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Abstract: Mianyang City is located in the varied topographic areas of Sichuan Province in southwest-
ern China and is characterized by a complex geological background. This area is prone to disasters
and its varied topography is inconvenient for emergency water storage and supply. Groundwater
is essential for alleviating the demand for water and post-disaster emergency water supply in this
area. This study applied AHP to integrate remote sensing, geological and hydrological data into
GIS for the assessment of groundwater potential, providing a plan for the rational exploitation of
groundwater and post-disaster emergency water supply in the area. Nine factors, including the
spring calibration related to groundwater, were integrated by AHP after multicollinear checks. As a
result, the geology-controlled groundwater potential map was classified into five levels with equal
intervals. All the results were validated using borehole data, indicating the following: the areas
with yield rates of <1 t/d·m, 1–20 t/d·m, and 20–400 t/d·m accounted for 2.66%, 36.1%, and 39.62%,
respectively, whereas the areas with yield rates of 400–4000 t/d·m and >4000 t/d·m accounted for
only 20.88% and 0.75% of the overall area. The flexibility of this quick and efficient method enables
its application in other regions with a similar geological background.

Keywords: groundwater potential; GIS; RS; AHP; Mianyang City; Sichuan of southwestern China

1. Introduction

Groundwater is a valuable resource that is crucial for ecosystems and human civiliza-
tion, but population growth and agricultural expansion are placing increasing pressure
on groundwater resources that need to be managed rationally [1,2]. Mianyang City is a
varied topographic area of Sichuan Province in southwestern China. Several disasters,
such as earthquakes and landslides, have occurred in the area due to strong tectonic ac-
tivity [3]. The topography of the area makes the fast and efficient demand of emergency
water storage and supply necessary. Groundwater serves as an important source of water
and can effectively meet this demand [4], which is a key emergency water supply resource
during post-disaster reconstruction processes [5]. One of the most valuable advantages
of groundwater is that it is less susceptible to environmental contamination than surface
water, which is very helpful for both emergency water supply and domestic drinking
water [6]. However, the thorough exploration of groundwater resources is difficult due to
the economic and transportation conditions in the topographic areas where considerable
groundwater resources remain underutilized [7]. Therefore, assessing local groundwater
potential is essential for sustained development.

Groundwater exploration in the varied topographic area in the central part of Mi-
anyang City, Sichuan Province, is a challenging task (Figure 1). Traditionally, drilling
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tests and hydrogeological investigations have been widely used [8,9]. These methods are
suitable for identifying the characteristics of groundwater; however, they are very costly
and time-consuming as a means of establishing the distribution of groundwater resources
in a large-scale region [10–12]. Furthermore, groundwater can be monitored indirectly
using remote sensing (RS) techniques [13]. RS techniques offer repetitive coverage of an
area with the combination of different ranges of the electromagnetic spectrum, and they
are useful for obtaining spatiotemporal data of sizable areas in a short interval [14–16].
RS not only provides high-precision spatial-temporal observations, but also characterizes
features on the Earth’s surface, such as geomorphology and drainage patterns [17]. As a
result, RS has recently become popular for groundwater assessment because it can produce
quick and suitable guidelines and information about the occurrences and movements of
groundwater [11,18].
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Geographic information systems (GIS) are computer applications designed for the
acquisition, storage, analysis, modeling, archiving, and sharing of geographic informa-
tion [19]. GIS is a powerful tool for handling a massive amount of spatial data and can
be used in the decision-making process, based on which hydrologists can extract rea-
sonable variables to evaluate groundwater potential. Exploration using the integration
of RS and GIS has gained special attention recently because it is an economic and effi-
cient method [20,21]. Meanwhile, researchers have applied various methods of multiple-
criteria decisions to identify the impact of different factors in GIS-based groundwater
assessments [22,23], such as frequency ratios [24,25], random forest [26,27], logistic regres-
sion [28,29], neural network [30,31], and fuzzy logic [32,33]. Methods such as frequency
ratios and neural networks exhibit high accuracy, but they require a large amount of
groundwater information in the study area and are poorly applicable with insufficient
data [34,35]. The evaluation accuracy of machine learning methods such as random forest
and neural network is affected by the number and selection of mass samples, whereas the
inherent reasoning process and basis are difficult to explain [36]. Compared with the above
methods, the analytical hierarchical process (AHP) adopted in the present study is another
reliable and convenient method to delineate groundwater potential zones with a moder-
ate amount of data. AHP allows for the hierarchical structuring of decisions (to reduce
their complexity) and shows relationships between objectives (or criteria) and possible
alternatives [37,38]. AHP has clear decision criteria and a transparent decision process,
which makes it easy to share the decision process as a reference for other regions; it can
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also rely on rich experience to reveal the characteristics of groundwater accurately [39,40].
Several studies [41–44] have used AHP to determine the weights of factors based on a priori
information and various conditions. The present study firstly tried to use AHP to assess a
varied topographic area with a complex geological background, assimilating the RS data,
spring data, and other available geological data. Multiple factors related to the occurrence,
origin, distribution, and movement of groundwater were established based on these data
to reduce the limitation of single data and improve the accuracy of the assessment.

When assessing groundwater in varied topographic areas, the selection of factors in
current studies is considered as geology (e.g., lithology, soil type), topography (e.g., slope,
drainage density), and groundwater recharge (e.g., rainfall) [43,45,46]. Some studies also
include indicators related to groundwater (e.g., normalized difference vegetation index
(NDVI), land-use land-cover (LULC)) [24,33], whereas factors of fault lineament are also
included as geological conditions [22,27]. However, these factors reflect groundwater
indirectly, and the transformation between surface water and groundwater is not fully
understood. For reasonable assessment, seven factors from previous studies (rock, fault
density, slope, convergence index, drainage density, rainfall, and distance from rivers) are
all adopted, as is the enhanced vegetation index (EVI), which is a special factor in this
varied topographic area. The spring index, which is a visual representation of groundwater
conditions, is also innovatively established by assimilating actual spring data.

The purpose of this study was to conduct a detailed groundwater potential assessment
of varied topographic areas with complex geological backgrounds based on previous
studies and investigations. Additionally, it aimed to identify the important factors affecting
groundwater potential. Based on the collected data, including RS data, hydrological and
geological data, GIS was used to establish an AHP-based method for mapping groundwater
potential. Multicollinear checks and borehole-data standardization were used to validate
the results. Reasonable assessment and verification may ensure a reference for sustainable
groundwater development and the prudent management of emergency water supplies.

2. Materials and Methods

Based on the conventional geological, RS, and hydrological data in this varied region,
nine factors were taken into account: rock, fault density, spring index, slope, drainage
density, EVI, convergence index, rainfall, and distance from rivers. The weights of each
factor were determined using the AHP method after a multicollinear check. A groundwater
potential map was generated using overlay analysis and further validated with borehole
data. The methodology used to evaluate groundwater potential is illustrated in Figure 2.
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2.1. Study Area

The study area is located in central Mianyang City, Sichuan Province, China (Figure
1). Its longitude range is from 104◦11′E to 104◦38′E, and the latitude range is from 31◦34′N
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to 32◦N. The elevation ranges from a high of 2345 m in the northwest to a low of 501 m in
the southeast. The area is dominated by the northeast-oriented Longmenshan Fault, with
the Songpan-Ganzi Fold System in the west and the Sichuan Basin in the east. Complex
tectonic deformation has weakened the tectonic stress field in the region [47]. According to
the hydrogeological map obtained from the Geological Environment Monitoring Institute
of China Geological Survey, a large carbonate karst fissure of water is distributed in the
central part, and bedrock fissure water is mainly distributed in the northwest of the fracture
zone; unconsolidated strata pore water and clastic fracture water are mostly distributed in
the northeast and south (Figure 3) [48].
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Figure 3. Groundwater types in the study area.

The area experiences a humid, subtropical climatic condition with a mean annual
temperature of 16 ◦C and annual rainfall of over 1100 mm. Three Fujiang River tributaries
flow through the area, namely, the Anchang River, the Subao River, and the Tongkou River.

2.2. Evaluation Method
2.2.1. Weighting Method and Overlay Analysis

AHP, a useful multicriteria decision-making method, was used to assign weights to
each established factor for reasonable assessment [39]. We used previous knowledge to cate-
gorize the occurrence and movement of groundwater hierarchically and examine it through
the AHP technique [49]. The following steps were adapted to assign weights of the factors
using the AHP technique: (1) defining the goal (groundwater potential); (2) deciding the
factors about the occurrence and movement of groundwater and defining scaled weights
for each factor according to Saaty’s scale from 1 to 9 (Table 1); (3) establishment of pairwise
comparison metric based on the relative scale weights of selected factors; (4) calculating
the geometric mean of pairwise comparison matrix; (5) calculating the inconsistency index;
(6) obtaining the overall derived weights to the factors. The comparison scale weight
ratings are on a scale of 1–9. The normalized weights of all factors were examined for the
consistency ratio (CR) [40,50,51].
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Table 1. Saaty’s scale of preference between two factors in AHP.

Scale Degree of Preference Description

1 Equally When two parameters contribute equally to the objective
2 Intermediate Preference between 1 and 3
3 Moderately The judgment slightly to-moderately favor one parameter
4 Intermediate Preference between 3 and 5
5 Strongly The judgment strongly or essentially favors one parameter
6 Intermediate Preference between 5 and 7
7 Very strongly Very strong preference or importance
8 Intermediate Preference between 7 and 9
9 Extremely Quite preferred or quite important

The AHP pairwise comparison metric was developed as:

M =


m11 m12 . . . m1n
m21 m22 . . . m2n

...
...

. . .
...

mn1 mn2 . . . mnn

 (1)

where mnn represents the relative scale weight of pairwise factors.
The normalized weights were calculated from the matrix as:

Wn =

(
GMn

∑N
n=1 GMn

)
(2)

where GMn indicates the geometric mean of nth row elements which were calculated as:

GMn =
√

m1nm2n · · ·mnN (3)

The weights obtained from pairwise comparisons were verified based on consistency
ratio (CR) as [40]:

Consistency Ratio(CR) =
Consistency Index(CI)

Random Consistency Index(RCI)
(4)

The random consistency index values originate from Saaty’s standard, as listed in
Table 2. The consistency index values were calculated using:

CI =
λmax−n

n− 1
(5)

where λmax is the principal eigenvalue calculated through the eigenvector calculation
process. A CR of≤0.1 indicates that the AHP analysis should be continued, and if CR > 0.1,
it is necessary to modify the evaluation to determine the cause of inconsistency and then
correct it (until CR ≤ 0.1).

After the weights had been determined, the factor was normalized and then over-
laid using the weighted overlay method (spatial analyst tool) in ArcGIS to obtain the
groundwater potential values as:

GWP =
n

∑
i=1

(wi×vi) (6)

where GWP is the groundwater potential value, wi is the weight of each factor, and vi is
the normalized value of each factor.
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Table 2. Saaty’s consistency indices of randomly generated reciprocal matrices.

Order of the Matrix 1 2 3 4 5 6 7 8 9

RCI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

2.2.2. Validation

After the factors for groundwater potential assessment were decided, the multi-
collinearity among these factors needed to be validated. Multicollinearity implies that at
least one input parameter of a multivariate model is highly correlated with a combination
of other input parameters. The results in a nontrivial degree of accuracy in the model
output if one input parameter can be linearly predicted from another input parameter of the
multivariate model. Thus, the multicollinear problem of all factors needed to be checked
before running the regression model. To check the multicollinearity, linear regression
analysis for each factor was used, where one input factor was considered as the dependent
variable and the remaining input factors were considered as independent variables. The
R2 value of the regression for each factor was calculated. The multicollinearity among all
the factors was identified using the R2 value to calculate the tolerance and the variance
inflation factor (VIF) of the given input factors as [52,53]:

Tolerance = 1 − R2 (7)

VIF =
1

Tolerance
(8)

R2 measures the fit of the regression equation to the factors. The larger the R2, the
less the tolerance for multicollinearity, indicating that the factor is well fitted by the
combination of other factors and the multicollinearity is severe. The VIF is the degree
to which multicollinearity inflates the variance of the estimated regression coefficients
for the corresponding factors. Mathematically, multicollinearity in factors is a case of
extreme non-orthogonality. VIF > 10 (R2 > 0.9) indicates variance over 10 times as large
as the case of orthogonal predictors which means that these factors are not orthogonal
and independent of each other. So to eliminate multicollinearity, VIF does not exceed a
specified upper bound, i.e., VIF < 10, corresponding to the tolerance ≥0.10 [54,55]. Each
input factor was checked, and tolerance of <0.10 or VIF of ≥10 indicates multicollinear
problems [53]. Factors with multicollinear problems were excluded.

For the multicollinear check, 1000 points were randomly selected from the study area
using the “Create Random Points” tool (package: Data management tools; toolset: Feature
class), and data of nine factors were extracted from these points using “Extract Values
to Points” tool (package: Spatial analyst tools; toolset: Extraction) in ArcGIS software.
Moreover, 1000 samples of the study region were used to perform linear regressions, with
data for nine factors included in each sample. We then took turns to consider one factor
as the dependent variable and the remaining eight factors as independent variables. The
tolerance and VIF of nine linear regressions were calculated. The test was performed
using SPSS (v26) software, which is a common and widely used method to check the
multicollinearity of a GIS regression model.

After the final GWP was generated by overlay analysis, GWP was validated using
borehole, water source, and hydrogeological map data. The locations of boreholes and
water sources were marked on the map to compare them with the predicted results.

2.3. Data
2.3.1. Data Description

Multi-source data were collected to establish the various factors required in the AHP
technique, which included geological data, RS data, and hydrological data (Table 3). The
sources of geological data were the digital geological map provided by the National Geolog-
ical Archives of China [56] and the digital hydrogeological map provided by the Geological
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Environment Monitoring Institute of China Geological Survey [48]. The geological data
provide the geological background of the study area from a field survey, including rock,
faults, distribution and flow rate of springs, and distribution of groundwater types. Such
geological data are important to support this study of groundwater storage and move-
ment. RS data sources were ASTER-GDEM V2 [57] and moderate-resolution imaging
spectroradiometer (MODIS) [58], including the digital elevation model (DEM) and vege-
tation indices. The RS data can accurately reflect the surface indicators of groundwater
and topographic features of the study area related to the convergence and divergence of
groundwater. The hydrological data sources were the GSMaP satellite rainfall database and
Open Street Map (OSM) dataset, from which the data of rainfall and rivers can be obtained.
The GSMaP is a database of high-resolution global precipitation data developed by the
Japan Aerospace Agency [59]. OSM comprises data recorded by volunteers worldwide
and is updated in real-time [60]. Groundwater recharge in the study area can be reflected
by rainfall and rivers in these hydrological data. The spatial database of the present study
was reproduced using ArcGIS software with SAGA-GIS.

Table 3. Factors and data sources for groundwater potential assessment.

Category Factor Source Data Data Precision

Geology Rock Geological Map 1:200,000Fault density

Topography
Slope

ASTER-GDEM V2 30 mDrainage density
Convergence index

Hydrology Rainfall GSMaP 0.1◦ × 0.1◦

Distance from rivers Open Street Map

Indicators
Enhanced vegetation index Moderate-resolution Imaging

Spectroradiometer 250 m

Spring index Hydrogeological Map 1:200,000

The above different types of data were used to establish groundwater potential as-
sessment factors. Based on expert opinions and the previous literature, the selection of
factors needs to be based on the purpose of the study and the characteristics of the study
area [50]. Topographic, geological, and hydrological factors and groundwater indicators
are commonly used to assess groundwater potential [50–52,61–64]. The topographic factors
selected are slope, drainage density, and convergence index, which can influence high
surface runoff generation. Hydrological factors selected from the data are rainfall and
distance from rivers, which have important contributions to groundwater recharge. The
EVI can be an effective indicator of groundwater in varied topographic areas. For the
requirements of emergency water supply in varied topographic areas and the complex
geological background of the study area, not only are the rock and fault density selected,
but the direct spring index was established based on the distribution and flow rates of
springs. The spring index provides a visual representation of the groundwater conditions
in the study area. In a word, the occurrences and mobility of groundwater are explicitly or
implicitly determined/revealed by these factors, as described in Table 4 and below.

Slope is a key factor in groundwater recharge. The infiltration of surface water is
inversely correlated with slope. The slope determines surface water’s ability to either
remain on the surface long enough to infiltrate into the ground or continue to flow [61].
The steep slopes result in a high water velocity and rapid runoff, which in turn increase
erosion rates [52,65]. Thus, steep slopes yield poor groundwater recharge. The slope was
derived from ASTER-GDEM V2 data with a spatial resolution of 30 m [57].

Other than the slope, many other factors are related to topography, such as curvature,
convexity, etc. [29,64]. Considering the problem of multicollinearity, only the convergence
index was used together with the slope. The convergence index reflects the concavity or
convexity of a landscape at a smaller spatial scale, and it indicates the extent to which
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adjacent cells point to the center cell. A negative convergence refers to concavities (e.g., val-
leys), whereas positive values reflect convex features (e.g., ridges) [66,67]. The convergence
index was calculated using SAGA-GIS software from ASTER-GDEM V2 data [57,68].

Table 4. Description of groundwater potential assessment factors.

Factor Description Characteristics

Rock Geological formations Regional strata affect the porosity and permeability of aquifers.
Fault density Line density of faults The faults are conducive to the infiltration of groundwater.

Slope The degree of steepness of the
surface unit

The infiltration of surface water is inversely correlated with
the slope.

Drainage density The channel length per unit area Seepage from surface water channels facilitates
groundwater recharge.

Convergence index The concavity or convexity of the
landscape at a smaller spatial scale.

A negative convergence refers to concavities (e.g., valleys),
whereas positive values reflect convex features (e.g., ridges).

Rainfall Annual rainfall Rainfall is an important source of groundwater recharge.

Distance from rivers The distance of each grid to the
nearest river Aquifers close to rivers exhibit high recharge rates.

Enhanced
vegetation index

Measurements of surface
vegetation condition

Vegetation is a surface indicator of groundwater in varied
topographic areas.

Spring index Index calculated from actual spring
locations and flow rates

The spring index provides a visual representation of the
groundwater conditions in the study area.

Rivers are important for groundwater recharge in varied topographic areas. Aquifers
close to rivers exhibit high recharge rates [66]. As the distance from rivers increases, the
probability of groundwater occurrence decreases [69,70]. The data of rivers were obtained
from the OSM dataset, and the distance from rivers was generated using the “Euclidean
distance function” in ArcGIS. Furthermore, the drainage density of surface water channels
was used, as seepage from channels facilitates groundwater recharge [34,51]. Drainage
density represents the channel length per unit area and is calculated using [71]:

Dd= L/Ad (9)

where L is the length of channels, and Ad is the area of the drainage basin. A high channel
density yields high groundwater potential. The surface water channels were extracted
from ASTER-GDEM V2 data in SAGA-GIS based on the flow and flow direction [57,68],
and this factor was prepared using the line density analysis tool in ArcGIS.

Aquifers are usually recharged by effective rainfall. The rate and distribution of
rainfall significantly influence hydrogeological conditions [62]. High rainfall is associated
with increased groundwater potential. Rainfall data of the study area for 2020, with a
resolution of 0.1◦ × 0.1◦, were collected from the GSMaP satellite rainfall database [59].

The area is on the Longmenshan Fault, which significantly influences groundwa-
ter. Faults result in notable secondary porosity and permeability, providing a pathway
for groundwater to flow into the subsurface [46]. The high fault density in varied topo-
graphic areas is favorable for groundwater potential. The data of faults were extracted
from the China National Digital Geological Map (Public Version at 1:200,000 Scale) Spa-
tial Database [56]. The fault density was calculated using the line density analysis tool
in ArcGIS.

Vegetation is a proper surface indicator of groundwater in varied topographic areas [33].
Compared with other vegetation indices such as the NDVI, EVI enhances the vegetation
signal and can accurately characterize the spatial and temporal information of vegetation
in areas with high vegetation cover [72]. The EVI dataset was collected from the MODIS
product named MOD13Q1, which has a spatial resolution of 250 m [58]. The EVI was
obtained for April when vegetation growth is abundant.

Geological formations affect the porosity and permeability of aquifers and play a piv-
otal role in groundwater recharge and occurrence [50,73]. Thus, regional rock is considered
a key factor affecting groundwater recharge, quantity, and quality [73]. The data of rock
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were also extracted from the China National Digital Geological Map (Public Version at
1:200,000 Scale) Spatial Database [56].

The distribution and flow rate of springs are often used to accurately gauge ground-
water. For reasonable assessment in this area with a complex geological background, the
location and flow rate of actual springs are assimilated to form the spring index. A high
spring index indicates high groundwater potential. The distribution and flow rate of
springs were extracted from the hydrogeological map provided by the Geological Environ-
ment Monitoring Institute of China Geological Survey [48]. The spring index was created
through the following four steps: (1) using the “Euclidean distance function” in ArcGIS to
calculate the distance from each pixel to the nearest spring; (2) normalizing the distance to
the nearest spring, with low weights for long distances and high weights for short ones;
(3) using the “Euclidean allocation function” in ArcGIS to assign each pixel to the flow rate
of the nearest spring; and (4) multiplying the normalized distance by the logarithm of the
flow rate at each pixel to obtain the spring index as:

Spring index = D × lg(F) (10)

where D is the normalized distance to the nearest spring, and F is the flow rate of the
nearest spring. Due to the wide range of flow rate values, the logarithm of the spring flow
rate was applied.

2.3.2. Factor Analysis

The nine factors were integrated using ArcGIS software. Each dataset was converted
into a grid format with 30 m spatial resolution for use in the groundwater inventory of the
study area (Figures 4 and 5).

The slope ranges from 0◦ to 75◦. Most of the areas have slopes of less than 20◦ (gentle
slope), and the slopes in the varied topographic areas are mainly less than 50◦. Steep slopes
were assigned low weights when normalized. The convergence index ranges between
−97.742 and 96.436. Negative values were assigned high weights at normalization.

Annual rainfall was mapped using the ordinary kriging interpolation technique in
ArcGIS. Rainfall in this area tends to be high in the west and low in the east. The maximum
annual rainfall is 1467 mm, and the range of rainfall spans 188 mm.

The EVI values range from 0.14 to 0.77 in this area. An EVI higher than 0.2 represents
vegetation, and the higher the EVI value, the denser the vegetation. High EVI values were
assigned high weights at normalization.

The drainage density ranges from 0.304 km/km2 to 1.189 km/km2. The high drainage
density occurs near perennial streams (Tongkou, Anchang, and Subao Rivers) and was
assigned a high weight when normalized. Furthermore, the farthest distance is 9847 m,
and the average distance is 2865 m in the area. The close distances were assigned high
weights at normalization.

The rocks were divided into four classes and assigned weights (10, 40, 70, 100), with a
high weight (100) representing high groundwater potential and a low weight (10) repre-
senting low groundwater potential. A part of the high-weight area (100) comprises young
alluvium, most of which are riverbed and flood plain gravel alluvium, as well as some
slope alluvium. Another part of the high-weight area consists of Middle Triassic strata and
Permian strata, which are mainly composed of limestone, shale, and dolomite, and karst
groundwater is highly developed. The low-weight area (10) includes Jurassic Middle strata
and Silurian strata, which have limited infiltration and groundwater recharge capacity.

The values of fault density range from 0 to 1.39 km/km2. The high fault density was
assigned a high weight when normalized. Moreover, the spring index varies from −1.7 to
3. High spring index values are mainly observed in the southwest and east, whereas the
values are low in the northeast.
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3. Results
3.1. Multicollinear Analysis

The multicollinear analysis results are shown in Table 5. The results demonstrate VIF
values less than 10 and tolerance values exceeding 0.1 for each factor (ρ < 0.01 and <0.05,
respectively), indicating no collinearity among the nine factors used in this study; therefore,
there was no significant uncertainty in the model results.

Table 5. Collinearity assessment results for the factors.

Factor Tolerance VIF Factor Tolerance VIF

1 Rock 0.816 1.225 6 EVI 0.805 1.242
2 Fault density 0.936 1.068 7 Convergence index 0.984 1.016
3 Spring index 0.739 1.353 8 Rainfall 0.871 1.148
4 Slope 0.909 1.100 9 Distance from rivers 0.783 1.277
5 Drainage density 0.782 1.279
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3.2. Groundwater Potential Map

The CR of the factors was calculated before overlay analysis (Table 6). The CR value
was less than 0.1, indicating that the judgment matrix was valid and consistent. The nine
normalized factors were overlaid based on the obtained weights (Table 6), and the final
GWP was created by overlay analysis (Equation (6)).

Table 6. Pairwise comparison matrix for the factors and consistency validation.

Rock SL CI SI FD DD DR RAIN EVI Priority λmax CI CR

Rock 1 1 9/8 9/8 9/7 9/6 9/6 9/5 9/4 0.145 9 0 0
SL 1 1 9/8 9/8 9/7 9/6 9/6 9/5 9/4 0.145
CI 8/9 8/9 1 1 8/7 8/6 8/6 8/5 8/4 0.129
SI 8/9 8/9 1 1 8/7 8/6 8/6 8/5 8/4 0.129
FD 7/9 7/9 7/8 7/8 1 7/6 7/6 7/5 7/4 0.113
DD 6/9 6/9 6/8 6/8 6/7 1 1 6/5 6/4 0.097
DR 6/9 6/9 6/8 6/8 6/7 1 1 6/5 6/4 0.097

RAIN 5/9 5/9 5/8 5/8 5/7 5/6 5/6 1 5/4 0.081
EVI 4/9 4/9 4/8 4/8 4/7 4/6 4/6 4/5 1 0.065
Sum 6.889 6.889 7.75 7.75 8.857 10.333 10.333 12.4 15.5

SL: slope; CI: convergence index; CR: consistency ratio; SI: spring index; FD: fault density: DD: drainage density; DR: distance from rivers;
RAIN: rainfall.

In this varied topographic area, we find the geological conditions that are most
important for groundwater potential estimation. This area was divided into five categories
(very low, low, moderate, high, and very high groundwater potential zones) using the
grading method with equal intervals (Figure 6). This was attributed as 0.26–0.37 (very
low), 0.37–0.48 (low), 0.48–0.6 (moderate), 0.6–0.71 (high), and 0.71–0.82 (very high). The
data of six boreholes and three water supply sources were collected from the Geological
Environment Monitoring Institute of China Geological Survey to validate the GWP. The
borehole data include the yield rate and the drawdown, which was converted into the yield
rate per unit drawdown for convenient comparison. Water supply sources are divided
into three levels according to the water supply capacity, namely level 1 (500–5000 t/d),
level 2 (5000–20,000 t/d), level 3 (>20,000 t/d). The results of the comparison are shown in
Table 7. A correlation analysis between GWP and spring flow rates was performed, where
the logarithm of the spring flow rate was applied due to the wide range of flow rate values
(Figure 7). The GWP in the study area is positively correlated with the flow rates of springs,
while the distribution and flow rates of springs correspond well with the groundwater
potential zones (Figures 6 and 7). The borehole yield rate exhibits a strong exponential
relationship with the GWP (Figure 7). The R2 is 0.917 and the RMSE is 329.03 t/d·m,
implying that GWP is a reasonable predictor of the actual groundwater potential, but it is
still biased by the outliers. The groundwater potential zones approximately correspond to
the yield rates as very low (<1 t/d·m), low (1–20 t/d·m), moderate (20–400 t/d·m), high
(400–4000 t/d·m), or very high (>4000 t/d·m).

Table 7. Comparison of borehole yield rate, water source level, and groundwater potential values.

Yield (t/d·m) GWP Potentiality Water Source Level GWP Potentiality

2 0.48 Low 2 0.62 High
41.8 0.58 Moderate 3 0.69 High

148.3 0.59 Moderate 3 0.73 Very high
468.6 0.63 High

1464.4 0.64 High
2541.9 0.69 High
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(b) regression of the logarithm of spring flow rates and GWP.

Water sources can only roughly reflect groundwater potential because the selection
usually involves the consideration of surface water and groundwater. The area contains
one level 2 water source and one level 3 water source located in high groundwater potential
zones, and another level 3 water source situated in a very high groundwater potential
zone. The comparison suggests that the GWP has a positive correlation with the water
source level.

4. Discussion

Among the factors for evaluating groundwater potential in varied topographic areas,
geological and topographic factors (e.g., rock, slope) are often assigned high weights,
whereas factors for groundwater recharge and faults (e.g., fault density, rainfall) are as-
signed either high or low weights depending on regional conditions [46,61,62]. Based on
Table 6, rock, slope, and convergence index are assigned high weights, whereas fault den-
sity is assigned a high weight due to the Longmenshan Fault. The factors for groundwater
recharge are given a relatively low weight because of the sparse rivers and insufficient
accuracy of rainfall data. The spring index and EVI are indicators of groundwater for
complex geological backgrounds. The spring index can effectively reflect the groundwa-
ter condition and is assigned a high weight. In general, geological factors (rock, fault
density) and topographic factors (slope, convergence index) are more dominant in varied
topographic areas than in flat areas in relation to the assessment of groundwater potential.

Based on the results, approximately 2.66% and 0.75% of the area exhibits yield rates
of <1 t/d·m and >4000 t/d·m, respectively. In addition, approximately 36.1%, 39.62%,
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and 20.88% of the area are identified as yield rates of 1–20 t/d·m, 20–400 t/d·m, and
400–4000 t/d·m, respectively.

Compared with the groundwater types (Figure 3), the map of GWP shows a more de-
tailed distribution of groundwater. GWP in bedrock fissure water areas tends to be low, and
it can even be very low with yield rates <1 t/d·m in areas with very high elevation. Bedrock
areas are not recommended for centralized water supply due to limited transportation.
Clastic fracture water areas are located in the piedmont zone with low terrain, where have
mostly moderate groundwater potential, and even high groundwater potential in areas
close to rivers. Although these areas are indeed easy to exploit, the spring index indicates
that there are still zones with low and very low groundwater potential and the yield rates
<20 t/d·m in the areas with uplifted terrain (high slopes, positive convergence index). The
unconsolidated strata pore water is distributed in the alluvium with a water-rich loose
structure. These areas are ideal groundwater exploitation sites, corresponding to high yield
rates. The areas with carbonate karst fissure of water are distributed along the faults that
have above moderate groundwater potential and are suitable groundwater exploitation
sites in varied topographic areas. Around the aquiclude, the map exhibits a staggered
distribution of high and very high groundwater potential zones mixed with moderate and
low groundwater potential zones due to water-blocking faults. These water-blocking faults
separate the aquifer and the aquiclude, thus enriching the karst groundwater in the aquifer;
however, the carbonate and clastic rocks are interbedded in the aquiclude, without the karst
being well developed. Due to this property of water-blocking faults, the aquiclude can be
an important indicator for finding karst aquifers despite its low groundwater potential.

The groundwater recharge in the study area originates from both rainfall and surface
water. Correspondingly, the western area, exhibiting notably higher rainfall, has more zones
with high and very high groundwater potential than the eastern area. Furthermore, high
and very high groundwater potential zones are concentrated in the vicinity of Anchang
River, Subao River, and Tongkou River in the southeast. These zones are situated in valleys
with low slopes and concave topography, which promote groundwater convergence. The
valleys adjacent to these rivers are often river floodplains and terraces with water-rich
loose aquifers. In addition, faults strongly influence groundwater in varied topographic
areas. Substantial karst groundwater with very high groundwater potential develops along
the faults. The properties of faults also affect groundwater distribution, as the aquifers vary
markedly in groundwater potential when a water-blocking fault is developed.

The results show that the integration of a moderate amount of multi-source data using
the AHP method can reasonably assess varied topographic areas with complex geological
backgrounds. The flexibility of this method allows us to modify the weights of the factors
and their logical nature is generic, so we can apply the same method in other regions with
suitable modifications. The method may be used for varied topographic areas with similar
geological backgrounds, in which geological and topographic factors may be dominant
and factors established on high-precision hydrological data may be assigned high weights.
However, the method still has some limitations. The AHP is a knowledge-driven process and
therefore may inhibit some errors in its prediction [52]. Furthermore, the nine factors are still
inadequate for groundwater evaluation, despite the assimilation of the spring index. Some
factors not adopted by the study, such as LULC, aquifer thickness, depth to groundwater,
hydraulic conductivity, and soil type, all have important effects on groundwater potential.
In addition, the accuracy of the rainfall data used in the study was not high. In the future,
the GWP can be improved using more high-precision data and considering all these factors.

5. Conclusions

In this study, a GIS-based method using AHP was adopted to identify groundwater
potential zones in the central varied topographic area of Mianyang City. Topographic factors
(slope, convergence index, and drainage density), geological factors (rock and fault density),
groundwater recharge factors (rainfall and distance from rivers), and EVI were established
based on the previous literature. Considering the complex geographical background of the



Remote Sens. 2021, 13, 4684 15 of 19

study area, the spring index was established by assimilating the spring data, the addition of
which effectively increased the accuracy of the GWP. These factors were integrated to provide
a reasonable groundwater potential assessment based on multi-source data. The available
borehole data and multicollinear checks were used to validate the effectiveness of the GWP.
The results show that the GWP can reasonably reflect the distribution of groundwater to
a certain extent. In this assessment, rock, slope, convergence index, and fault density are
important groundwater potential factors, whereas the drainage density, distance from rivers,
and rainfall are relatively minor factors. The flexibility of this method allows us to modify
the weights of the factors, and their logical nature is generic; thus, the same method can be
applied in other regions with suitable modifications. For groundwater assessment in areas
with different geological conditions, factors related to geology and topography are always
important; however, the weights of faults and groundwater recharge need to be adjusted
according to regional conditions. The proposed approach may be referred to apply in most
varied topographic areas with different geological backgrounds, whereas factors established
based on high-precision hydrological data may be assigned high weights.

The results suggest approximately 20.88% and 0.75% of the area exhibit high and very
high groundwater potential, maybe corresponding to the yield rates of 400–4000 t/d·m
and >4000 t/d·m. The groundwater types in the high and very high groundwater potential
zones mainly consist of unconsolidated strata pore water and carbonate karst fissure of wa-
ter, both of which are ideal groundwater sources. The recommended sites for groundwater
exploitation and emergency water supply are located in valleys and fracture areas near
Anchang River, Subao River, and Tongkou River, where the fracture areas are ideal ground-
water sources in varied topographic areas. For groundwater exploitation and emergency
water supply needs in bedrock areas, places close to rivers and in depressed terrain may
be appropriate. The results of this research contribute to the comprehensive management
of groundwater exploration and the exploitation of groundwater sources, and can also
provide an effective plan for emergency water supply. The approach in this study can be
a reference for other areas requiring groundwater sources. Policymakers can effectively
analyze the results of groundwater assessment for rational management.
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Appendix A

Table A1. The strata of the study area and their description.

Stratum Abbreviation Description

Quaternary Holocene modern
fluvial alluvium Qal

4−2 Sand and gravel.

Quaternary Holocene floodplain terrace Qal
4−1 Clayey sand and sandy pebble alluvium.

Quaternary Holocene deluvial and
alluvial deposits Qdla

4 Deluvial and alluvial deposits.

Quaternary Middle Pleistocene
Ya’an formation Qfgl

2−1
Alluvium and diluvium of clay and gravel pebbles.

Lianhuakou formation of Upper Jurassic J3l Deposition of conglomerate, sandstone, and mudstone. The
bottom is often a very thick gravel layer.

Suining formation of Middle Jurassic J2sn Mudstone, argillaceous siltstone, sandstone, marl,
and conglomerate.Shaximiao formation of Middle Jurassic J2s

Qianfoyan formation of Middle Jurassic J2q
Lower part of Xujiahe formation of

Upper Triassic T3x1 Sandstone, siltstone, and shale.

Tianjingshan formation of Middle Triassic T2t The upper limestone is intercalated with dolomitic limestone and
calcareous dolomite, and the lower dolomite is intercalated with
limestone, dolomitic limestone, and argillaceous dolomite.

Jialingjiang formation and Leikoupo
formation of Middle Triassic T2j + l

Feixianguan formation and Tongjiezi
formation of Lower Triassic T1f + t

The upper part is shale and argillaceous limestone; the lower part
is interbedded with mudstone and siltstone; the bottom is
limestone. The middle and upper parts are argillaceous strata.

Upper Permian P2 Limestone intercalated with carbonaceous shale and
calcareous shale.Lower Permian P1

Huanglong group and Chuanshan group of
Upper and Middle Carboniferous C2+3 Limestone, intercalated with shale and iron sandstone at the

lower part.
Zongchanggou group of

Lower Carboniferous C1zn

Tangwangzhai group of Upper Devonian D3tn Dolomite intercalated with limestone and dolomitic limestone.
Guanwushan formation, Baishipu group,

Middle Devonian D2gn Limestone, sandy limestone, and sand shale.
Yangmaba formation, Baishipu group,

Middle Devonian D2y

Ganxi formation, Baishipu group,
Middle Devonian D2g Upper siltstone, quartz sandstone, shale intercalated with

argillaceous limestone and limestone. The lower quartzite
sandstone is intercalated with siltstone and carbonaceous shale.Pingyipu group of Lower Devonian D1pn

The first part of the third subgroup, Maoxian
group, Upper and Middle Silurian S2−3mx3−1 Sericite phyllite, sandstone, slate with limestone.

The second subgroup of Maoxian group,
Upper and Middle Silurian S2−3mx2 Sandy limestone, limestone, phyllite, sandstone.

The first subgroup of Maoxian group, Upper
and Middle Silurian S2−3mx1 Shale intercalated with limestone and phyllite.

Luojiaping group and Shamao group of
Upper and Middle Silurian system S2−3 Shale mixed with sandstone and limestone.

Longmaxi group of Lower Silurian S1 ln Carbonaceous slate and siliceous rock.
Baota formation of Middle Ordovician O2b Marl, argillaceous limestone, limestone.

Qingping formation of Lower Cambrian ∈1 c Siltstone, siliceous rock, phosphorous marl, and
phosphorous limestone.

Qiujiahe formation of Upper Sinian Zbq Shale, siliceous rock, dolomite, and limestone.
Diabase dyke βµ

Unexplored strata at rivers or lakes unknown
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