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Abstract: The interferometric synthetic aperture radar (InSAR) technique is widely utilized to
measure ground-surface displacement. One of the main limitations of the measurements is the
atmospheric phase delay effects. For satellites with shorter wavelengths, the atmospheric delay
mainly consists of the tropospheric delay influenced by temperature, pressure, and water vapor.
Tropospheric delay can be calculated using numerical weather prediction (NWP) model at the same
moment as synthetic aperture radar (SAR) acquisition. Scientific researchers mainly use ensemble
forecasting to produce better forecasts and analyze the uncertainties caused by physic parameteriza-
tions. In this study, we simulated the relevant meteorological parameters using the ensemble scheme
of the stochastic physic perturbation tendency (SPPT) based on the weather research forecasting
(WRF) model, which is one of the most broadly used NWP models. We selected an area in Foshan,
Guangdong Province, in the southeast of China, and calculated the corresponding atmospheric delay.
InSAR images were computed through data from the Sentinel-1A satellite and mitigated by the
ensemble mean of the WRF-SPPT results. The WRF-SPPT method improves the mitigating effect
more than WRF simulation without ensemble forecasting. The atmospherically corrected InSAR
phases were used in the stacking process to estimate the linear deformation rate in the experimental
area. The root mean square errors (RMSE) of the deformation rate without correction, with WRF-only
correction, and with WRF-SPPT correction were calculated, indicating that ensemble forecasting can
significantly reduce the atmospheric delay in stacking. In addition, the ensemble forecasting based
on a combination of initial uncertainties and stochastic physic perturbation tendencies showed better
correction performance compared with the ensemble forecasting generated by a set of perturbed
initial conditions without considering the model’s uncertainties.

Keywords: interferometric synthetic aperture radar; atmospheric correction; numerical weather
prediction model; ensemble forecasting; stochastic physic perturbation tendency; weather research
forecasting; stacking

1. Introduction

Interferometric synthetic aperture radar (InSAR) is a modern technique that has been
utilized to identify displacement [1,2], volcano activity, etc. [3,4]. However, measurements
from InSAR are usually influenced by the phase delay in the atmosphere, which could
reduce the accuracy of subsidence information. A change in humidity of around 20 percent
can exist in some extreme cases. Such a change can severely influence the accuracy of
the InSAR technique and can even result in errors of up to 10 cm when measuring dis-
placement [5]. Therefore, when we require a high level of accuracy under some specific
circumstances, it is necessary to mitigate the undesirable atmospheric effects.
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Atmospheric delay consists of two major components: the ionospheric effect and the
tropospheric effect [6]. The ionospheric delay is dispersive [7], meaning that it is inversely
proportional to the signal frequency. Longer wavelength signals, especially P-band and
L-band signals, are impacted severely by the ionosphere. Many mature methods are used in
InSAR processing to remove the ionospheric influence. The most widely used approach is
the split-spectrum method. After splitting the range spectrum, the original interferometry
image can be divided into two sub-images with different frequencies. Then, the ionospheric
delay can be calculated.

For satellites with shorter wavelengths (e.g., Envisat and Sentinel-1A), the ionospheric
impact is often neglected or estimated by external data [8]. The tropospheric effect has been
more widely taken into account for accurate displacement monitoring. Tropospheric de-
lay [9] is influenced by variations in temperature, pressure, and water vapor over time and
in space. Many studies have focused on different methodologies to mitigate tropospheric
delay. One method relies on the correlation between the delay and topographic eleva-
tion [10,11]. Unfortunately, if the phase of subsidence is similar to the atmospheric delay,
the deformation and atmospheric contribution become more indistinguishable. Another
approach [12,13] uses auxiliary datasets such as from the Medium-Resolution Imaging
Spectrometer (MERIS) [14] and from the Moderate-Resolution Imaging Spectroradiometer
(MODIS) [15]. However, this method is limited in several aspects: both MERIS and MODIS
data have limitations in spatial coverage on cloudy days; the individual MODIS sensors
have a large temporal gap when obtaining observational data, which means poor time
resolution; and MERIS stopped working in 2012. By integrating the water vapor content
from the sensor to the ground, global positioning system (GPS) data have also been suc-
cessfully taken advantage of to mitigate atmospheric delay. However, GPS has a sparse
spatial distribution, and this method needs spatial interpolation.

Recent studies have focused on the weather-based methods [12] which are more
feasible and have more potential. These methods rely on weather parameters (e.g., pressure,
temperature, and relative humidity) derived from meteorological reanalysis datasets, such
as ERA-Interim [16,17] and ERA5 [18] obtained from the European Center for Medium
Range Weather Forecasts (ECMWF); or the forecasting products of numerical weather
prediction (NWP) models, such as the Fifth-Generation Penn State/National Center for
Atmospheric Research (NCAR) Mesoscale Model (MM5) [13], the mesoscale analysis
model [19,20] from the Japanese Meteorologic Agency (MANAL), and the weather research
and forecasting (WRF) model [21–24]. NWP models can integrate the water vapor content
at the same moment as synthetic aperture radar (SAR) acquisitions, regardless of the
presence of clouds.

However, the accuracy of the prediction can be influenced by the input data and the
model itself [25]. The ensemble technique is considered a promising approach for obtaining
better predictions. Previous studies have generated ensembles through variations in the
initial states, which were later found to be insufficient for representing forecast uncertainties.
In addition, the model uncertainty has been taken into consideration and efforts have been
made to reasonably reduce the model errors [26,27] in recent years. Some researchers use a
multi-model ensemble method and take the overall uncertainty from different models into
consideration, or use a multi-physics scheme in a single model. Other ensemble approaches
have focused on stochastic physics parameterization, introducing perturbations into the
equations of the NWP models. Some researchers have made efforts to take advantage of
the stochastic total tendency perturbation (STTP) scheme, which represents the uncertainty
concerning both the physics and the dynamics in a single model. Some studies have utilized
the scheme of stochastic physic perturbation tendency (SPPT), where the uncertainty is
related to the total model physical process [28]. In addition, another approach has been used
to present the uncertainty in the stochastic kinetic energy backscatter (SKEB) scheme [29].
Random patterns are added to the forecast model to perturb the wind component and
potential temperature. By considering the different sources of uncertainties and errors, the
ensemble mean could outperform deterministic forecasts [30].
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In this study, we took advantage of the ensemble forecasting method to enhance the
performance of atmospheric mitigation for the InSAR technique. The experimental area is
located in Foshan, Guangdong Province, in the southeast of China. InSAR images were
computed through data from the Sentinel-1A satellite. We chose the WRF model as the base
model for integration. The SPPT scheme was added to the WRF model to perturb the total
parameterization tendency of the physics packages for the wind, potential temperature,
and relative humidity. The water vapor content was then integrated at the SAR acquisition
time to correct the respective InSAR images. Finally, the atmospherically corrected phases
were employed in InSAR stacking to obtain the linear deformation rate of this area.

This manuscript is organized as follows: the background is introduced in Section 1;
Section 2 describes the experimental dataset and the WRF-SPPT ensemble method; Section 3
shows the mitigation results achieved in the process of stacking; Section 4 analyzes and
discusses the corrected results; and the conclusions are presented in Section 5. Finally, the
Appendix A shows a comparison between different WRF-related methods considering the
uncertainties in the analysis and forecasting products used in the initial state.

2. Materials and Methods
2.1. Experimental Dataset

In this experiment, we used the area of Foshan, Guangdong Province, in the southeast
of China, which is outlined by a red rectangle in Figure 1.

Figure 1. The experimental area in Foshan.

We used 13 SAR images from the Sentinel-1A satellite for stacking. The data are given
in IW beam mode (path 11, frame 71). Additionally, the flight direction was ascending. The
acquisition dates are listed in Table 1.

Table 1. The acquisition dates of 13 synthetic aperture radar (SAR) images for stacking.

13 December 2017 25 December 2017 8 December 2018
20 December 2018 13 January 2019 25 January 2019
28 October 2019 9 November 2019 3 December 2019

15 December 2019 27 December 2019 20 January 2020
1 February 2020
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2.2. Atmospheric Phase Delay in InSAR
2.2.1. InSAR Analysis

The phase observed by InSAR can be decomposed into different parts as follows:

∆ϕint = ∆ϕtopo + ∆ϕorbit + ∆ϕde f o + ∆ϕatm + ∆ϕnoise (1)

where ∆ϕint represents the interferometric phase between master and slave SAR images.
∆ϕtopo, ∆ϕorbit, ∆ϕde f o, ∆ϕatm, and ∆ϕnoise are the topographic phase, the orbit phase
derived from the curvature of the Earth, the phase of surface subsidence in the radar
line-of-sight (LOS) direction, the atmospheric delay phase, and the phase noise resulting
from decorrelation of the InSAR signals, respectively. The goal of the InSAR technique is
to obtain the surface subsidence. Therefore, the other components in Equation (1) should
be removed. ∆ϕtopo can be removed by simulating a phase from a a digital elevation
model (DEM) and by subtracting it. ∆ϕorbit can be eliminated by utilizing the precise orbit
data. ∆ϕnoise can be removed by filtering. Next, we discuss the phase contribution of the
atmosphere ∆ϕatm in detail in this manuscript.

2.2.2. Atmospheric Phase Delay with Integration Method

The refractivity of the atmosphere [12,13,16] can be divided into different sections as
follows:

Nall = k1
P0

T
+
(

k2
e
T
+ k3

e
T2

)
−
(

4.03× 107 ne

f 2

)
+ 1.4W (2)

where P0, T, and e are the pressure (hPa), the temperature (K), and the water vapor’s
partial pressure (hPa), respectively. f is the radar frequency in hertz and ne represents
the electron number density per cubic meter. W is the liquid water content in grams
per cubic meter. k1 = 77.6 KhPa−1, k2 = 70.4 KhPa−1, and k3 = 3.75 × 105 K2hPa−1 are
empirical coefficients [5]. The first part in Equation (2) is the hydrostatic component, which
is determined by air pressure and temperature. The second part is the integrated water
vapor (IWV) in the atmosphere [31]. The third component represents the ionospheric effect.
The fourth component is described by the effect of the liquid water.

By integrating over the atmospheric refractivity along the LOS direction, the atmo-
spheric phase delay effects in Equation (2) are represented below:

Ld =
1

106 cos θinc

∫ ∞

0
Nalldh =

1
106 cos θinc

∫ ∞

0

(
Nhydro + Nwet + Niono + Nliquid

)
dh (3)

where Ld represents the total delay and θinc is the ray’s incidence angle. Nhydro, Nwet,
Niono, and Nliquid are the partial refractivity associated with the hydrostatic delay, the wet
delay, the ionospheric delay, and the liquid delay, respectively. The ionospheric delay
significantly affects the signals with longer wavelengths but is often neglected for satellites
with shorter wavelengths. Moreover, the spatial variation in the total number of electrons
in the midlatitude area is not severe either. Therefore, this component is often not taken into
consideration when calculating the total atmospheric phase delay [32]. The phase delay
related to the liquid water content is negligible because it results in a millimeter-level error
in the total delay. Consequently, the one-way atmospheric delay and the corresponding
phase delay between two acquisition times can be represented as

Ld ≈
1

106 cos θinc

∫ ∞

0

(
Nhydro + Nwet

)
dh =

1
cos θinc

ZHD +
1

cos θinc
ZWD (4)

∆ϕatm = −4π

λ
∆Ld (5)

where λ is the wavelength of the radar signals and − 4π
λ is the factor utilized to convert a

range delay into a phase delay. ZHD is the zenith hydrostatic delay, and ZWD represents
the zenith wet delay.
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The hydrostatic part can be calculated using Equation (6)

ZHD = 2.2779× Ps

1− 0.00266 cos(2θ)− 0.00028H0
(6)

where Ps is the measured total surface pressure (hPa), θ is the latitude (◦), and H0 is the
surface height (m).

The wet part can be derived from the IWV by

ZWD = Π−1 × IWV (7)

where Π−1 is a factor determined by the atmospheric weighted average temperature. The
value of Π−1 ranges from 6.0 to 6.5 and is often approximately 6.2 [32,33].

Additionally, the IWV at the acquisition times of the SAR images can be estimated as

IWV =
1

ρwater

N

∑
k=0

Pk
RdTvk

Rqk∆z (8)

where ρwater is the density of water and Rd is the dry air gas constant (287.0583 JK−1kg−1).
N represents the vertical layer’s maximum number when integrating. Pk, Tvk, and Rqk are
the pressure, virtual temperature, and humidity ratio. ∆z is the total geopotential height in
the kth vertical layer.

2.3. Ensemble Forecasting with NWP Model
2.3.1. WRF Model

The WRF model is one of the most commonly used NWP models utilized to sat-
isfy atmospheric forecasting and research needs. The vertical coordinate of the model
is either a terrain-following (TF) or a hybrid vertical coordinate (HVC) hydrostatic pres-
sure coordinate. The model offers multiple physics parametrization schemes related to
radiation, cloud microphysics, land-surface processes, and cumulus convection [34]. To
obtain the pressure, potential temperature, humidity ratio, and the values of the other
parameters [35,36] needed in Section 2.2, we took advantage of the WRF model to simulate
the corresponding tropospheric conditions at the same moment as the SAR acquisitions.

In this experiment, the area of the WRF simulation had to cover the SAR image square
shown in Figure 1. Considering the corresponding radar acquisition time, the forecasting
output time was set to 10:34 Universal Time Coordinated (UTC). The process of forecasting
started nearly 16 h before the time we focused on. We set four two-way interacting nested
domains [34] with 34 vertical levels in an HVC system. The corresponding horizontal
resolutions were 27 km (d01), 9 km (d02), 3 km (d03), and 1 km (d04), as shown in Figure 2.
The top level of the simulation was at 50 hPa. The static geographical datasets, including
soil types, land use, and terrain, are available on WRF users’ page. Additionally, the data
were degribbed and interpolated to the simulation domain. We chose the highest resolution
for each mandatory field.
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Figure 2. Four domains at different horizontal resolutions.

The WRF model was initialized using the National Centre for Environment Prediction
(NCEP) Global Data Assimilation System (GDAS) Final Analysis (FNL) dataset with a
temporal resolution of 6 h and a spatial resolution of 0.25◦ × 0.25◦, which is about 20 km ×
20 km for the study region. The GDAS/FNL dataset provides the meteorological variables
temperature, surface pressure, and relative humidity, which were utilized to calculate the
IWV and ZHD. The main parameterization options are shown in Table 2.

Table 2. Parameters in the weather research and forecasting (WRF) model for the simulation.

Model Component Parameter Chosen

Center of the domain (24.895◦, 113.237◦)
Map projection Lambert-conformal

Integration time step 162 s
Time integration 3rd order Runge-Kunta scheme

Horizontal grid system Arakawa C grid
Advection scheme 6th order center differencing

Vertical coordinates HVC system with 34 vertical levels
Surface layer parameterization scheme Revised MM5 Monin-Obukhov

Microphysics scheme WSM3
Longwave radiation scheme RRTM
Shortwave radiation scheme Dudhia

Cumulus scheme Kain-Fritsch
Planetary boundary layer physics scheme YSU

2.3.2. SPPT Scheme with WRF Model

The scheme of SPPT is on the basis of the assumption that the parameterized physics
tendencies have uncertainties [28,30,37], as mentioned in Section 1. Therefore, a presen-
tation of model uncertainty was prepared by perturbing the parameterized accumulated
physical tendencies of four different variables, wind tendency (u and v), temperature
tendency (T), and relative humidity tendency (Rq), at each time step. The workflow is
represented in Figure 3.
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Figure 3. The workflow of perturbing the physical tendencies.

P = Pdyn + (1− r)Ppara (9)

Here, P denotes the total tendency of different physics schemes (P ∈ {u, v, T, Rq}).
Pdyn is the dynamical tendency raised by the dynamical core. The term is not usually
estimated by researchers, so Pdyn is kept constant. Ppara is the physical tendencies based on
the physical parameterizations. Additionally, r is a two-dimensional, Gaussian-distributed
zero-mean random perturbation field with spatial and temporal correlations [28]. For the
multiple domains used in the WRF model, the perturbation pattern is interpolated from
the parent domain to the nested domains.

We utilize a random perturbation field to calculate the tendencies in 2D-Fourier
space [28,37]

r(x, y, t) =
K/2

∑
k=−K/2

L/2

∑
l=−L/2

rk,l(t)e2πi(kx/X+ly/Y) (10)

where k and l denote the (K + 1)(L + 1) wavenumber components in the x and y directions;
and t represents the time. An orthogonal set of basic functions was formed by the Fourier
modes on the rectangular domain (0 < x < X and 0 < y < Y). rk,l evolves through a
first-order autoregressive process:

rk,l(t + ∆t) = (1− α)rk,l(t) + gk,lεk,l(t) (11)

where (1− α) represents the linear autoregressive parameter; εk,l represents a complex-
valued Gaussian white-noise process; and gk,l is the wavenumber-dependent noise ampli-
tude, which is represented as:

gk,l = F0e−4πκρ2
k,l (12)

with

F0 =


η2

k,l
[
1− (1− α)2]

2 ∑
k

∑
l

e−8πκρ2
k,l


1
2

(13)

where κ, ρk,l , and η2
k,l are the spatial decorrelation, the effective radial wavenumber

(
√

k2/X2 + l2/Y2), and the spectral variance, respectively. Therefore, the scheme of SPPT
multiplies the accumulated physical tendencies at each grid point and time step with a
stochastic pattern generated by Equation (10).

The scheme can be dependent on three major parameters [38]: the temporal decorrela-
tion (τ = ∆t/α), the spatial decorrelation (κ), and the standard deviation at each grid point
(η). The SPPT scheme is more significantly affected by a longer τ and a larger κ, compared
with smaller values of the temporal decorrelation and the spatial decorrelation [28]. In our
experiment, we turned on stochastically perturbed physics tendencies for d01 and followed
other researchers [39] by using the same values of three major parameters, r(x, y, t). The
temporal decorrelation of the random field was 3600 s, the random perturbation length
scale was 150 km, and the standard deviation was 0.125.
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We simulated a 10-member ensemble and made use of the mean of ensemble forecasts.
All parameterization options were set as presented in Table 2. Additionally, the seed for
the random number stream was different for each member. This parameter ensured that
the random number streams for ensemble forecasts started from different initial times.

2.4. Stacking Interferograms Based on WRF-SPPT Ensemble Forecasting

Stacking is utilized to compute the linear rate [40] with a set of unwrapping differential
InSAR (DInSAR) phases. Each DInSAR phase is weighted by the time interval when
estimating the average phase rate. Then, the estimated phase rate is presented as

ph_rate =

N
∑

j=1
∆tj ϕj

N
∑

j=1
∆t2

j

(14)

where ∆t is the time interval for each interferogram.
In our experiment, we chose 13 Sentinel-1A SAR images and made 11 interferograms

based on the time interval limit of 100 days.
Taking advantage of the ZWD and ZHD in Section 2.2, the stacking method can be

modified with atmospheric phase correction. The process of forecasting started nearly
16 h before the time of SAR acquisition each day. Then, the respective ϕatm was produced
utilizing Equations (4) and (5). Equation (14) was used to obtain the average deformation
rate after atmospheric correction.

3. Results
3.1. WRF-SPPT Ensemble Forecasting

We simulated a 10-member ensemble and calculated the averages of the results in
the area of d04, as shown in Figure 2. The ensemble mean of ZHD after 13 acquisitions
mentioned in Table 1 is shown in Figure 4 below.

Figure 4. The zenith hydrostatic delay (ZHD) of d04 after 13 acquisitions.
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The ensemble mean of IWV on each date is presented in Figure 5.

Figure 5. The integrated water vapor (IWV) of d04 after 13 acquisitions.

According to Figures 4 and 5, the value of IWV is at the centimeter level and the
value of ZHD is at the meter level; thus, the hydrostatic component takes up most of the
tropospheric delay for a single acquisition. However, the wet delay varies with time more
frequently than the hydrostatic delay. We calculated the average values of ZHD and ZWD
with the Π−1 of 6.2 according to Equation (7); these are listed in Table 3 below. For instance,
the difference in ZWD on 28 October 2019 and 9 November 2019 is about 12 cm. However,
the ZHD on different acquisition dates are nearly equal. We compared the ensemble mean
of IWV with the value of the WRF simulation without SPPT on each date, as shown in
Figure 6. The difference between the mean of the WRF-SPPT ensemble forecasting and the
WRF-only results varied from −0.5615 to 0.4223 cm, equaling −3.4813 to 2.6183 cm for the
ZWD considering the factor of Π−1.

As mentioned in Section 2.2, parameters such as temperature and relative humidity
are perturbed by the SPPT scheme. We chose the data on 15 December 2019 as an example
to show the detailed changes between 10 members’ relative humidity at 50 hPa and the
ensemble mean and calculated the difference relative to the ensemble mean; these are
represented in Figure 7. The relative humidity of different members showed a perturbation
ranging from −7.6% to 8.3% for the ensemble mean.

We calculated the incidence angle of every pixel in the SAR experimental area in
Figure 1 to obtain the Ld, which is the slant delay as shown in Figure 8.
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Table 3. The average of the zenith hydrostatic delay(ZHD) and the zenith wet delay(ZWD) of d04.

Date ZHD (cm) ZWD (cm)

13 December 2017 227.3727 19.4711
25 December 2017 227.8754 9.4259
8 December 2018 228.3761 25.0505
20 December 2018 226.8769 24.6692

13 January 2019 227.1411 14.6822
25 January 2019 228.4859 11.1172
28 October 2019 227.4308 24.3127

9 November 2019 227.5445 11.8327
3 December 2019 229.1071 6.2787
15 December 2019 228.2615 14.5576
27 December 2019 228.1322 14.8372

20 January 2020 228.4883 16.2812
1 February 2020 228.3059 12.5476

Figure 6. The differences between the ensemble integrated water vapor (IWV) and the original
simulations of d04 after 13 acquisitions.
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Figure 7. The changes of 10 members’ relative humidity at 50 hPa with perturbation comparing with
the ensemble mean on 15 December 2019.

Figure 8. The total slant delay according to the ensemble forecasting after 13 acquisitions.

3.2. Stacking Based on WRF-SPPT Results

Firstly, we calculated the original interferograms, the ϕatm using WRF-only scheme,
the ϕatm using WRF-SPPT, and the respective corrected unwrapped results. Then, we
took advantage of the original and corrected unwrapped interferograms to compute the
linear phase rate according to Equation (14). The deformation is shown in Figure 9. The
value of the deformation rate in the whole area is 0.9707 cm/year according to the original
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interferograms. The average deformation rate is −1.0822 cm/year based on WRF-only
simulations and−0.6603 cm/year according to the WRF-SPPT results. The absolute average
rate of WRF-SPPT is much smaller than that of the WRF-only method and stacking without
atmospheric correction.

(a)

(b)

(c)

Figure 9. The linear deformation rate of the experimental area by stacking: (a) Stacking with the
original interferograms. (b) Stacking with the interferograms corrected by the weather research
forecasting (WRF). (c) Stacking with the interferograms corrected by ensemble WRF results.
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4. Discussion
4.1. Evaluation of Stacking Based on WRF-SPPT Ensemble Forecasting

To obtain the reference surface subsidence for the same experimental area in Figure 1,
we selected more SAR images shown in Table 4 and used the small baseline subset (SBAS)
InSAR method for land deformation monitoring [41]. SBAS is a technique utilized for
InSAR time-series analysis. It takes advantage of all of the acquired SAR images to
obtain differential interferograms with several master SAR images. The thresholds of the
time and spatial baselines were set to select the appropriate interferograms. Then, the
surface subsidence was solved by using the least squares method among the subsets. The
deformation achieved with the SBAS method is presented in Figure 10. The deformation
rate of the experimental area is between −1.5099 and −0.3318 cm/year.

Table 4. The acquisition dates of 86 synthetic aperture radar (SAR) images for small baseline
subset (SBAS).

19 November 2017 1 December 2017 13 December 2017
25 December 2017 6 January 2018 30 January 2018
11 February 2018 23 February 2018 7 March 2018

19 March 2018 11 March 2018 12 April 2018
24 April 2018 6 May 2018 18 May 2018
30 May 2018 11 June 2018 23 June 2018
5 July 2018 17 July 2018 29 July 2018

10 August 2018 22 August 2018 3 September 2018
15 September 2018 27 September 2018 9 October 2018

21 October 2018 2 November 2018 14 November 2018
26 November 2018 8 December 2018 20 December 2018

1 January 2019 13 January 2019 25 January 2019
6 February 2019 18 February 2019 2 March 2019
14 March 2019 26 March 2019 7 April 2019
19 April 2019 1 May 2019 13 May 2019
6 June 2019 18 June 2019 30 June 2019
12 July 2019 24 July 2019 5 August 2019

17 August 2019 29 August 2019 10 September 2019
22 September 2019 4 October 2019 16 October 2019

28 October 2019 9 November 2019 21 November 2019
3 December 2019 15 December 2019 27 December 2019

8 January 2020 20 January 2020 1 February 2020
13 February 2020 25 February 2020 8 March 2020

20 March 2020 1 April 2020 13 April 2020
25 April 2020 7 May 2020 31 May 2020
12 June 2020 24 June 2020 6 July 2020
18 July 2020 30 July 2020 11 August 2020

23 August 2020 4 September 2020 16 September 2020
28 September 2020 10 October 2020
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Figure 10. The linear deformation rate of the experimental area with the small baseline subset
(SBAS) method.

The linear deformation rates achieved by stacking with original interferograms, or
with interferograms corrected by WRF-only simulation or WRF-SPPT ensemble forecasting
are calculated, respectively, in Section 3.2. The SBAS technique is based on the least squares
method and spatial filtering. The reliability and accuracy have been confirmed when SBAS
is utilized to monitor the surface subsidence [41]. Assuming that the surface subsidence in
the approach of SBAS is the reference deformation rate during the experimental period, we
computed the deviations among the deformation rate of stacking with original interfero-
grams and the rate of SBAS; the rate of stacking with the WRF-only scheme, and the rate of
SBAS and the rate with WRF-SPPT and SBAS, respectively. The root mean square error
(RMSE) is defined as

RMSE =

√
∑N

i=1(vi − v0
i )

2

N
(15)

where vi represents the value at the ith pixel with the stacking method, v0
i is the defor-

mation rate of SBAS at the ith pixel, and N is the number of pixels in the whole surface
subsidence image.

According to Equation (15), the RMSE of different deformation rates of stacking were
calculated. As we know, the wavelength of Sentinel-1A is 5.5466 cm, and we show the
values of RMSE in the one-way slant distance in Table 5. The RMSE of WRF-SPPT ensemble
forecasting was smaller than the values obtained without correction or with the WRF-only
method; thus, WRF-SPPT improves one’s ability to estimate the average deformation rate
when processing InSAR images with the stacking method.

Table 5. The root mean square error (RMSE) of different deformation rates of stacking.

Original WRF-Only WRF-SPPT

RMSE (cm/year) 3.0127 1.0527 0.8821

4.2. The Comparison of the Height-Related Method, WRF-Only Method, and WRF-SPPT
Ensemble Forecasting Method in DInSAR

Stacking is processed with a series of DInSAR unwrapped phases. The impact of the
correction on DInSAR is similar to that on stacking in the end. To evaluate the ensemble
forecasting correction effect, we compare the differential result of the WRF-SPPT method
with traditional height-related and WRF-only atmospheric correction. As mentioned in
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Section 1, the initial uncertainties are insufficient, and parameterization errors need to be
considered. Here, we focused on the representation of model uncertainties as described by
the SPPT scheme when mitigating the atmospheric effects in DInSAR. More details about
the impact of the perturbations in the initial state are available in Appendix A.

We selected the pair of DInSAR between 15 December 2019 and 27 December 2019
and enlarged the experimental area to show more details. The original phase in distance
without any correction is presented in Figure 11.

Figure 11. The original differential interferogram on 15 December 2019 and 27 December 2019.

The period used was only 12 days, so we assumed that there was nearly no surface
deformation in the experimental area. However, the DInSAR image showed a phase
ranging from −1.6612 cm to 2.7276 cm in the one-way distance according to the 5.5466 cm
wavelength of Sentinel-1A. The value of the DInSAR phase was regarded as the surface
subsidence, which is not the case. The deformation phase was severely influenced by
the atmospheric effect. We used the height-related method to compute the model of the
atmospheric delay phase.

According to the papers [10,11,31], the difference in atmospheric delay between the
master and slave images has a linear dependence on height. The atmospheric phase is
estimated as

ϕatm(x, y) = a0 + a1 × h(x, y) (16)

where a0 is a phase constant (rad), a1 is the phase slope (rad/m), and (x, y) describes the
position of the pixel in the SAR coordinate. h(x, y) represents the height of (x, y) in meters.
The values of a0 and a1 are determined from regression.

After computing the model for the dates 15 December 2019 and 27 December 2019, the
atmospheric delay and the DInSAR phase with height-related correction are represented as
Figure 12. The phase ranged from −1.2008 to 1.3591 cm after height-related correction was
carried for the distance.
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(a)

(b)

Figure 12. The atmospheric and differential interferogram phases with the height-related correction
on 15 December 2019 and 27 December 2019: (a) The atmospheric phase with the height-related
method. (b) The differential interferogram phase with the height-related correction.

For the WRF-only method, the total phases of hydrostatic and wet delay are shown in
Figure 13a. The corrected DInSAR phase is presented in Figure 13b.
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(a)

(b)

Figure 13. The atmospheric and differential interferogram phases with the weather research forecast-
ing (WRF) correction on 15 December 2019 and 27 December 2019: (a) The atmospheric phase with
WRF-only. (b) The differential interferogram phase with WRF-only.

As for the WRF-SPPT method, the total wet and hydrostatic delays are shown in
Figure 14a, and the DInSAR phase with WRF-SPPT correction is presented in Figure 14b.
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(a)

(b)

Figure 14. The atmospheric and differential interferogram phases with the weather research fore-
casting (WRF) ensemble forecasting correction on 15 December 2019 and 27 December 2019: (a) The
atmospheric phase with ensemble forecasting correction. (b) The differential interferogram phase
with ensemble forecasting correction.

From Figures 11–14, it is obvious that traditional height-related and NWP approaches
both mitigate the atmospheric influence for DInSAR but have different corrected results.
Moreover, we evaluated the mitigating impact by calculating the RMSE. Assuming that no
deformation existed in 12 days in this area, we computed the deviation of the original, the
height-related corrected, the WRF-only corrected, and the WRF-SPPT ensemble forecasting
corrected DInSAR phase as

RMSE =

√
∑N

i=1 ϕ2
i

N
(17)
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where ϕi represents the value at the ith DInSAR pixel, and N is the number of pixels in the
DInSAR image.

According to Equation (17), the RMSE of four DInSAR images were calculated. We
show the values of RMSE in the one-way slant distance in Table 6.

Table 6. The root mean square errors (RMSE) of four differential interferometric synthetic aperture
radar (DInSAR) on 15 December 2019 and 27 December 2019.

Original Height-related WRF-only WRF-SPPT

RMSE (cm) 1.0183 0.6306 0.6016 0.5892

Table 6 suggests that WRF simulations have better impacts than the height-related
approach for the atmospheric correction, and that WRF-SPPT is better than the WRF-
only method.

5. Conclusions

This paper proposes the use of the SPPT scheme based on ensemble forecasting with a
physical tendency to correct for atmospheric effects in interferogram stacking. According to
the results of the experiments with the WRF model, the vertical ZHD and IWV on different
acquisition dates were firstly calculated based on the ensemble mean. Then, the results
were transformed into total slant delay based on the different incidence angles of each pixel.
Lastly, the atmospheric delay phases were utilized in the stacking process to calculate the
deformation rate.

To present the impact of WRF-SPPT, we calculated the deformation rate using the
method of SBAS with more SAR images and assumed it to be the reference subsidence
in this period. Then, we estimated the deviation of the stacking results with the original
interferograms, the WRF-only corrected phase, and the WRF-SPPT scheme-corrected phase,
respectively. The values of the RMSE indicate that the WRF-SPPT ensemble forecasting
method can significantly reduce the atmospheric impact on the surface subsidence obtained
from stacking. The results show that the WRF-SPPT scheme mitigates atmospheric effects
better than a single WRF simulation in InSAR stacking. Compared with the conventional
height-related and WRF-only methods in DInSAR, the WRF-SPPT ensemble forecasting
method also has better correction effects. Moreover, regarding the discussion on pertur-
bations in the initial state and uncertainties in the parameterized physics tendencies, the
impacts of model errors are more severe when mitigating the atmospheric effects with the
numerical weather prediction model.
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Appendix A. The Comparison of WRF-Only and Different Ensemble Forecasting
Methods in DInSAR

Appendix A.1. Experimental Data and the Original Differential Interferogram

We selected the same experimental area as that mentioned in Section 4.2, and used
the SAR images from 15 December 2019 and 27 December 2019 to construct the respective
differential interferograms. The multi-look parameters of the interferogram in the range
and azimuth directions used in this case are different from those used in Section 4.2. The
original phase in the one-way distance without any atmospheric correction is presented in
Figure A1.

Figure A1. The original differential interferogram on 15 December 2019 and 27 December 2019.

Appendix A.2. Atmospheric Correction with Different WRF-Related Methods

The WRF can be initialized using different analyses and forecast datasets. The impact
of uncertainties in the initial condition during prediction might be dominant, especially at
short ranges. Therefore, we chose 11 members (gec00-gep10) of the NCEP Global Ensemble
Forecast System (GEFS) [42] as the initial condition and boundary condition of WRF to
discuss the atmospheric mitigating effects with different WRF-related methods in DInSAR.

First, we carried out one WRF simulation (WRF-only) initialized by the unperturbed
GEFS forecast (gec00) as a control run. Then, ensemble forecasting (WRF-initial) over the
same area was performed based on 10 perturbed forecasting members (gep01-gep10) from
GEFS. Another ensemble forecasting (WRF-initial-and-SPPT) run used a combination of
the 10 GEFS members (gep01-gep10) and the SPPT scheme. All parameter options were set
as presented in Table 2. Additionally, the values of the three parameters used in the SPPT
scheme were consistent with those mentioned in Section 2.3. The respective atmospheric
and differential interferogram phases are presented in Figure A2.
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(a) (b)

(c) (d)

(e) (f)

Figure A2. The atmospheric and differential interferogram phase with different weather research
forecasting (WRF) methods on 15 December 2019 and 27 December 2019: (a) The atmospheric phase
with WRF-only. (b) The differential interferogram phase with WRF-only. (c) The atmospheric phase
with WRF-initial. (d) The differential interferogram phase with WRF-initial. (e) The atmospheric
phase with WRF-initial-and-SPPT. (f) The differential interferogram phase with WRF-initial-and-SPPT.

We assumed that there was nearly no surface deformation in 12 days. Therefore, we
calculated the respective RMSE using Equation (17) to evaluate the mitigating impact of
different corrections. The values of RMSE in the one-way slant distance are shown in
Table A1.

Table A1. The root mean square errors (RMSE) of different corrections on 15 December 2019 and 27
December 2019.

Original WRF-Only WRF-Initial WRF-Initial-and-SPPT

RMSE (cm) 1.0515 0.5678 0.5635 0.5453

We also calculated the difference between the atmospheric phase based on the WRF-
initial scheme in Figure A2c and the phase based on the WRF-only scheme in Figure A2a,
along with the difference between the atmospheric phase based on the WRF-initial-and-
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SPPT scheme in Figure A2e and the phase based on WRF-only. The differences are pre-
sented in Figure A3.

(a) (b)

Figure A3. The differences in atmospheric phase between different ensemble forecasting and the
single weather research forecasting (WRF) simulations on 15 December 2019 and 27 December 2019:
(a) The difference between WRF-initial and WRF-only. (b) The difference between WRF-initial-and-
SPPT and WRF-only.

According to Figure A2 and Table A1, both the single simulation conducted by the
WRF-only scheme and the ensemble forecasting could mitigate the atmospheric effects
in DInSAR on 15 December 2019 and 27 December 2019. Additionally, according to
Figure A3 and the respective values given in Table A1, the WRF-initial method improved
the mitigating effects slightly compared with the WRF-only method. With the contributions
of perturbations in the initial state, the lateral boundary, and the uncertainties in the
parameterized physics tendencies, it is evident that the WRF-initial-and-SPPT method
behaves better than the WRF-initial method for the atmospheric correction. This suggests
that the impacts of model errors are more severe when mitigating the atmospheric effects
with NWP.
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