the ability to capture positive samples represented by Recall values,
RNN has an obvious advantage over other models, but TPE optimization has a significant
negative effect on RNN, while the other two models are improved. Moreover, F1 focuses on
the balance of Precision and Recall, it can be obtained that RNN and TPE optimized DNN
models are better for positive samples, while CNN model is the worst. MCC and Kappa
coefficient are all indicators of the comprehensive performance of the model. Additionally,
the MCC and Kappa coefficients are closer to the judgment of Accuracy.

Table 5. Model validation results using multiple methods.

DNN DNN_TPE RNN RNN_TPE CNN CNN_TPE

Accuracy 0.715 0.743 0.719 0.712 0.722 0.733
Precision 0.701 0.733 0.676 0.697 0.735 0.745

Recall 0.750 0.764 0.840 0.750 0.694 0.708
F1 0.725 0.748 0.749 0.722 0.714 0.726

MCC 0.432 0.487 0.451 0.425 0.445 0.466
Kappa 0.431 0.486 0.438 0.424 0.444 0.465

Figure 13 illustrates six ROC curves for these models. The AUC value of RNN is much
higher than the similar values of DNN and CNN. Whereas after TPE optimization, the
AUC of RNN_TPE in turn has a slight decrease, the performance of both DNN_TPE and
CNN_TPE improves, especially DNN, by 4.6%. This also shows the optimization effect
of TPE in the DNN and CNN models, especially the DNN model, but does not have the
desired effect on the RNN model.
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Table 6 presents the SCAI value of three typical neural network models before and
after TPE optimization. Overall, different models show a trend of lower values for higher
classes, with DNN and RNN models performing better for lower classes, while for higher
classes, each model has good performance, especially the CNN model. TPE optimization’s
advantage is not obvious in the determination of SCAI values results, which may be caused
by the difference in the ranking of different prediction results.

Table 6. The SCAI results of three typical neural network models before and after TPE optimization.

Class

SCAI Model

DNN DNN_TPE RNN RNN_TPE CNN CNN_TPE

Very low 3.3079 2.3431 2.7134 2.6216 1.9600 1.8397
Low 1.5043 1.6599 1.6960 0.9992 1.0252 1.0706

Medium 1.0784 1.2582 1.4446 0.5926 1.0597 0.8669
High 0.7650 0.9212 0.7055 0.6436 0.5241 0.5801

Very high 0.5022 0.4431 0.4636 0.4650 0.3882 0.4871

5. Discussion

Up to now, many scholars have conducted studies on LSA by using different meth-
ods and comparing the strengths and weaknesses between models [77–79]. This paper
aims to provide an introduction for application and comparison of three typical neural
network models (DNN, RNN, CNN) in LSA, and to optimize their hyperparameters
using TPE algorithm in order to get better prediction accuracy and performance. Before
training of these models, for the preparation of the sample set, due to the insufficient
number of positive samples, this study proposed to use the hybrid ensemble oversam-
pling and undersampling techniques, doubling the positive samples and matching an
equal number of negative samples to meet the need for sample balancing. Then, the
multiple collinearity analysis was performed on the influencing factors, which proved
that the 17 factors were independent of each other and could be input into the mod-



Remote Sens. 2021, 13, 4694 25 of 31

els simultaneously. In addition, the RF model was introduced to compare the factors
importance, and the LSM generated by combining multiple models, it is obvious that
the high-susceptibility regions mostly distributed in bands along fault zones, and the
influence of elevation on landslides is much higher than other factors. As the main
predisposing factor leading to landslides in the study area, the importance of AAP is
second only to elevation, which means that the hydrological conditions of geotechnical
bodies cannot be ignored in the occurrence of landslides. Combined with LSMs analysis,
the high susceptibility area is mainly concentrated near the faults, which is the structure
where the strata or rock body is significantly displaced along the rupture surface, and the
slope near the fault is also high, and the results are consistent with the actual landslide
patterns. More high susceptibility areas are in claystone, sandstone, and basalt, which
is also consistent with our statistics on the actual lithologies that are more prone to
geological hazards. The local authorities should also propose appropriate policies based
on the results of LSMs to focus on the protection of high susceptibility areas and to
restrict their development works and activities. The discussion on the importance of
factors can also provide help and reference for the forecasting and early warning of
landslides for related departments.

Due to the black-box property of neural network models, it is impossible to intervene
in the model operations, tuning hyperparameters in the preparation phase of the model is
an important tool to improve the model performance. In this paper, the TPE algorithm was
used to optimize the hyperparameters, combining the optimization results (Table 4) with
the validation results of the models (Table 5 and Figure 13). For DNN, it directly passes
the input layer data to the hidden layers and finally outputs the results, while in CNN,
after convolution and pooling, the data is then passed through the fully connected layer,
and although the accuracy is similar to DNN, the results show polarization, i.e., the model
does have higher confidence in the prediction result. As for the RNN model, its complex
recurrent structure of the hidden layer can make full use of the data information, and
the performance is also the best. For TPE optimization, the number of samples input to
the model in each iteration is controlled by increasing the batch size, but the epochs do
not need to increase with it, which may still be influenced by the small sample size. The
increase of neurons improves the model accuracy, but also sets a higher dropout rate for
reducing overfitting, and for the choice of optimizer, the robustness of the Adam algorithm
can be proved. In fact, the TPE optimization result of RNN is very similar to DNN, but the
optimization effect of RNN is not improved as we expect, and the RNN is also the earliest
convergence in the optimization process, which may also be a performance that cannot be
effectively optimized (Figure 10), probably because the TPE optimization is not applicable
to the complex, recurrent hidden layer structure in the RNN model. For CNN, its unique
hyperparameters in which the kernel size increases from 3 to 6, as the convolutional kernel
size increases, the receptive field increases and better features are obtained, which does
not cause a large computational effort to the extent that it takes too long due to the small
amount of computation. For the fully connected layer, the increase in neurons is small,
and the overall number of epochs increases while the risk of overfitting is reduced by
increasing the dropout rate, and the optimizer is replaced with RMSProp, this allows for
less oscillation of the return value during optimization. The assessment effect of CNN
model is also greatly enhanced by tuning the parameters.

The LSM produced by each model was combined and the statistical results of
each class compared (Figures 11 and 12). Overall, the spatial distribution of classes for
the three typical neural network models is similar, but the proportion of each class is
significantly different. The DNN model is basically all divided into quintiles, and the PA
values are also decreasing from higher to lower classes; the class distribution of RNN
shows a slight polarization, while the distribution of PA is better; for CNN, the very
low susceptibility class accounts for nearly 50%. The accuracy of DNN and CNN is
similar by multiple methods verification, while RNN is the best (AUC = 0.793), which
indicates that the recurrent structure of RNN can fully utilize the sample information
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for operation. After TPE optimization, the class structure of DNN and CNN did not
change much, but the distribution of PAs was more reasonable. In addition, The TPE
optimization significantly improves the accuracy of the DNN and CNN (3.92% and
1.52%, respectively), and the AUC values of these two models improved by 4.62%
and 1.99%, respectively, the performance was significantly improved for both models,
especially for the DNN model, which demonstrated the optimization effect of TPE in the
DNN and CNN models. For RNN, the TPE optimization makes the polarization of the
susceptibility values more significant, but the distribution of PA becomes worse, so that
the overall capability is not improved.

Compared with research of LSMs constructed by other methods, the accuracy of the
DNN_TPE or RNN models is higher than frequency ratio (AUC = 0.75), weight of evidence
(AUC = 0.76) [16], and LR (accuracy = 0.742, AUC = 0.79) [31], similar to the CNN model pro-
posed by [41] (accuracy = 0.742, AUC = 0.80), but lower than the RNN model (accuracy = 0.762,
AUC = 0.843) [40]. The reason for the difference in model accuracy with similar architec-
ture is that the data input to each model is different, including sample size, selection of
factors, etc., and cannot be directly compared. In comparison with our previous related study
in Shuicheng County [36,46], the AUC value of the DNN_TPE or RNN models is higher than
Bayesian network (AUC = 0.785), close to gradient boosting decision tree (AUC = 0.796), but lower
than the RF model (AUC = 0.845). This result is similar to the findings of [27], although the
neural network models are more advanced, the tree structured model performs better for
one-dimensional data processing and classification. In addition, it may also be due to the
neural network models requiring too many parameters to tune, which limits the accuracy
of the model. Integrating the above discussion, we trained and validated all three models
before and after the optimization in order to reflect the effect of TPE optimization and
better reflect the significance of TPE optimization. The assessment framework proposed
in this paper satisfies the need for accuracy, can provide guidance for disaster prevention
and control, and also provides new methods and optimization strategies for LSA research,
which has certain practical and theoretical significance.

Figure 14 plots variation curves of the accuracy and loss function values for the training
and validation sets during the epochs of the six model runs. Since the purpose of model
fitting is to continuously search for the minimum value of the loss function of training
set, the training set loss and accuracy of each model are monotonically decreasing and
increasing respectively with the iterative process, so we need more to observe the changes
in the validation set. The accuracy of validation set of DNN_TPE has a higher decreasing
slope in the initial stage than DNN, indicating that TPE optimization has a very intuitive
effect on the simple fully connected layer structure. For RNN, the TPE optimization has
little effect on the accuracy of the validation set, but the loss value becomes more volatile
and rises with the epoch increases, which has generated the risk of overfitting, and the TPE
optimization does not produce the expected effect. In fact, CNN_TPE also has the risk of
overfitting, which may be caused by the small number of samples, but it can be clearly seen
that the accuracy of the validation set significantly improved, and the LSA generated by
CNN_TPE meets the requirement of accuracy from the perspective of the actual results and
the distribution of historical landslide points. Reducing overfitting is still a problem that
needs to be solved in future research and means such as reducing the epoch or increasing
the dropout rate can be considered.
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6. Conclusions

Landslides pose a constant threat to the lives and property of mountain people and
may also cause geomorphological destruction such as soil and water loss, vegetation de-
struction, and land cover change. The work on the assessment of landslide susceptibility is
particularly important. The main purpose of this paper was to introduce TPE algorithm
for hyperparameter optimization of three typical neural network models for landslide
susceptibility assessment in Shuicheng County, China, as an example, and to compare
the differences of predictive ability among the models in order to achieve higher applica-
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tion performance, and the susceptibility assessment was carried out by extracting LSM.
First, 17 influencing factors of landslide multiple data sources were selected for spatial
prediction. For the problem of imbalanced sample and small sample size, hybrid ensemble
oversampling and undersampling approaches were used to double the sample size and
randomly split into training and validation sets. Multi-collinearity analysis was carried
out for influencing factors, and RF model was used to perform factor importance ranking.
Second, DNN, RNN, and CNN models were adopted to predict the regional landslides
susceptibility, and the TPE algorithm was used to optimize the hyperparameters, respec-
tively, to improve the assessment capacity. Finally, to compare and validate the predictive
performance of the models, several objective measures of the Accuracy, Precision, Recall,
F-value, MCC, Kappa value, ROC curve, and SCAI were used for evaluation. The results
show that the high-susceptibility regions mostly distributed in bands along fault zones,
where the lithology is mostly claystone, sandstone, and basalt. The selected 17 factors have
no co-linearity problems, and elevation has the strongest influence on landslides, followed
by precipitation. The DNN, RNN and CNN models all perform well in LSM, especially
the RNN model, which has an AUC value of 0.793. The TPE optimization significantly
improves the accuracy of the CNN and DNN but does not improve the performance of the
RNN. In summary, our proposed RNN model and TPE-optimized DNN and CNN model
have robust predictive capability for landslide susceptibility in the study area and can also
be applied to other areas containing similar geological conditions. In future research, the
application of TPE optimization to different neural network models and their related vari-
ants can be further improved, and the evaluation performance among different machine
learning models can be compared and analyzed to a greater extent.

Author Contributions: Conceptualization, G.R.; data curation, G.R. and Y.Z.; formal analysis, G.R.
and K.L.; funding acquisition, J.Z. and T.L.; methodology, G.R. and Y.S.; writing—original draft, G.R.;
writing—review and editing, Z.T. and X.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (2018YFC1508804), the Key Scientific and Technology Program of Jilin Province (20170204035SF),
the Key Scientific and Technology Research and Development Program of Jilin Province (20180201033SF),
the Key Scientific and Technology Research and Development Program of Jilin Province (20180201035SF),
and the National Natural Science Fund for Young Scholars of China (41907238).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The codes and data for this article can be freely available at https:
//github.com/ronggz728/DNN_RNN_CNN_TPE (accessed on 27 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [CrossRef]
2. Zhu, A.; Miao, Y.; Yang, L.; Bai, S.; Liu, J.; Hong, H. Comparison of the presence-only method and presence-absence method in

landslide susceptibility mapping. Catena 2018, 171, 222–233. [CrossRef]
3. Zhang, Y.; Zhang, J. Study on Risk Assessment, Early Warning and Management of Geological Disasters Caused by Extreme Rainfall—A

Case Study of Southeastern Mountains in Jilin Province, 1st ed.; Science Press: Beijing, China, 2017; p. 1. (In Chinese)
4. Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al.

Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Rev. Geophys. 2019, 57, 421–503. [CrossRef]
5. Gao, Z.; Ding, M.; Huang, T.; Hu, X. Geohazard vulnerability assessment in Qiaojia seismic zones, SW China. Int. J. Disaster Risk

Reduct. 2021, 52, 101928. [CrossRef]
6. Zhang, F.; Peng, J.; Huang, X.; Lan, H. Hazard assessment and mitigation of non-seismically fatal landslides in China. Nat.

Hazards 2021, 106, 785–804. [CrossRef]
7. Lin, Q.; Lima, P.; Steger, S.; Glade, T.; Jiang, T.; Zhang, J.; Liu, T.; Wang, Y. National-scale data-driven rainfall induced landslide

susceptibility mapping for China by accounting for incomplete landslide data. Geosci. Front. 2021, 12, 101248. [CrossRef]

https://github.com/ronggz728/DNN_RNN_CNN_TPE
https://github.com/ronggz728/DNN_RNN_CNN_TPE
http://doi.org/10.1130/G33217.1
http://doi.org/10.1016/j.catena.2018.07.012
http://doi.org/10.1029/2018RG000626
http://doi.org/10.1016/j.ijdrr.2020.101928
http://doi.org/10.1007/s11069-020-04491-x
http://doi.org/10.1016/j.gsf.2021.101248


Remote Sens. 2021, 13, 4694 29 of 31

8. Pereira, S.; Santos, P.P.; Zêzere, J.L.; Tavares, A.O.; Garcia, R.A.C.; Oliveira, S.C. A landslide risk index for municipal land use
planning in Portugal. Sci. Total Environ. 2020, 735, 139463. [CrossRef]

9. Thi Ngo, P.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of deep learning
algorithms for national scale landslide susceptibility mapping of Iran. Geosci. Front. 2021, 12, 505–519. [CrossRef]

10. Smith, H.G.; Spiekermann, R.; Betts, H.; Neverman, A.J. Comparing methods of landslide data acquisition and susceptibility
modelling: Examples from New Zealand. Geomorphology 2021, 381, 107660. [CrossRef]

11. He, Q.; Wang, M.; Liu, K. Rapidly assessing earthquake-induced landslide susceptibility on a global scale using random forest.
Geomorphology 2021, 391, 107889. [CrossRef]

12. Jia, G.; Alvioli, M.; Gariano, S.L.; Marchesini, I.; Guzzetti, F.; Tang, Q. A global landslide non-susceptibility map. Geomorphology
2021, 389, 107804. [CrossRef]

13. Bălteanu, D.; Micu, M.; Jurchescu, M.; Malet, J.; Sima, M.; Kucsicsa, G.; Dumitrică, C.; Petrea, D.; Mărgărint, M.C.; Bilaşco, Ş.; et al.
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