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Abstract: A novel method for retrieving the moments of rain drop size distribution (DSD) from the
dual-frequency precipitation radar (DPR) onboard the global precipitation mission satellite (GPM)
is presented. The method involves the estimation of two chosen reference moments from two
specific DPR products, namely the attenuation-corrected Ku-band radar reflectivity and (if made
available) the specific attenuation at Ka-band. The reference moments are then combined with a
function representing the underlying shape of the DSD based on the generalized gamma model.
Simulations are performed to quantify the algorithm errors. The performance of methodology is
assessed with two GPM-DPR overpass cases over disdrometer sites, one in Huntsville, Alabama and
one in Delmarva peninsula, Virginia, both in the US. Results are promising and indicate that it is
feasible to estimate DSD moments directly from DPR-based quantities.

Keywords: raindrop size distributions; retrieval of moments; dual-frequency precipitation radar;
global precipitation mission

1. Introduction

The global precipitation measurement (GPM) core satellite hosts the dual-frequency
precipitation radar (DPR), which is the first spaceborne radar operating at Ku- and Ka-
bands for precipitation mapping [1]. The dual-frequency radar measurements [2] provide
a more complete depiction of precipitation globally (±65 degree latitude; [3,4]). The
DPR also facilitates better estimates of the two main parameters governing the drop size
distributions (DSDs), namely the mass-weighted mean diameter (Dm) and the normalized
intercept parameter (NW) [5,6]. The DPR precipitation retrieval algorithm [7] employs the
normalized representation of the drop size distribution based on the gamma distribution
with shape parameter fixed (µ = 3) and uses a rather complex adjustment parameter to
estimate the DSD and precipitation rate [8].

A number of recent studies have analyzed the statistics of [Dm, NW] from the DPR and
compared these with similar statistics from a diverse network of ground-based polarimetric
radars [9] and surface disdrometers on a seasonal or global scale [10,11]. On the global
scale, the higher rain rate (>8–10 mm/h) DSD parameters [Dm, NW] are consistent with
disdrometer data from continental convection, deep oceanic convection, and oceanic shal-
low rain. However, on a seasonal basis, the NW estimate is not consistent with disdrometer
data [10]. Such statistical comparisons have to encompass many years of data to overcome
the “snapshot” view from DPR over a footprint of 5 km × 5 km versus nearly continuous
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DSD measurements from disdrometers (often termed as “point” measurements). Nev-
ertheless, there is much to be gained from overpasses of the GPM satellite over ground
disdrometers, as demonstrated herein using the scaled normalized form of N(D). The
caveat is that only low numbers of DPR pixels (the sensitivity limits the reflectivity at Ku
and Ka-bands to ~10 dBZ [12]) are typically available from a single overpass.

Compared to satellite algorithms, dual-frequency ground-based radars have a long
history that dates to early 1970s, when S- and X-band radars with matched beams were
mounted on the same pedestal to observe precipitation [13]. This seminal article [13]
develops an algorithm to estimate the range-resolved specific attenuation at X-band using
the path integrated attenuation (PIA) as a constraint and a k-Z power law, where Z is
the radar reflectivity and k is the specific attenuation. This algorithm works “backwards”
from the last range gate and computes the coefficient of the k-Z power law for each beam
assuming a fixed exponent based on DSD scattering simulations. The methodology in [13]
is in fact the precursor for many of the radar algorithms developed for TRMM and GPM
for attenuation correction [14–16].

The (S, Ka-band) dual-frequencies have been used to retrieve liquid water content
using the methodology in [13], e.g., see [17]. The latter reference [17] also introduces the
“radar estimated size”, which is not dependent on the shape of the DSD; rather, it is the ratio
of moments that are closest to Z and Ka-band attenuation, i.e., (M6/M3)1/3, where M6 and
M3 represent the sixth and the third moments, respectively. It will become obvious later
that the concept of radar estimated size is a precursor to the characteristic diameter defined
in the generalized scaling-normalization framework of Lee et al. [18] (see Equation (5)
further down).

The near-linear relation of rainfall rate, R, with Ka-band specific attenuation, kKa, has
been clearly described in [19], where they show that kKa = 0.22 R1.04, with kKa in db/km
and R in mm/h from scattering simulations based on a small number (~200) of 1 min
DSDs measured by a Joss-Waldvogel disdrometer in Locarno, Switzerland. The relation
is not dependent on temperature of the drops, at least in the range 0 to 18 ◦C, but the
coefficient can change if the mean Dm of the DSDs used in the fitting is from a different
rain climatology. For example, the coefficient is about 30% smaller if DSDs from marine
stratocumulus drizzle (mean Dm is about 0.2 mm) are used in the fit process (not shown
here but see Figure 3a,b in [20].

The microphysical processes (warm rain) depend on M0 to M3 + b, where b is the
exponent of the fall-speed versus drop diameter, D, relation [21]. The M0 and M3 moments
are the prognostic variables in many two-moment bulk microphysical schemes (e.g., [22]),
but they are not accurate for predicting polarimetric variables such as the specific differ-
ential propagation phase, Kdp (M4.5), and the differential reflectivity, ZDR (M7/M6 [23]).
A three-moment scheme using [M0, M3 and M6] as the prognostic variables was developed
by [24], which resulted in substantial improvements (in predicting the spectral shape pa-
rameter µ of the gamma DSD) at the expense of increased complexity and computational
resources. Using a very large data base of measured distributions and an even larger
data base of DSDs from an explicit 1D simulation, which has all warm rain processes
included [25,26], showed that the three-moment combination [M2, M4 and M6] could be
used to compute all the other moments [M0, M1, M3, M5, M7] with minimal variance.
Their goal was to represent the microphysical processes without invoking a particular
form for the shape of the distribution. In a subsequent paper [27], they show that the
time derivative (tendency) of any moment could be expressed as the product of power
laws of the reference moments. An earlier publication [28] had shown how the tendency
of two- and three-moment reference moments could be simplified for some processes
such as evaporation and sedimentation when compared with a 1D explicit scheme. They
found that [M3, M6] gave the best overall accuracy for the aforementioned processes when
compared to an explicit scheme (however, they did not consider collisional processes).
Morrison et al. [27], on the other hand, give equations for collisional break-up as well
as coalescence (in addition to single-drop processes) but did not explicitly evaluate the
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[M3, M6] two-moment predictions. Thus, it is not clear if [M3, M6] is the “best” choice for
the prognostic moments when considering in general all warm rain processes.

The choice of reference moments will be limited to higher orders for both polarimetric
and dual-frequency radars. For dual-polarization radar algorithms, the physical basis
relies on the correlation between raindrop shape and size, while dual-wavelength weather
radar algorithms rely primarily on non-Rayleigh scattering at the shorter wavelength. The
equations for estimating parameters of the DSD are nearly identical in the presence of
attenuation [29].

Recently, retrieval of DSD moments from ground-based polarimetric radar measure-
ments has been evaluated using X-band data, with special emphasis on the prediction of
lower-order moments. Two examples are [30,31]. In both cases, the procedure initially
entailed the retrieval of two “reference” moments, in both cases [M3, M6], followed by
reconstructing the DSDs and calculating other moments assuming a specific function to
represent the underlying shape (denoted h(x), as explained in the next section). In [30],
the two reference moments are estimated using the co-polar reflectivity (Zh for horizontal
polarization), differential reflectivity (Zdr), and the specific differential propagation phase
(Kdp), whereas in [31], they are estimated using Zh, Zdr, and specific attenuation, Ah.

In this paper, we examine a conceptually similar approach for retrieving the DSD
moments from the DPR products. As with the polarimetric radar retrievals, we first
estimate two (chosen) reference moments [M3, M6]. Then, using the “most probable”
underlying shape function h(x), we determine other DSD moments. The methodology and
concepts are given in Section 2. Section 3 describes the DSD datasets and simulation results
to demonstrate which moments are the best reference moments and which DPR-based
quantities should be used to estimate those. Parameterization errors are quantified based
on “true” versus retrieved moments from our simulation results. In Section 4, we present
two GPM-DPR overpass cases and assess the accuracy of the retrievals, but noting an
important limitation, namely that one of the quantities needed for our proposed method is
not available as an official DPR product. Error sources are considered in Section 5, along
with some discussion of results, caveats, and conclusions.

2. Methodology and Concepts

The scaling normalization framework of Lee et al. [18] expresses any moment of the
DSD (inclusive of the lower order moments, M0–M2) in terms of the product of the power
laws of the chosen reference moments and the underlying function h(x) describing the
intrinsic shape of the DSD. The invariance of h(x) has been demonstrated in a number
of articles ([32,33] and Figure 2 in [20]). In compact notation, the DSD is expressed as
N(D) = N0

′ h(x), where (a) the intrinsic shape of the DSD, h(x) is a function of x, the
scaled diameter D/Dm

′, and (b) N0
′ is the normalized “intercept” parameter (see later in

Equations (4) and (5)).
The nth moment, Mn, of the DSD (units are mmn/m3) is given by:

Mn =
∫ ∞

0
N(D) Dn dD, (1)

where D is the equi-volume drop diameter, and N(D) is the drop concentration per unit
volume in the diameter interval D to D + δD. When n equals zero, i.e., the zeroth moment,
M0 will represent the total number of drops per unit volume. In remote sensing applications
at microwave frequencies, M3 will be related to specific attenuation, and M6 will be related
to the radar reflectivity, but in the non-Rayleigh scattering region, the relationships will
show more scatter depending on the frequency-band.

2.1. Exponential and Gamma Distributions

Characterization of the DSD dates back to the 1940s, with one of the most-quoted
references being that of Marshall and Palmer [34] who used manual DSD measurements in
stratiform rain and used an exponential distribution (with a rainfall intensity-dependent
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slope parameter) to represent their data. Decades later, a three-parameter, un-normalized
gamma distribution was introduced [35] to better represent DSD measurements with
smaller time intervals. This has been widely used in numerous studies on DSD variability,
e.g., [36–39]. Retrievals of DSD parameters, e.g., from polarimetric radar data and from
spaceborne radar data, have also assumed the gamma model [40–43]. The model will be
referred to as the “standard gamma (SG) model”.

2.2. Double-Moment Normalization and Generalized Gamma Model

A more novel and sound approach for DSD representation was introduced by Sempere-
Torres et al. [44] and by Testud et al. [5] after several studies had shown that the underlying
shape of the DSD can be revealed if N(D) is normalized by the parameter NW, the nor-
malized intercept parameter, together with the normalization D by the parameter Dm, the
mass-weighted mean diameter [5,45]. Often, the underlying shape is denoted as h(x) where
x is the so-called “scaled diameter”, [46], given by:

x =

(
D

Dm
′

)
, (2)

where Dm
′ is defined later in Equation (5).

Further to the scaling law of Sempere–Torres [44] and the scaling normalization of
Testud [5], a unified approach was proposed in [18] based on double-moment normalization
with any two reference moments, [Mi, Mj], resulting in:

h(x) =
N(D)

N′0
(3)

N′0 = M
(j+1)
(j−i)

i M
(i+1)
(i−j)

j (4)

D′m =

(
Mj

Mi

) 1
(j−i)

(5)

The choice of the two reference moments will depend on the application.
Lee et al. [18] also considered the use of the so-called ‘generalized gamma’ (GG) model,

which had previously been shown to be applicable and useful for DSD studies in, e.g., [47].
They showed that the GG was far more suitable to represent h(x), since it uses two shape
parameters, µGG and c, and as a result, yielded more flexibility. The term h(x) will then be
given by:

hGG(i,j,µ,c)(x) = c Γ
(j+cµGG)

(i−j)
i Γ

(−i−cµGG)

(i−j)
j xcµGG−1 exp

−(Γi

Γj

) c
(i−j)

xc

 (6)

Combining Equations (3), (4), and (6) and rearranging these, we obtain:

N(D) = M
(j+1)
(j−i)

i M
(i+1)
(i−j)

j c Γ
(j+cµGG)

(i−j)
i Γ

(−i−cµGG)

(i−j)
j xcµGG−1 exp

−(Γi

Γj

) c
(i−j)

xc

 (7)

Equation (7) forms the basis of our analyses presented here. As seen, N(D) is depen-
dent on the two chosen reference moments and the two shape parameters µGG and c. Note
also that, if we choose the third and the fourth moments as our reference moments, i.e.,
set i = 3 and j = 4, and further, c is set to 1, then Equation (6) will simplify to the standard
gamma model, with the shape parameter (denoted as µSG in this paper). Under these
conditions, µSG = µGG − 1, and further, when µGG is set to 1, i.e., µSG = 0, an exponential
distribution is obtained.
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3. Simulations and Datasets
3.1. Choice of Reference Moments

The choice of the two reference moments in Equation (6), as mentioned earlier, depends
on the application. For rain microphysical studies, M3 and M4 are often used, whereas for
remote sensing applications, M3 and M6 are more commonly used.

Since the moments of rainfall rate, R and liquid water content, W, are close (i.e.,
M3 vs. M3.67, e.g., [40]), we can expect a near linear relation between W and kKa. For
Rayleigh scattering reflectivity, Z is the sixth moment of the DSD, which is approximately
the case for Ku-band. Thus, we have selected kKa for retrieval of M3 and ZKu for M6, i.e.,
[M3, M6] have been chosen as the reference moments. Although this quantity is currently
not available as an official DPR product, it can be ‘reproduced’ by the DSD parameters
that are currently accessible. We now examine these variabilities via scattering simulations
using DSD measurements.

3.2. DSD Data for Simulations

The DSD data used herein were obtained from three observation campaigns in three
different locations, namely (i) Greeley, Colorado, (ii) Huntsville, Alabama, and (iii) Wallops
Island, Virginia, three climatically very different locations in the US. They represent semi-
arid continental climate, a sub-tropical continental climate, and a mid-latitude coastal
region, respectively. In all three cases, the DSDs were obtained from (a) Meteorological
Particle Spectrometer (MPS; [48]) and (b) 2D video disdrometer (2DVD; [49,50]). While the
MPS, with its 50-micron resolution, provided accurate measurements of concentrations
of small drops (especially for D < 1.2 mm), the 2DVD provided better measurements for
larger drop sizes. In all three locations, the MPS and the 2DVD had been installed within a
two-third scaled double wind fence (DFIR; [51]). The overlap of the DSD measurements
between the two instruments has been investigated extensively in [52] and found to be
reasonably close to within acceptable accuracy in the 0.7 to 1.2 mm drop diameter range.
The composite DSD, which we refer to here as the “full DSD spectra” [53], ranged from
D = 0.15 mm up to large and very large drops, the maximum recorded in our datasets being
D = 8 mm in the outer rain-bands of a hurricane event (Dorian) over Wallops site [54]. MPS
measurements were used for D ≤ 0.8 mm and 2DVD measurements for D > 0.8 mm.

3.3. Scattering Simulations

A total of around 3000 3 min DSDs from the three locations were used as input
to T-matrix scattering calculations at Ku and Ka bands. A 20 deg C temperature was
assumed. This computational method uses the spherical vector wave functions for the far-
field scattering matrix with unknown expansion coefficients, and the total field inside the
dielectric is also expanded the same way. The incident wave is also expanded in the same
way but with known coefficients. The extended boundary condition is the main principle
whereby the surface electric and magnetic currents on the dielectric radiate the negative of
the incident field throughout the particle and the far field scattered external to the minimum
sphere containing the particle. Thus, the far field expansion coefficients and the incident
field are cast into a matrix called the transition matrix (T-matrix), which depends on the
dielectric shape (must have an axis of rotational symmetry) and the dielectric constant. The
method is very fast compared to the method of moments, which use patch elements (a large
number compared to the entire basis functions used in the T-matrix). A comprehensive
review of this method can be found in [55].

The computed radar reflectivity (Z, dBZ) and the specific attenuation (k), together with
the DSD moments (from M0 to M7), showed that the best estimates (i.e., with the lowest
uncertainties) for [M6 and M3] were ZKu and kKa, respectively. The results are shown in
Figure 1a,b as color-contoured frequency of occurrence (2D) plots. Panel (a) shows very
little scatter, indicating that the uncertainties associated with the estimation of M6 will
be very little, whereas panel (b) shows somewhat more significant scatter, indicating the
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uncertainties in M3 estimation will be somewhat larger. Note, however, that the color scale
of number N in Figure 1 is on a log10 scale.
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Figure 1. (a) log10 (M6) versus ZKu and (b) log10 M3 versus kKa from simulations where the color
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The dashed lines in Figure 1a,b represent the fitted equations based on second-order
polynomial equations:

log10(M6) = a0 + (a1 Zku) + (a2 Z2
ku); (8a)

log10(M3) = b0 +
(
b1 log10 kKa

)
+ (b2[log10 kKa]

2), (8b)

where Zku is in dBZ units in Equation (8a). The fitted coefficients and their standard errors
are given in Table 1.

Table 1. The fitted coefficients to Equations (7) and (8) and their standard errors.

(a) log10 (M6) versus Zku (dBZ) a0 = −0.114 a1 = 0.109 a2 = 0.000

Standard errors for (a) above 8.07 × 10−3 6.01 × 10−4 1.04 × 10−5

(b) log10 (M3) versus log10 (kKa) (dB/km) b0 = 2.670 b1 = 0.849 b2 = 0.039

Standard errors for (b) above 3.58 × 10−3 5.06 × 10−3 4.16 × 10−3

3.4. Stability of the Underlying DSD Shape

Next, we consider the uncertainties associated with the underlying shape of the DSDs
using Equations (2)–(4). Figure 2a,b show the double-moment normalization (i.e., h(x)
versus x) applied to the Greeley (GXY) and the Huntsville (HSV) datasets. In each case, the
25th, the 50th (median), and the 75th percentile curves are superimposed. The two sets of
curves appear to be similar to each other.

Each of the 3 min DSDs from the GXY and HSV campaigns had been fitted to
Equation (6) with i = 3 and j = 6 [53]. The fitted µGG versus c are shown in panel (c)
as a color-intensity plot. µGG shows a narrow range, but the fitted c values range a wider
span. Note, once again, that the color scale of N is on a log10 scale. The maximum value
of N is reached for [µGG, c] = [−0.25, 3.67]. We will use these as the ‘most-probable’ com-
bination and will substitute these values into Equation (6) for i = 3 and j = 6. To test this
most-probable h(x), we show in panel (d) the color-intensity plot of h(x) versus x derived
from the 3 min DSDs recorded during category-1 Hurricane Dorian (outer bands only) at
the Wallops site [56] as well as the most-probable h(x) from the GXY-HSV analyses. The fit
appears to be very representative, capturing the ‘high-intensity’ trend from the DSD data
very well.
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Wallops together with the most-probable h(x) versus x constructed from (c).

3.5. Simulations and Algorithm Errors

As seen in Sections 3.3 and 3.4, our proposed retrieval method is expected to have
uncertainties associated with each of the retrieved moments. To quantify these “algorithm
errors”, forward simulations and retrievals were performed using the same set of 3 min
DSDs from the three locations. Figure 3 shows the block-diagram for this procedure. The
steps can be summarized as follows:

i. Use the 3 min DSDs for scattering calculations at Ku and Ka bands;
ii. Use the Zku and kka outputs from (i) to estimate M6 and M3 using Equations (7) and (8);
iii. Retrieve the other moments, viz. M0, M1, M2, M4, M5, and M7, using the estimated

[M3, M6] and h(x);
iv. Calculate all moments [M0 . . . M7] using the same 3 min DSDs as in (i);
v. Compare (iii) and (iv).

These steps are numbered in red in Figure 3. For step (iii) (with green-box outline), the
retrieval of other moments can be achieved analytically using equation (42) of Lee et al. [18];
however, that expression is not valid when µGG is negative, which is the case for our h(x).
An alternate solution is to estimate the other moments numerically by first constructing the
full DSD spectra from each of the retrieved M3 and M6 in step (ii) and our h(x) with i = 3
and j = 4 for µGG = −0.25 and c = 3.67 in Equation (7). This is followed by the calculation of
other moments using Equation (1).

Results from step (v) are shown in Figure 4 as scatterplots of the retrieved moments
versus the ‘true’ moments, i.e., those derived directly from the 3 min DSDs. Only the cases
with kKa > 1 dB/km were chosen. The 1:1 line is included in each plot. The higher-order
moments, viz. M3 to M7 show very good correlation and lie close to the 1:1 line. The
lower-order moments, especially M0, show more scatter. The errors are quantified in terms
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of the fractional standard error (FSE) in Table 2. They range from nearly 11% for M0 to just
over 3% for M7, gradually decreasing. These values represent the overall algorithm errors
of the retrieval method.
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Table 2. Fractional standard errors for the retrieval moments.

Moment M0 M1 M2 M3 M4 M5 M6 M7

FSE (%) 10.8 9.2 6.6 6.5 6.0 5.0 4.1 3.3
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Algorithm errors are sometimes referred to as parameterization errors. Bringi et al. [31]
considered an additional source of uncertainty, namely those due to radar measurement
errors. They found that, for lower-order moments, the parameterization error domi-
nates the overall uncertainties, whereas the radar-measurement errors dominate those for
higher-order moments. Although their analyses were related to retrieval of moments from
polarimetric radar data, the same trend is likely to apply for the DPR-based retrievals also.
Next, we preform basic tests for our retrieval method for two GPM-DPR overpass cases.

4. GPM-DPR Overpass Cases
4.1. The Huntsville Event

The first of the two events considered here occurred over the Huntsville site, where
the MPS and two 2DVDs had been installed ([53]; see also Section 3.2 earlier). It consisted
of precipitation associated with a semi-organized line-convection on 11 April 2016, which
moved across northern Alabama from ~17 to 24 h UTC. The line convection did not directly
pass over the disdrometer site; instead, it was approximately 10 km to the west. The
GPM-DPR overpass over the site occurred at 23:31 UTC.

The near-surface DPR products include measured and attenuation-corrected radar
reflectivities both at Ka and Ku bands as well as Nw and Dm for each of the 4 km by 4 km
radar pixels. The two quantities needed for our retrievals, as mentioned earlier, are the
Ku-band radar reflectivity and the specific attenuation at Ka-band. The former is a ‘direct’
product, but of course, ZKu should be the reflectivity values after attenuation-correction is
used. The latter, however, is not readily available, but on the other hand, it can be recreated
by (i) utilizing Nw and Dm to derive the DSDs for each pixel, assuming the DPR assumption
of standard gamma model with µ = 3, followed by (ii) T-matrix calculations to derive kKa
for each of the DSDs. These are shown in panels (a) and (b) in Figure 5. In each panel, the
color scale is included. The diamonds represent the location of the disdrometers in terms of
latitude and longitude. Zku (attenuation-corrected) over the site was 34.6 dBZ, and kKa was
0.60 dB/km. The estimated M6 and M3 are shown in panels (c) and (d), respectively. The
color scales (included within each panel) show the log10 of the moments. Using these two
moments, together with the h(x) in Equation (6), the DSDs per pixel were derived, and the
other moments, M0, M1, M2, M4, M5, and M7, were estimated. Four are shown in Figure 6.

Validation of the retrieved moments is not straightforward, but in Table 3, we show the
mean and standard deviation of all moments M0 to M7 derived from the DPR data in (22)
pixels over and surrounding the disdrometer site, which are compared with those derived
directly from the (20) 3 min DSD within ±30 min time interval around the DPR overpass.

Table 3. Mean and standard deviations of moments from DPR and DSDs on a log10 scale (units are
mmn/m3 for nth moment) and the percentage errors.

Moment Mean (DPR) Std. Dev. (DPR) Mean (DSD) Std. Dev. (DSD) Error (%)

M0 3.41 3.13 3.37 2.98 1.2

M1 2.97 2.69 2.69 2.10 10.7

M2 2.77 2.51 2.39 1.62 15.9

M3 2.82 2.60 2.43 1.74 15.9

M4 3.03 2.86 2.62 2.12 15.6

M5 3.32 3.20 2.89 2.56 15.1

M6 3.67 3.58 3.22 3.03 14.0

M7 4.05 4.00 3.60 3.51 12.5
Errors are calculated using the log10 of the mean values.



Remote Sens. 2021, 13, 4690 10 of 22
Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 5. DPR overpass over Huntsville on 11 April 2016 at 23:31 UTC. (a) Attenuation corrected 
ZKu; (b) Ka-band specific attenuation; (c) Estimated log10 (M6) from (a); (d) Estimated log10 (M3) from 
(b). Black diamonds indicate the disdrometer location. 

 
Figure 6. Examples of other retrieved moments for the 11 April 2016 case. (a) log10 (M1); (b) log10 
(M2); (c) log10 (M4); (d) log10 (M5). Black Diamonds indicate the disdrometer location. The colors are 
the same as Figure 5. 

Figure 5. DPR overpass over Huntsville on 11 April 2016 at 23:31 UTC. (a) Attenuation corrected
ZKu; (b) Ka-band specific attenuation; (c) Estimated log10 (M6) from (a); (d) Estimated log10 (M3)
from (b). Black diamonds indicate the disdrometer location.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 5. DPR overpass over Huntsville on 11 April 2016 at 23:31 UTC. (a) Attenuation corrected 
ZKu; (b) Ka-band specific attenuation; (c) Estimated log10 (M6) from (a); (d) Estimated log10 (M3) from 
(b). Black diamonds indicate the disdrometer location. 

 
Figure 6. Examples of other retrieved moments for the 11 April 2016 case. (a) log10 (M1); (b) log10 
(M2); (c) log10 (M4); (d) log10 (M5). Black Diamonds indicate the disdrometer location. The colors are 
the same as Figure 5. 

Figure 6. Examples of other retrieved moments for the 11 April 2016 case. (a) log10 (M1);
(b) log10 (M2); (c) log10 (M4); (d) log10 (M5). Black Diamonds indicate the disdrometer location.
The colors are the same as Figure 5.



Remote Sens. 2021, 13, 4690 11 of 22

From Table 3, we observe the following:

i. Overall good agreement between the two sets of mean values, especially for the
zeroth moment.

ii. However, the DSD-based moments show somewhat lower mean values that the
DPR-retrieved moments; although, when the standard deviations are included, the
overlaps are considerable.

iii. In both cases, M2 shows the lowest mean values and M7 the highest; the standard
deviations also show a similar trend.

Furthermore, values of Dm, given by the ratio of the fourth moment to the third ranged
from 0.9 to 1.8 mm for the DPR-based retrievals and 1.1 to 1.8 mm for the DSD-based
estimates. The mean was 1.5 mm for both cases. Hence, it is likely that our retrievals of
moments represent the ‘true’ values over the 4 km by 4 km pixel areas. Further comparisons
are given in Appendix A.

4.2. Remnants of Storm Sally

The second event we consider in this paper is the remnants of Hurricane Sally over
the Wallops area. This storm made landfall in the southern part of the US as category-1
hurricane but weakened considerably as it headed north-east. Remnants of this storm
passed over the disdrometer location, and the GPM-DPR overpass occurred north of the
site on 18 September 2020 at 04:40 UTC. The closest approach for the nadir beam was
around 170 km NE of the disdrometer site, but the closest off-nadir beam was around
65 km north-east. Panel (a) in Figure 7 shows the (near-surface) attenuation-corrected
ZKu, and panel (b) shows kKa. The retrieved M6 and M3 are shown in panels (c) and (d),
respectively. These two moments were combined, as was done in the first event, with our
most-probable h(x) to derive other moments. Two examples, namely M0 and M4, are shown
in panels (e) and (f), respectively. Note the high M0 values in some regions, indicating high
number concentrations.

Direct validation of the retrieved moments is, once again, not possible, especially
because the DPR did not directly go over the disdrometer site, but in Figure 8, we compare
the histograms of [M0 . . . M7] from DPR and the DSDs. For the latter, ±4 h around the
DPR overpass time was used, whereas for the former, only the data shown in Figure 7 were
used (a total of 3269 pixels). There seems considerable overlap in the two sets of histograms
in all panels, but the DPR-based moments generally appear to be somewhat higher. On
the other hand, if we restrict the DSD-based moment calculations to within 2 h of the DPR
overpass, improvements in the agreement were observed. The green circle in each panel of
Figure 8 represents the averaged value from the DSD data within the 2 h interval. They
correspond very well to the mode of the DPR-based histograms.

4.3. Evaluation of DSD Parameters

The two main DSD parameters often used in the radar retrievals are NW and Dm. There
is also another parameter, namely the standard deviation of mass-spectrum, denoted as
σM [37], considered useful for rain microphysics studies. While the first two parameters can
be defined in terms of the third and the fourth moments, the third parameter additionally
requires the fifth moment. The following equations can be derived:

Dm =

(
M4

M3

)
; (9)

NW =
44

6
M 5

3

M 4
4

; (10)

σM = Dm

M5 − (2 Dm M4) +
(

D 2
m M3

)
(

D 2
m M3

)


1
2

(11)
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Note, however, that Equation (11) is only valid for µGG > 0. For negative values,
it is more appropriate to derive σM from the DSDs constructed using the two reference
moments and the most-probable h(x).
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Figure 9 compares histograms of DPR-retrieved and the DSD-based Dm and σM.
Panel (a) corresponds to the HSV event and panel (b) to storm Sally over Wallops. There
are clear differences between the two panels:

i. Remnants of storm Sally shows narrower Dm histograms (both DPR-retrieved and
DSD-based) having lower Dm values with a maximum value of only 1.6 mm whereas
the whereas the HSV event shows Dm’s ranging up to 2.1 mm. This is to be expected,
because storm Sally originated as a Hurricane, and it is well known that such storms
contain an abundance of small drops (higher concentration) compared with other rain
regimes [57,58].

ii. The HSV event shows two peaks in the Dm, and these bimodal peaks are evident in
both the DPR-retrieved and the DSD-based histograms. It is very plausible that the
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two peaks arise from the (semi-organized) line convection being embedded within
a larger widespread (probably stratiform) rain region. The bimodal peaks are also
noticeable in the σM histograms. Storm Sally, on the other hand, shows only one peak
in both Dm and σM.

iii. For the HSV event, there is considerable overlap between the DPR-retrieved and
the DSD-based histograms, whereas for storm Sally, the DSD-based histogram has a
higher number of cases with lower Dm values (i.e., <0.6 mm). This may well be due
to the DPR sensitivity, which has a lower limit of approximately 12 dBZ for the radar
reflectivity at Ku-band, which, in turn, indicates that light rainfall cases will not be
detected often enough. On the other hand, the disdrometer-based DSDs include the
MPS measurements with good accuracy for the concentration of small drops.

iv. Another feature that is different between the two panels concerns the proportion of
stratiform to convective rain. From the two clear peaks in Dm and σM histograms
observed in the HSV event (as noted earlier in point (ii)), we can infer that the
proportion of the two rain types are somewhat comparable. For storm Sally, by
contrast, we have ascertained from NPOL radar quasi-vertical profiles (QVP; [59])
that it was largely stratiform rain. The single peak Dm histograms from both DPR and
DSD data in panel (b) of Figure 9 support this.
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Further improvement in the agreement between DPR and DSD histograms in Figure 9
may be obtained if we restrict the off-nadir angles for the DPR to be less than 10 degrees
and/or by utilizing the ‘type_Precip’ flag product from DPR, in particular, the second digit
of the flag. This will be investigated in the near future.

4.4. Evaluation of (Stratiform and Convective) Rain Types

Regarding stratiform and convective rain types, it is also of interest to examine the
applicability of the classification based on Nw versus Dm separation technique. This
observational-based empirical method has been used for disdrometer data in the past, and
our own recent work has shown that the two rain types can be separated in the NW–Dm
space [60–62]. The same method had also been applied to the S-band NPOL radar data and
compared with a texture-based method described in [63]. Considerable agreement of over
86% was obtained [64]. Similar comparisons [65] were made for the C-band CPOL radar
based in Darwin, Australia [66].

Disdrometer data represent “point-measurements” (albeit over a 1 or 3 min time
interval), and ground-based radar data represent measurements over pulse volumes (but
instantaneous). Despite these differences, the stratiform-convective rain separation tech-
nique seemed applicable to both. Here, we perform similar tests for the DPR-retrieved
NW–Dm for the two cases, noting that the DPR footprint is much larger (4 km by 4 km)
than the ground-based radar data.
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The separation technique is based on whether a given pair of [NW, Dm] lies above
or below or specified line. A simple index i given by the following equation is used to
quantify the rain-type likelihood [64,65]:

i = log10
(
Nest

W
)
− log10

(
Nsep

W

)
; (12)

log10

(
Nsep

W

)
= c1Dm + c2, (13)

where ‘sep’ corresponds to the separation line, and ‘est’ represents the estimated value.
Values of c1 and c2 may be location dependent, but to be consistent with our previous

studies, we have used −1.682 and 6.541, respectively. Broadly speaking, when i is negative,
stratiform rain is indicated, and when i is positive, convective rain is indicated. The
pixel-by-pixel DPR-based index value derived for the HSV event is shown in panel (a) of
Figure 10. The red color represents i > 0 (hence, convective rain regions), and the lighter
colors indicate i < 0 (hence, stratiform rain regions). Panel (b) of Figure 10 shows the path
integrated attenuation (PIA) from the matched scan (MS; [7]). The “diamond” symbol
indicates the location of the disdrometer site. Positive values of i are seen south-east of the
disdrometer site and correlate well, at least visually, with the PIA image in panel (b), i.e.,
the higher PIA regions correspond to positive index values (red) in panel (a).
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Storm Sally, by contrast (as inferred earlier), was mostly stratiform rain when it passed
over Wallops. Most of the DPR-retrieved index values (from Figure 7) were negative. Panel
(a) of Figure 11 shows the variation of the index values with the PIA from the normal
scan (NS; [7]) scan. Only data within a specified range of (off) nadir angles were used.
Interestingly, one can see an increase in the i values with PIA. In other words, the NW–Dm
points move closer to the separation line as the PIA increases, although they lie mostly on
the stratiform rain side of the separation line. Panel (b) of Figure 11 shows the QVP plot (a
conical scan at 20 deg elevation, height up to 10 km, and range of around 30 km) of the
radar reflectivity from the S-band NPOL volume scans on 18 September 2020. The clear
radar bright-band seen at 4–4.2 km height throughout the event confirms that the event
was dominated by stratiform rain. This validates the predominantly negative i values from
panel (c), which were derived from DPR-retrieved [NW, Dm]. The increase in i values with
PIA in panel (a) is also consistent with another case event analyses using disdrometer data
and vertically pointing X-band radar during a cold-rain event in Ontario, Canada (see
Section 2 in Thurai et al. 2016), which showed an increase in the (negative values of) i with
increasing bright-band thickness. Both the Ontario event analysis and the HSV event in
Figure 11a show a very similar trend.
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Figure 11. (a) Stratiform–convective likelihood index based on the NW versus Dm separation method
versus the path-integrated attenuation from the normal scan (PIA-NS) for the remnants of storm Sally
in Wallops (note the index values are mostly negative indicating stratiform rain); (b) quasi-vertical
profile of reflectivity from NPOL as time variation over the whole event, again indicating stratiform
rain, from the dBZ bright-band in the 4–4.3 km a.m.s.l. throughout the event.

5. Summary and Discussion

Our results have shown that it is feasible to retrieve DSD moments directly from
DPR-based quantities. The retrieved moments can act as an initial step, prior to deriving
DSD parameters such as NW and Dm. Additionally, the DSD moments are very helpful
in understanding the microphysical processes involved in various types of rain regimes.
The basic premise of this article is that the lower order moments (M0, M2, M3) of the DSD,
which are involved in the formulation of the warm rain process rates (such as evaporation,
sedimentation, and binary collisions), can be expressed as products of power laws of the
a priori chosen reference moments of higher order (M3, M6) along with moments of h(x),
where h(x) is the intrinsic shape of the distribution. The form of h(x) can be any functional
shape, provided its moments are finite and positive. The latter formulation also enables
estimation of the standard deviation of the mass spectrum σM [67], as well as NW and Dm.

In our study, the retrieval of moments used only two DPR products, namely the
attenuation-corrected radar reflectivity at Ku-band and the specific attenuation at Ka-band.
They were used to retrieve the sixth (M6) and the third moments (M3), respectively. Using
these two quantities as our chosen reference moments, and assuming an underlying shape
function, h(x), for the DSDs, it is possible to retrieve other moments, ranging from M0 to
M7. Note that h(x) is dependent on the pair of chosen moments, and we have assumed the
generalized gamma model to represent h(x). Using 3000 3 min full DSD spectra from two
(climatically) different locations, we found that the underlying function corresponding to
[M3, M6] pair seemed reasonably stable.

Simulations using the 3000 3 min DSDs showed that the algorithm errors for the
retrievals would be low; however, for lower-order moments, especially for M0, the errors
were found to be more significant. When applying the technique to DPR data, other error
sources also need to be considered. They include variance of radar measurement errors and
‘point-to-area’ variance, which arises from the fact that disdrometer data represent point
measurements (although over a 3 min period), whereas DPR data are over a much larger
footprint (although instantaneous), and factors such as non-uniform beam filling also need
to be considered. We also need to bear in mind that the DPR has a lower threshold of
around 12 dBZ for Ku-band measurements, which will put a lower limit of the estimated
M6 used in this method.

Two GPM-DPR overpass cases were used to examine the validity of our retrieval
technique, one over the Huntsville site on 11 April 2016 at 23:31 UTC and one over the
Wallops site on 18 September 2020 at 04:42 UTC during the passage of remnants of storm
Sally. We compared the mean and standard deviation of all moments (M0 to M7) derived
from the DPR data in pixels in the 0.05 degree of latitude and 0.05 degree longitude around
the disdrometer site and compared them with those derived directly from the DSD within
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a 30 min time interval around the DPR overpass. The agreement for all moments (in
terms of log10) was well within 10%. Furthermore, values of Dm, given by the ratio of
the fourth moment to the third, ranged from 0.9 to 1.8 mm for the DPR-based retrievals
around the disdrometer site and 1.1 to 1.8 mm for the DSD-based estimates over a ±30 min
period. For the second case, histograms of the moments were derived from DPR and DSDs,
and when the DPR-based moments were restricted to areas over and surrounding the
disdrometer location, their modes showed very good agreement with the DSD-based mean
values, which determined when the disdrometer data were restricted to within 2 h of the
DPR overpass.

Dm and σM histograms were also compared for both events. Of the two, remnants
of hurricane Sally showed narrower Dm histograms, both DPR-retrieved and DSD-based,
having lower Dm values with a maximum value of only 1.6 mm, whereas the HSV event
shows Dm values ranging up to 2.1 mm. The latter, in fact, showed two peaks in the
Dm, and these bimodal peaks are evident in both the DPR-retrieved and the DSD-based
histograms. They were attributed to the semi-organized convective line being embedded
within a larger widespread (and seemingly stratiform) rain region. The bimodal peaks
were also noticeable in the σM histograms. Sally (around the Wallops disdrometer area), on
the other hand, shows only one peak in both Dm and σM. The tropical environment may
also be the reason that no larger drop mode was observed by the disdrometers or DPR.

Finally, a previously published method for separating stratiform and convective rain
types was tested for the two events. The method is based on Nw versus Dm and has been
tested using disdrometer data in several locations, e.g., [60–62], and against the texture-
based method used in [63]. For the two events considered here, the DPR-based NW versus
Dm (again note considerably larger footprint) were used to identify regions of the two rain
types. For the HSV event, the convective rain regions corresponded well with regions of
high PIA from the matched scan. On the other hand, DPR data for Sally showed mostly
stratiform rain during the overpass. This was confirmed by QVP constructed from NPOL
radar for the event.

The two initial test cases show encouraging results for more informative and accurate
DSD retrievals from DPR. Our retrieval method for DSD moments followed a procedure
similar to previous work by Bringi et al. [31], using X-band ground-based polarimetric
radar data. The third and the sixth moments had also been used for that study. It is likely
that these are also applicable for the DPR based retrievals, but further investigations are
needed. Another aspect to consider is the stability of h(x), specifically, whether having two
sets of h(x), one for stratiform rain and one for convective rain would improve the overall
retrievals. This will also be examined in the future.

The novelty of our method lies in the conceptual fact that the rain DSDs are better
characterized in terms of moments rather than the DSD parameters governing the distribu-
tions. As mentioned earlier in the Introduction, DSD moments are far more informative
about the microphysical processes involved in the observation regions. Given that the DPR
is capable of providing vertical profiles of attenuation corrected radar reflectivities as well
as specific attenuations at Ku and Ka bands, the height variations of the DSD moments
will lead to better understanding of the dominant processes. One drawback to our method
is that the Ka-band specific attenuation, as mentioned several times earlier, has not been
made available as one of the ‘official DPR products’. It is hoped that this will be included in
the near future. The specific attenuation can also be used as one of the rain-rate estimators,
as has been the base for S-band ground-based radars [68] as well as X-band ground-based
radars [69].
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Appendix A

For the Huntsville event considered in Section 4.1, histograms of the retrieved DSD
moments are shown in Figure A1 in this Appendix. The histograms were derived for all
pixels (60) over and surrounding the disdrometer location. The latitude and longitude
range are as follows:

• Latitude (deg) . . . from 34.999 to 34.3029
• Longitude (deg) . . . from −86.0023 to −86.9818
• Location of the disdrometers: 34.7245◦ (lat) −86.6398◦ (lon)

The arrows in maroon color on top of each panel correspond to the range of values
determined from the ground-based 3 min DSDs from 23:00 to 24:00 UTC, i.e., within
±30 min period of the DPR overpass time of 23:31 UTC. Reasonable agreement is seen
for the lower order moments, viz. M0, M1, and M2, as well as the higher-order moments,
viz. M6 and M7. For those in the middle, i.e., M3, M4, and M5, there appears to be a slight
overestimate of the values estimated from DPR. Overall, however, the range of DSD-based
values lie well withing the range of the corresponding moments. The mean values from
the DSD-based moments are provided above each panel.

As a further “sanity check”, in Figure A2, we show (in green) the actual DSDs con-
structed from the retrieved from the DPR data from the abovementioned pixels. Overplot-
ted in maroon are the DSD measurements from the 2DVD and MPS disdrometers over the
same ±30 min period of the DPR overpass time of 23:31 UTC. The DSD measurements
show less variability than the DPR-based DSDs, particularly at the larger sizes, but they
mostly lie within the set of green curves.
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Figure A1. Histograms of moments (units are mmn/m3 for the nth moment) shown in green derived 
from DPR data over and around the disdrometer site for the 11 April 2016 event in Huntsville (Fig-
ure 5). The maroon arrows represent those derived from the ground-based DSD measurements 
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Figure A1. Histograms of moments (units are mmn/m3 for the nth moment) shown in green derived
from DPR data over and around the disdrometer site for the 11 April 2016 event in Huntsville
(Figure 5). The maroon arrows represent those derived from the ground-based DSD measurements
within ±30 min period around the overpass time.
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