
remote sensing  

Article

Investigating the Effects of k and Area Size on Variance
Estimation of Multiple Pixel Areas Using a k-NN Technique for
Forest Parameters

Dylan Walshe 1,2 , Daniel McInerney 1 , João Paulo Pereira 1 and Kenneth A. Byrne 2,*

����������
�������

Citation: Walshe, D.; McInerney, D.;

Paulo Pereira, J.; Byrne, K.A.

Investigating the Effects of k and Area

Size on Variance Estimation of

Multiple Pixel Areas Using a k-NN

Technique for Forest Parameters.

Remote Sens. 2021, 13, 4688. https://

doi.org/10.3390/rs13224688

Academic Editors: Krzysztof
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Abstract: Combining auxiliary variables and field inventory data of forest parameters using the
model-based approach is frequently used to produce synthetic estimates for small areas. These small
areas arise when it may not be financially feasible to take ground measurements or when such areas
are inaccessible. Until recently, these estimates have been calculated without providing a measure of
the variance when aggregating multiple pixel areas. This paper uses a Random Forest algorithm to
produce estimates of quadratic mean diameter at breast height (QMDBH) (cm), basal area (m2 ha−1),
stem density (n/ha−1), and volume (m3 ha−1), and subsequently estimates the variance of multiple
pixel areas using a k-NN technique. The area of interest (AOI) is the state owned commercial forests
in the Slieve Bloom mountains in the Republic of Ireland, where the main species are Sitka spruce
(Picea sitchensis (Bong.) Carr.) and Lodgepole pine (Pinus contorta Dougl.). Field plots were measured
in summer 2018 during which a lidar campaign was flown and Sentinel 2 satellite imagery captured,
both of which were used as auxiliary variables. Root mean squared error (RMSE%) and R2 values
for the modelled estimates of QMDBH, basal area, stem density, and volume were 19% (0.70), 22%
(0.67), 28% (0.62), and 26% (0.77), respectively. An independent dataset of pre-harvest forest stands
was used to validate the modelled estimates. A comparison of measured values versus modelled
estimates was carried out for a range of area sizes with results showing that estimated values in
areas less than 10–15 ha in size exhibit greater uncertainty. However, as the size of the area increased,
the estimated values became increasingly analogous to the measured values for all parameters. The
results of the variance estimation highlighted: (i) a greater value of k was needed for small areas
compared to larger areas in order to obtain a similar relative standard deviation (RSD) and (ii) as
the area increased in size, the RSD decreased, albeit not indefinitely. These results will allow forest
managers to better understand how aspects of this variance estimation technique affect the accuracy
of the uncertainty associated with parameter estimates. Utilising this information can provide forest
managers with inventories of greater accuracy, therefore ensuring a more informed management
decision. These results also add further weight to the applicability of the k-NN variance estimation
technique in a range of forests landscapes.

Keywords: small-area estimates; operational forestry; variance estimation; model-based inferences; LiDAR

1. Introduction

Sample surveys have been able to provide estimates of finite population totals and
means since 1901 [1]. However, more detailed estimates for specific areas of interest are
frequently desired. These areas can be described as small areas which has been defined
as “any domain for which direct estimates of adequate precision cannot be produced” [2],
such as when intensive field plot sampling is not financially feasible or where areas are not
accessible. Two widely accepted methods for small area estimation (SAE) are probability-
based model-assisted inference and model-based inference, both methods use models
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to estimate target variables for small areas but differ in their sources of randomness [3].
Probability-based model-assisted inference: (i) regards the sample as fixed, (ii) regards the
sample as randomly generated, and (iii) considers that the source of randomness is due
to the sampling method [3]. In contrast, model-based inference: (i) regards the sample as
random even if it has not been randomly selected, however, to ensure the more appropriate
model is created, a random selection should be used [4]; (ii) the observations are regarded
as a realisation of random variables [4]; (iii) considers that the source of randomness is due
to the population; and (iv) depends completely on the ability of the model to describe the
real world [5]. This difference in assumptions means that probability samples for model-
based inferences are not needed. Small area estimates using model-based inference are
considered synthetic, as they only use the predicted values and do not incorporate model
errors [2]. Updating forest inventory has advanced considerably with the improvements
of technology, especially over the past 20–30 years, due to the advantages of using earth
observation (EO) data as auxiliary variables for small area estimation [6,7].

One technique of model-based inference in forest inventory, called the area-based
approach (ABA), has proved to be very useful in modelling ground data and EO auxiliary
variables [6]. This approach consists of (i) Stand delineation: the forest stands within the
area of interest (AOI) are delineated, (ii) field survey: a field survey is carried out within
the AOI, (iii) remote sensing: remotely sensed data is acquired and processed for the AOI,
(iv) modelling: regression models fit the field plot data and ALS metrics, and (v) stand-wise
estimation: the fitted models and auxiliary variables are used to estimate parameters of
interest for every grid cell [7]. Although originally implemented using satellite imagery
as the auxiliary variables [6,8], the methodology can also be used with Light Detection
and Ranging (lidar) data. Since its first application, the methodology has been used in
a variety of landscapes to model a range of parameters such as mean tree height, mean
diameter at breast height (dbh), biomass, stem density, basal area, and volume [9–18].
Despite the fact that these estimates are extremely useful to forest managers, due to the
potential of updating large scale forest inventories without the need for intensive sampling,
they provide no estimate for the associated variance. It is therefore crucial that the forest
manager has both an estimate of the parameter of interest and the associated variance in
order to have an updated inventory to make informed management decisions from.

The variance associated with volume was first estimated by comparing a non-parametric
and parametric estimator [19], followed by a logistic regression methodology that incor-
porated spatial correlation between pixel estimates [20]. This was further developed by
using a k-NN technique that calculated parametric estimators for σ2

i and Var(µ̂) that ac-
commodate spatial correlation among reference set observations [13]. It also incorporates
the uncertainty associated with spatial correlation and allows for variance estimates for
multiple pixel AOIs. Prior to this, in 2007, variance estimates for multiple pixel AOI’s had
not been reported and to date, and few studies have implemented it. The investigation
estimated the variance of volume (m3 ha−1), basal area (m2 ha−1), stem density, and the
proportion of forested area of 15 circular AOIs, each with a 10 km radius in Minnesota,
United States of America, using satellite imagery. These AOIs are naturally regenerated
hardwoods and conifers such as aspen, birch, spruce, and fir mixtures. The results indicated
that this k-NN technique did not lose precision relative to the probability-based approach,
which is usually implemented for forest inventory.

In Ireland, previous research has focused on utilising the ABA and satellite imagery
utilising Random Forest and k-NN models to estimate basal area (RMSE 10.8–16.6 m2 ha−1)
and volume (RMSE 104–158 m3 ha−1) [21]. Other investigations implemented an improved
k-NN model to estimate basal area (RMSE 15–19 m2 ha−1) and volume (128 m3 ha−1 to
150 m3 ha−1) [18]. Both of these studies have analysed forest parameters at a national
scale incorporating the National Forest Inventories to produce estimates. More recently,
research has focused on simulating field plots of forest parameters. This involved the
simulation of 100 plots using the Discrete Anisotropic Radiative Transfer (DART) model
with discrete-return height distributions. The results produced excellent estimates for basal
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area (RMSE 1.7 m2 ha−1, RMSE% 5.4%, Pearson correlation coefficient value of 0.995) and
mean DBH (RMSE 1.4 cm, RMSE% 7.3%, Pearson correlation coefficient value of 0.990) [22].
These results can be used to simulate a validation dataset which would reduce the costs
associated with field inventory.

This paper utilises these advances, specifically the ability to obtain variance estimates
of multiple pixel AOIs, which are not widely reported in the literature, to investigate the
effects the k value and the size of an AOI has on variance estimation. This is explored by
modelling four parameters, QMDBH, basal area, stem density, and volume of state owned
forests in the Slieve Bloom mountains in the Republic of Ireland. Each parameter will
be estimated using two machine learning algorithms independently—random forest and
k-NN—and implement the methodology employed by [13], and further described in the
initial description in [23], to calculate the variance of these areas. The variance is calculated
using a k-NN technique, which is separate from the modelling process.

2. Materials and Methods
2.1. Study Area

The study area was the forested area managed by Coillte, the State Forestry Board,
in the Slieve Blooms mountains which are located across counties Laois and Offaly in
the Republic of Ireland (Figure 1). The Slieve Blooms was chosen as the AOI as it has
multipurpose forests that provide sustainable timber production and recreational services.
The AOI contains approximately 11,800 ha of forested area consisting of 9500 ha of Sitka
spruce (Picea sitchensis (Bong.) Carr.) (SS), 1300 ha of Lodgepole pine (Pinus contorta Dougl.)
(LP), and 300 ha of Norway spruce (Picea abies (L.) H.Karst) (NS). Other species include
European larch (Larix decidua Mill.), Japanese larch (Larix kaempferi (Lamb.) Carr.), and
silver birch (Betula pendula, Roth.) along with other broadleaved species. Typically tree
species are intimately mixed, planted at a 2 × 2 m spacing to produce a stem density of
approximately 2500 stems per hectare. Most forest stands have two thinning interventions,
removing approximately one third of the stems in each intervention. The AOI has a mean
elevation of 300 m above sea level [24] and contains approximately 50% blanket peat, with
a mixture of luvisols, groundwater gleys, and stagnic iron-pan podzols soils [25]. The
median age of Sitka spruce is 25 years old with typical rotation periods of spruce in Ireland
being 30–35 years old. The percentage breakdown of the AOI by age and yield class (YC)
shows approximately 25% of the area is greater than or equal to 25 years old and has a YC
greater than or equal to 14 m3 ha−1 year−1 (Table 1). Yield class is a productivity measure
indicating the maximum mean annual increment of cumulative timber volume [26].

Table 1. Percentage breakdown of the Slieve Blooms mountains spruce forests by age and yield class.

Age Yield Class ≥ 14 m3 ha−1 year−1 Yield Class < 14 m3 ha−1 year−1

≥25 years old 25% 15%
<25 years old 52% 8%

2.2. Field Inventory

Field inventory data were collected for the AOI during the summer of 2018 based on
stratified random sampling by primary species (SS and LP) and age. The total number of
field plots was 136, each of which was geo-located using a Trimble R1 differential global
positioning system device with real-time correction (+/−1 m accuracy). All circular field
plots had a radius of 11.28 m on a flat plane and adjusted for slopes greater than 10◦. All
trees with a DBH greater than 7 cm on a plot were measured with a Haglof digital calipers
and transponder. Where a tree was outside the radius by less than 0.1 m using the calipers,
which uses a transponder to calculate if a tree is within the radius or not, a tape measure
was used for corroboration. The tree was included if the distance measured by the tape
measure was within the radius. The associated heights of the minimum, maximum, 25th,
50th, and 75th percentile of measured DBH trees per species were recorded using a Haglof
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VERTEX IV. The data were then aggregated by plot and species to calculate parameter
estimates such as QMDBH (cm), basal area (m2 ha−1), stem density (ha−1), and volume
(m3 ha−1) (Table 2). Volume was calculated using the British Forestry Commission stand
tariff system [27]. This meant that there would be a value for each of the above parameters
for each species per plot. These data were used as training data during the modelling
process (Table 2).

Figure 1. Slieve blooms (AOI).

Another field inventory dataset collected within the AOI in 2016, 2017, and 2018 was
used as validation (Table 2). Prior to clearfelling, stand-level inventory was performed to
estimate the standing volume and value. These areas are mature stands with slow growth
rates, meaning this inventory should be a good indicator for what will be clearfelled and
therefore a valuable validation dataset. To ensure statistically robust comparisons between
the estimated values and the validation data, only forests that where the dominant species
was SS or NS, greater than or equal to 25 years old, and had a YC greater than or equal
to 14 m3 ha−1 year−1 were used in the modelling process. This subsample represents
approximately 25% of the entire AOI. It was chosen to be a representative sample as the
error between estimated values and measured values should be minimal due to the slow
growth and spacing of thinned mature stands (Table 1). The results from this dataset are
expected to be representative of the other 52% of the AOI once they are at least 25 years
old, i.e., 52% of the AOI have a YC greater than 12 m3 ha−1 year−1 but are not yet greater
than or equal to 24 years old. This expectation is dependent on the YC remaining above
12 m3 ha−1 year−1. There are 349 plots in this dataset which were measured using similar
methodology as described above with the exceptions being that only the heights of the
maximum, minimum, and mean dbh trees per species were measured and the field plot
size could be altered based on stocking density present. Although there are 349 plots, these
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are aggregated to derive median estimates of parameters for a range of areas. Any area
with less than ten field plots in it was excluded. Due to the complexity of the methodology
and numerous sources of data, a summarised workflow is presented (Figure 2).

Table 2. Field inventory measurements.

Training Validation

Parameter Minimum Maximum Mean Minimum Maximum Mean

QMDBH (cm) 9 43 20 20 44 28
Basal area (m2 ha−1) 2 108 45 26 74 47

Stems (ha−1) 275 3,250 1498 279 2200 953
Volume (m3 ha−1) 12 1308 412 296 872 535

Age (Years) 10 50 29 27 55 37

Lidar acquisition

Quality control

Define min and max height

Classify ground returns

Normalise point cloud

Interpolation

Calculate metrics

Sentinel 2 pre-processing

Resample

Field inventory

Plot level
estimates

Extract
the

auxiliary
variables

for
each
plot

Nutrient deficiency
classification

Forest stand age

RF
modelling

k-NN
modelling

Wall to wall
parameter estimation

Wall to wall
parameter estimation

Validation Validation dataset

Model selection

k-NN variance estimation

Figure 2. Methodology workflow.
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2.3. Spatial Aggregation Layers

Forests can be managed at a variety of spatial scales, the minimum of which, for
this study, is a subcompartment (Table 3). Subcompartments are delineated as polygons
according to species, age, and height if available. Neighbouring subcompartments can be
aggregated to a larger polygon, called Compartments, and aggregated again to a larger
polygon called a Property based on geographical location. Neighbouring Properties can be
further aggregated to larger polygons known as Forest codes which are arbitrary codes
based on location (Figure 3). These three layers—subcompartment, Property, and Forest
Code—were used to create a range of areas to (i) validate the model and (ii) assess the
effects of areal size in variance estimation. This was achieved by aggregating the polygons
in the subcompartment layer according to polygons in the Property layer and also the
Forest Code layer. For example, if there are six subcompartment polygons within two
Property polygons, the six measured field plot values are aggregated to two mean measured
values, one for each polygon in the Property layer. If these six subcompartment polygons
were within one Forest Code polygon, then the six field plot values are aggregated to one
mean measured value. It is crucial to note that although the size of the polygons in the
subcompartment, Property, and Forest Code layers differ (Table 3), the total size of the area
never changed from one layer to another, as only the polygons of the subcompartment
within the other layers were used. It was possible to aggregate the areas as such because
the species were the same, YC was greater than 14 m3 ha−1 year−1, and the age profile of
these areas were in a similar growth stage, i.e., they were all productive, mature, spruce
forests. Herein, the names of the layers will not be mentioned as only the actual size
of the area is important. For example, the variance of a polygon 10 ha in size from the
subcompartment layer would yield the same variance if it was the only and exact same
area in the Property layer.

Figure 3. Illustration of the difference in scale from a forest code, property, and subcompartment.
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Table 3. Management scale details for the Slieve Blooms.

Scale Minimum Area (ha) Mean Area (ha) Median Area (ha) Maximum Area (ha)

Subcompartment 0.5 4.3 2.5 55
Property 2.4 92 47 660

Forest code 42 797 640 2216

2.4. Auxiliary Variables

Four sources of auxiliary variables were used, the first of which was lidar. The lidar
campaign was flown during July and August of 2018, capturing approximately 11,800 ha of
forested area with flight and sensor parameters specified pre-flight (Table 4). The lidar data
was georeferenced using 10 ground control points surveyed using differential GPS. The
lidar dataset was processed using the Sorted Pulse Data library (SPDlib) which is a free and
open source command line lidar processing software [28]. The processing steps included

• a quality control check to ensure the point cloud had no anomalies or issues;
• removing noise by defining a local and global minimum and maximum height threshold;
• classifying ground returns using a progressive morphology filter [29] and a multi-scale

curvature algorithm [30];
• point cloud normalisation;
• interpolating surfaces to create a canopy height model (CHM), digital terrain model

(DTM), and digital surface model (DSM); and
• calculating metrics.

Table 4. Lidar acquisition details.

Parameter 2018

Sensor Optech Galaxy T1000
Maximum altitude flown (m) 1200

Speed of plane (knots) 110
Scan angle (degrees off nadir) 14

Flight lines overlap (%) 20
Pulses (per m2—all returns) 4

A natural neighbour algorithm was implemented in order to create the CHM, DTM,
and DSM products at 1 m resolution, and a range of metrics were calculated (Table 5) based
on a 20 × 20 m grid cell to ensure equivalence with the field plot area. The second source
was cloud-free multi-spectral satellite imagery from the Sentinel 2 mission, acquired during
the Spring and Summer months of 2018. The images were atmospherically corrected and
all pixels were resampled to 20 × 20 m using ARCSI [31] and a nearest neighbour algorithm.
The third source of auxiliary variables was a multi-spectral derived nutrient deficiency
classification for the AOI [32]. The final source of auxiliary variables was the age of the
forest stands from Coillte’s spatial database. In total there was 97 auxiliary variables used,
85 lidar metrics, 10 Sentinel 2 bands, a Sentinel 2 nutrient deficiency classification, and
the age of the forests. All of the auxiliary data were georeferenced to Irish Transverse
Mercator (EPSG:2157) and quality control of the spatial data suggested a high spatial
accuracy between layers.
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Table 5. Auxiliary variables used during modelling.

Lidar Metric Return Details

Height All returns that were not ground

Minimum, maximum, mean, median, mode,
dominant, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100 percentile heights, standard deviation for
all height percentiles, kurtosis, variance,
skewness, sum.

Height All
Minimum, maximum, mean, median, mode,
dominant, standard deviation, kurtosis, variance,
skewness, sum.

Height First
Minimum, maximum, mean, median, mode,
dominant, standard deviation, kurtosis, variance,
skewness, sum.

Height Last
Minimum, maximum, mean, median, mode,
dominant, standard deviation, kurtosis, variance,
skewness, sum.

Density All returns that were not ground
Between 2 m–40 m, 2.5 m–5 m, 5 m–10 m,
10 m–15 m, 15 m–20 m, 20 m–25 m, 25 m–30 m,
30 m–40 m.

Canopy cover percent All returns that were not ground

Between 2.5 m–5 m, 5 m–7.5 m, 7.5 m–10 m,
10 m–12.5 m, 12.5 m–15 m, 15 m–17.5 m, 17.5 m–20 m,
20 m–22.5 m, 22.5 m–25 m, 25 m–27.5 m, 27.5 m–30 m,
30 m–40 m.

Amplitude All returns that were not ground
Sum, mean, median, max, standard deviation,
variance, percentile 10–100

Height density [10] All 95th Percentile between 2 m and 40 m height.

Sentinel 2 Bands 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Sentinel 2 Nutrient deficiency classification [32]

Internal database Age of forest

variables in bold were removed during modelling as they provided less than 1% increase in MSE.

2.5. Parameter Estimation

This study utilised the well-documented area-based approach (ABA) [6,7] for mod-
elling ground data and auxiliary variables to produce parameter estimates per grid cell.
Two machine learning algorithms were employed in this study—Random Forest (RF) and
a weighted k-NN—in the statistical programming language R [33]. The RF modelling
included removal of auxiliary variables according to the variable importance plot [34]
assessed by the percent increase in mean squared error (MSE), where if the variable had an
increase of less than one percent, it was removed. This removed 10 of the 97 auxiliary vari-
ables, mainly the Sentinel 2 bands. From the remaining variables, the most important were
max height, standard deviation of heights, and the 80th percentile height for all returns
that were not classified as ground. The modelling also included a grid search for the best
mtry and ntree, as determined by the root MSE (RMSE). The Euclidean distance was used as
the distance metric for the grid search and validated using a 10 repeat cross-validation. The
weighted k-NN modelling, using the kknn package [35], trialled all available kernels using
the Minkowski distance metric and assessed the best using a leave one out cross validation.
The range of k values tested was from 2 to 10, as a meta-analysis of k-NN studies concluded
that the most frequently used values of k in remote sensing applications applied to forestry
are within this range [36]. The parameter estimates were compared by calculating the
RMSE, RMSE%, R2, and bias.
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2.6. Variance Estimation

Estimation of variance for the parameter estimates was carried out using a methodol-
ogy developed in [13], further explained in the initial description in [23], and summarised
below (Figure 4). This methodology can incorporate spatial correlation but is not included
in the description below as no spatial correlation was present using the semi-variogram
methodology [13]. This variance estimation technique is derived by first equating the
estimated value or prediction, ỹi to both the mean, µi and realisation, yi of values in a
regression context [13,37]. The next step of the methodology is to calculate which k number
of measured plots are nearest in the covariate space according to the auxiliary variables
for each pixel. Once this is complete, the residual variance between the measured and
estimated value for the above k plots for each pixel is calculated using

σ̂2
i =

k
∑

j=1
(yi

j − µ̂i)
2

k − 1
(1)

where {yi
j, j = 1, 2, . . . , k} is the set of response variable observations for the k reference set

elements, or pixels in this example, that are nearest to the ith pixel in feature space, µ̂i is the
mean for the ith pixel, and k is the number of nearest neighbours.

Following that, the covariance between the ith pixel estimate and jth pixel estimate for
all pixels is calculated within the defined small area (Equation (2)).

Côv(µ̂i, µ̂j) ≈
mij σ̂iσ̂j

k2 (2)

where mij is the number of field plots that are common to both the ith and jth pixels and σ̂i
σ̂j can be estimated by substituting σ̂i from (1).

Finally, calculate the variance for the small area by aggregating the residual variance
and pixel covariance estimates by substituting (2) and (3) into (4).

Vâr(µ̂i) ≈
σ̂2

i
k

(3)

Var(µ̂) =
1

N2

[ N

∑
i=1

Var(µ̂i) + 2
N

∑
i

N

∑
< j

Cov(µ̂i, µ̂j)

]
(4)

where N is the number of pixels.
In [13], the exact variance was not calculated for each AOI, instead, after calculating

the exact variance for three AOIs, it was concluded that the variance would not change
significantly after approximately 15% of the pixels had been processed. This is due to the
large size of the AOIs in [13]. In this investigation, the exact variance was calculated for
each AOI, as they are much smaller. k values from 2 to 7 were tested and the variance
was compared using the relative standard deviation (RSD) which is expressed as twice the
square root of the variance as a percentage of the mean.

RSD =
2
√

Var(µ̂)
µ̂

100 (5)

using

µ̂ =
1
N

N

∑
i=1

µ̂i =
1
N

N

∑
i=1

ỹi (6)
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Modelled estimated parameters

Calculate the k nearest field plots for each pixel

Calculate the residual variance between the modelled
estimated parameter value and the associated 1.. . . k

field plot(s) parameter value (Equation (1))

Calculate the covariance (Equation (2))

Aggregate the residual variance and pixel covariance (Equations (3) and (4))

Figure 4. k-NN variance workflow summary.

3. Results
3.1. Parameter Estimation

The RMSE, RMSE%, R2, and standardised bias results for modelling QMDBH, basal
area, stem density, and volume using a RF and weighted k-NN model with all field plots
and just majority Spruce field plots are presented (Tables 6 and 7). RF modelling for
QMDBH using all field plots resulted in a 3.95 cm RMSE, equivalent to 19%, with an R2

value of 0.7. The RMSE value increased to 4.83 cm when using the weighted k-NN model.
The QMDBH RMSE was 4.21 cm with a similar 19% RMSE% and R2 value of 0.69 when
using majority Spruce field plots. The RMSE value increased to 5.33 cm when using the
weighted k-NN model. For the other parameters, the RF RMSE values are all smaller
compared to the weighted k-NN model while the R2 values are all greater. All RMSE values
are based on pixel comparisons using a repeated cross-validation methodology. The mtry
and ntree values for the RF modelling were 9 and 500, respectively.

Table 6. Random Forest modelling results for all field plots (AF) and only using majority Spruce field plots (Spruce).

Parameter
AF Spruce

RMSE RMSE (%) R2 Bias RMSE RMSE (%) R2 Bias

QMDBH (cm) 3.95 19 0.70 0.0303 4.21 19 0.69 0.1179
Basal area (m2 ha−1) 9.95 22 0.67 0.0778 10.49 21 0.61 0.0775

Stems (ha−1) 420 28 0.62 1 409 27 0.69 8
Volume (m3 ha−1) 110 26 0.77 2 111 23 0.75 4

Table 7. Weighted k-NN modelling results for all field plots (AF) and only using majority Spruce field plots (Spruce).

Parameter
AF Spruce

RMSE RMSE (%) R2 Bias RMSE RMSE (%) R2 Bias

QMDBH (cm) 4.83 24 0.58 0.1141 5.40 26 0.54 0.1111
Basal area (m2 ha−1) 10.52 23 0.64 0.1380 11.23 23 0.57 0.4066

Stems (ha−1) 461 31 0.56 5 465 30 0.62 45
Volume (m3 ha−1) 121 29 0.72 3 132 28 0.65 7

The mean parameter estimates versus mean measured results are shown for each
parameter coloured by the number of field plots in each point (Figure 5). The mean
measured values are calculated for areas which contain at least ten field plots which means
there are 22 data points in this figure. For areas with 10–19 field plots, some underestimation
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is present for QMDBH (a) while both under and over estimation is present for basal area
(b). Approximately half of the data points for stem density lie outside the 20% error lines.
Overall, as the number of field plots increases the data point tends to be within the 20%
error lines for QMDBH, basal area, and volume.

Figure 5. Random forest estimated versus measured (a) QMDBH, (b) basal area, (c) stem density, and (d) volume for a
range of areas, a 1:1 line (solid), and 20% error lines (dashed).

3.2. Variance Estimation

The RSD for all parameters at a range of areas are presented (Figure 6a–d). The results
for all parameters have the same trend, which is, for any area, as the k value increases, the
RSD decreases. When using a k value of 2, the RSD is greater for areas less than 10–15 ha than
it is for areas greater than 15 ha. The difference in RSD from using a low k value, such as 2,
compared to a larger k value, such as 6, is greater for areas less than 10–15 ha compared to
areas greater than 15 ha.
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Figure 6. Relative Standard Deviation (RSD) for (a) QMDBH, (b) basal area, (c) stem density, and (d) volume for k values
between 2 and 7 and a range of areas.
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4. Discussion
4.1. Parameter Estimation

In this study, we estimated QMDBH, basal area, stem density, and volume using
two different machine learning algorithms: RF and k-NN. Using the optimum model of a
low RMSE and a high R2 value, the RF model was used to estimate the variance of each
parameter. The variance estimation uses a k-NN estimation technique, which is separate
from the modelling process. We investigated how k values between 2 and 7 and the size of
the small area affect the variance.

The QMDBH results can be difficult to place in an international context as few studies
have modelled QMDBH for the same species investigated here. However, a comparison
with other studies is still useful as our results are at the upper thresholds of the range of
values reported in the literature. An investigation of plantation conifers in Ontario, Canada
using ALS resulted in an RMSE of 11% with an R2 value of 0.83 [38]. Another ALS study of
mixed-conifer stands in northern Idaho, United States of America, obtained an R2 value
of 0.61 [39]. Furthermore, QMDBH estimates using ALS in Sweden for Norway spruce
(Picea abies) and Scots pine (Pinus sylvestris) plantation crops achieved an RMSE of 8.9% [40].
Although the reported RMSE% is comparably high to these studies, the differences in the
environment and species cannot be overstated as forests are highly fragmented in Ireland
with a large variation in age and growth rates across the country. Nonetheless, the R2

value of 0.70 from our results show that the model has captured the majority of variance
for QMDBH.

Modelling basal area is more common in the literature. For example, stand estimates
for areas dominated mainly by western red cedar (Thuja plicata) and western hemlock
(Tsuga heterophylla) using ALS and Landsat time series data showed an RMSE of 18% and
an R2 value of 0.75 [41]. Pine (Pinus radiata) estimates in New Zealand using ALS resulted
in an RMSE of 4.5% and an R2 value of 0.69 [42]. Basal area estimates in Sweden for
Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) using ALS results in an RMSE
of 15% and RMSE 10% respectively [43]. Standard deviations between 14.1 and 23.0% were
obtained for Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) in Norway [11].
Comparing our results to the above studies, the modelling results are on the upper scale of
what has been previously reported.

The RF modelling RMSE for stem density is 420 ha−1 (28%) with an R2 value of 0.62.
Although the R2 value can be considered a reasonable value, the RMSE and RMSE% are
too large to be considered useful in a commercial setting in Ireland. As a result, the linking
model has not effectively captured the stem density on the ground. Stem density has been
problematic for other studies due to the sub-dominant tree stems that do not reach the
upper canopy likely being missed in the lidar returns [38,44].

The volume results show a good comparison with other international studies such as
that in [45], the authors of which used national forest inventory data from Italy to model
volume using satellite imagery, microwave sensor data, a ALS derived CHM, in addition
to meteorological data. Their investigation resulted in an R2 value of 0.69 and an RMSE of
37.2% using an independent dataset. Other investigations for estimating volume attained
an RMSE of 27% and an R2 value of 0.67 for western red cedar (Thuja plicata) [41]; 19% and
11% at two previously mentioned sites in Sweden for Norway spruce (Picea abies) and Scots
pine (Pinus sylvestris) [43], respectively; and an R2 value of 0.46 for a mix of spruce and
pine [9]. Volume estimates for Norway spruce (Picea abies) were also modelled at a site in
Freiburg, Germany, using low-density ALS [15]. They obtained root mean squared distance
of 99% for their spruce volume model due to the complexity of the modelled area including
a diverse range of species. Calculation of root mean square distance is identical to RMSE.
They also modelled a combination of coniferous species together, which yielded better
results, an RMSE of 44.23% using a k-NN modelling approach. Similar to the basal area
results, the modelling results are on the upper scale of what has been previously reported.
Based on the results from the RMSE, RMSE%, R2, and bias (Tables 6 and 7), the RF model
estimates were used in the variance estimation.
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A graph of the mean measured versus mean estimated parameter values for a number
of areas shows that the model is able to produce estimates consistent with the measured
data (Figure 5a–d). There are a number of data points that have been underestimated
QMDBH (a) and volume (d), and also both under and over estimation basal area (b),
however the vast majority of points for QMDBH, basal area, and volume are all within
the 20% error lines. This graph also illustrates that as the number of field plots within an
area increases, the more likely it is to be within the 20% error lines for all parameter except
stem density. This result is not unusual as the mean measured value is being compared
to the mean estimated value for an area and so the areas are better estimated with more
field plots included. The lack of fit with the stem density is due to the limitations of the
linking model to capture sub-dominant stems which is also evident from the results in
Table 6. Nonetheless, the results for QMDBH, basal area, and volume adds further weight
to Table 6 to prove that the model has been able to accurately capture these parameters on
the ground. As the variance estimation relies on the linking model being able to describe
an area, this result will allow for confidence in the variance estimation results.

4.2. Variance Estimation

There is ample literature regarding the estimation of forest parameters using model-
based inference [46–49] and numerous which investigate increasing k values with decreas-
ing error estimates [13,15,23,36]. However, few studies have examined the effects of k and
the size of an area with respect to variance estimation of multiple pixel AOIs, making
this study a timely addition to the literature. The main benefit of utilising this variance
estimation technique is that a variance estimate can be obtained when aggregating multiple
pixels, which is not widely reported in the literature. Consequently, the effects of k and the
size of the AOI have not been investigated in depth in relation to variance estimation of
multiple pixel AOIs.

Note that the variance estimation relies on the capability of the model to accurately
capture the AOI, and so if the model does not capture the AOI, the variance estimation
will not be useful. This can be seen in Figure 6c where the variance estimation of stem
density is shown. The linking model in the parameter estimation showed poor correlation
with validation data and as a result was deemed to not have effectively captured the stem
density. The RSD values show this where the majority of areas between 10–15 ha have RSD
values of 20–40%, which is too large to be considered useful in an operational setting. The
RSD values improve when investigating larger areas, however the underlying model is
still the same and so does not represent a model better able to represent the study area.
This is why particular attention should be placed on training and validating the underlying
linking model.

The RSD for all parameters at a range of areal sizes show that as the k value increases,
the RSD decreases (Figure 6a–d). This result is not surprising as the k value is in the
denominator of Equations (1)–(3) in the variance estimation. Although the numerator
would increase due to the addition of another value for each equation as the k value
increases, the magnitude of the denominator is far more influential and so, as it increases,
the magnitude of Equations (1)–(3) decreases. This decrease is far more pronounced for
areas less than 10–15 ha in size. Areas greater than this are less affected by the change in
the value of k due to the greater value of N, the number of pixels, in the denominator of
Equation (4). Therefore, the dominant variable in estimating variance for areas less than
15 ha using this methodology is the value of k.

This does not mean any one AOI will have a lower RSD than any other AOI, just
based on the fact that it is a larger area, as different AOIs will have different characteristics
and therefore different variances. This is shown in the QMDBH graph for the AOI at
approximately 4 ha, in the basal area graph for the AOI at approximately 5.2 ha, and in
the volume graph for the AOI at 39 ha (Figure 6a,b,d), where AOI’s with a greater area
did not always obtain smaller RSD. Similar results using a different variance estimation
technique for forest parameters have also resulted in decreasing RSD with increasing area
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size, however, all of these studies have considerably larger ’small’ areas than the areas
presented within this study [50–52]. Studies that investigated similar sized small areas
showed consistent trends of decreasing RSD with increasing AOI size for volume [15,53].
A comparison of RSD between studies is not applicable as different AOI’s with different
species and stocking are not comparable. Nonetheless, the trend of increasing area sizes
with reducing variance estimates is consistent. This study therefore shows the applicability
of the k-NN variance estimation technique for a range of study areas and its utility in
estimating variance for multiple pixel AOI. Forest managers utilising this technique will
be able to make better management decisions as the addition of the associated parameter
estimate variance gives an enhanced description, and therefore understanding, of the AOI.

5. Conclusions

The conclusions from this investigation are threefold: First, the results from im-
plementing this methodology show that the parameter estimation of areas less than
10–15 ha in size yielded greater uncertainty than areas greater than 15 ha. Second, the
results from the k value analysis illustrated that as the k value increases, the variance, as
described by the RSD, decreases, and that this decrease is more prominent for smaller areas
(10–15 ha). Finally, as area increases, the variance decreases for any value of k albeit, not
indefinitely. These results illustrate the applicability of the technique to provide precise
variance estimates for small areas of multiple pixel AOIs. This work can be used as a
reference guide for researchers, forest managers, and inventory assessors when estimating
variance of forest attributes as it will allow for variance estimates of multiple pixel AOIs
and also how the variance is affected by the value of k and the size of the AOI. This work
also demonstrates the applicability of using a random forest model with this k-NN variance
estimation technique in another operational setting.
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