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Abstract: The rice-crayfish field (i.e., RCF), a newly emerging rice cultivation pattern, has greatly
expanded in China in the last decade due to its significant ecological and economic benefits. The
spatial distribution of RCFs is an important dataset for crop planting pattern adjustment, water
resource management and yield estimation. Here, an object- and topology-based analysis (OTBA)
method, which considers spectral-spatial features and the topological relationship between paddy
fields and their enclosed ditches, was proposed to identify RCFs. First, we employed an object-based
method to extract crayfish breeding ditches using very high-resolution images. Subsequently, the
paddy fields that provide fodder for crayfish were identified according to the topological relationship
between the paddy field and circumjacent crayfish ditch. The extracted ditch objects together with
those paddy fields were merged to derive the final RCFs. The performance of the OTBA method was
carefully evaluated using the RCF and non-RCF samples. Moreover, the effects of different spatial
resolutions, spectral bands and temporal information on RCF identification were comprehensively
investigated. Our results suggest the OTBA method performed well in extracting RCFs, with
an overall accuracy of 91.77%. Although the mapping accuracies decreased as the image spatial
resolution decreased, satisfactory RCF mapping results (>80%) can be achieved at spatial resolutions
greater than 2 m. Additionally, we demonstrated that the mapping accuracy can be improved by
more than 10% when near-infrared (NIR) band information was involved, indicating the necessity of
the NIR band when selecting images to derive reliable RCF maps. Furthermore, the images acquired
in the rice growth phase are recommended to maximize the differences of spectral characteristics
between paddy fields and ditches. These promising findings suggest that the OTBA approach
performs well for mapping RCFs in areas with fragmented agricultural landscapes, which provides
fundamental information for further agricultural land use and water resources management.

Keywords: rice-crayfish field; object-based method; topology; classification; high-resolution image

1. Introduction

The rice-crayfish field (i.e., RCF) is a kind of ecological cropping system that combines
rice planting with crayfish aquaculture [1]. An RCF generally consists of a rice field
and a circular ditch for breeding crayfish, and the ditch is usually between 2 and 4 m
around the rice field [2]. The growth stage of the paddy rice in an RCF begins with
the transplanting period in June and ends with the harvest period in October. Crayfish
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are available in RCFs all year round and are generally harvested twice: between April
and June and between August and September [3]. The mutualism between rice and
crayfish in an RCF has considerable ecological values, such as increasing the rice yield,
improving the soil fertility, and reducing the input of pesticides [4]. Moreover, farmers can
harvest rice once and crayfish twice within an RCF each year, which significantly improves
land use efficiency and their agricultural income [5]. Due to these prominent ecological
and economic benefits, RCFs have greatly expanded in China in the last decade [6,7].
Agricultural statistics show that RCFs in China increased by 50% (2.74 × 105 ha) from
2017 to 2018. In particular, Hubei Province, the location of which is in the middle reaches
of the Yangtze River, has the most RCFs in China due to its superior climate conditions,
water resources and cultivation techniques. Although the total RCF area can be roughly
estimated by statistics, its specific spatial distribution information is still lacking, which
restricts its applications in monitoring rice growth, estimating yield and managing and
modeling water resources [8–10]. Fortunately, the rapid advancement of satellite remote
sensing technology has made it possible to map the spatial distribution of crops in an
effective and reliable manner [11–13].

Several prior studies have mainly focused on identifying rice using its distinctive
spectral signatures during the flooding and transplanting stages [14,15]. Medium- or
coarse-resolution images, which provide frequent data acquisition and thus are advanta-
geous to detect such “flooding signatures”, have been extensively used to map the rice
distribution [16]. For instance, Zhang et al. [17] generated yearly rice maps between the
years 2000 and 2015 in India and China by adopting 500 m time series data of MODIS to
capture major flooding signatures, revealing the spatiotemporal dynamics of rice planting
areas in these two countries. Qin et al. [18] used the flooding signature generated from
Landsat ETM+/OLI time series to map rice growing areas in cold temperate climate zones.
However, RCFs share a similar “flooding signature” with traditional rice fields, making it
hard to distinguish them using crop phenological information. Field surveys show that
RCFs have a distinct ditch structure for breeding crayfish, and these ditches are not used in
traditional rice fields. Therefore, identifying and extracting crayfish ditches have become
crucial points for efficiently mapping RCFs.

High-resolution images are needed to identify unique crayfish ditches with a width of
2–4 m. In addition, the use of high-resolution images can significantly reduce mixed-pixel
effects in comparison with medium/low-resolution images since RCFs are mainly dis-
tributed in South China, where the crop planting patterns are complex and croplands are
fragmented [19]. It is known that intraclass spectral variability increases with the spatial res-
olution of satellite images, which could result in ‘salt and pepper’ interferences [20,21] and
thus reduce the mapping accuracy when adopting the pixel-based classification. Instead, a
geographic object-based image analysis (GEOBIA) method is superior for characterizing the
spectral features, contextual information, neighborhoods and hierarchical relationships of
land cover classes through segmenting satellite images into homogeneous objects [22–25].
Accordingly, the GEOBIA method can largely reduce the undesired effects of spectral
variability and mixed pixels [26–29].

The GEOBIA method includes two main steps: (1) segment images into homogeneous
objects, and (2) assign the objects into targeted classes using classification algorithms [21].
Image segmentation is a crucial procedure in GEOBIA because the segmentation quality
substantially impacts the final classification accuracy. Segmentation algorithms can be
generally categorized as edge-based algorithms (e.g., edge detection, Hough transform and
neighborhood search) and region-based algorithms (e.g., multiresolution segmentation,
mean-shift, and recursive hierarchical segmentation) [23]. Due to excessive dependence on
object edge information, the edge-based segmentations perform inferior in images with
noise or low contrast, making it not suitable for high-resolution images [23,30,31]. The
region-based methods generate objects with high consistency in internal spatial-spectral
characteristics based on homogeneity criterion, showing stronger capacity in segmentation
for high-resolution images than edge-based methods [32,33]. Specifically, the multires-
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olution segmentation algorithm, which is embedded in the eCognition software, is an
operable region-based segmentation method. Furthermore, its most important segmen-
tation parameter (i.e., scale) can be automatically selected by an analysis tool known as
Estimation of Scale Parameter (ESP) [34]. High accessibility and high accuracy make mul-
tiresolution segmentation algorithm become one of the most widely used segmentation
algorithms [23,35]. In terms of the object-based classification, many classification methods
have been widely used, such as random forest (RF), support vector machine (SVM) and
decision tree (DT) [36–38]. Among various methods, decision tree model is widely used in
crop mapping because of its simplicity and ease of interpretation [39–42]. Considering the
unique morphological characteristic (i.e., paddy rice surrounded by crayfish ditches) of
RCFs, the multiresolution segmentation algorithm and decision tree classification method
present great potentials for RCF extraction.

Here, this research was conducted to propose an object- and topology-based analy-
sis (OTBA) approach for identifying RCFs. The OTBA method includes two main steps:
(1) identify objects of crayfish ditches by selecting the optimal segmentation scale and
classification features, and (2) extract RCFs by using the topological relationships between
rice fields and crayfish ditches. To explore the potential of the OTBA method, Jianli City,
which has the largest planting area of RCFs in Hubei Province, was chosen as the case
study region. Furthermore, we evaluated the impacts of the spatial, temporal and spectral
information obtained from satellite images on RCF identification. The paper is structured
as described below. Section 2 presents the study area and dataset, and the OTBA frame-
work and complete classification process are described. Additionally, a comprehensive
evaluation of the performance of the OTBA method is given. Section 3 shows the RCF
mapping results obtained with the OTBA method, including the optimal segmentation
scale, optimal classification features and mapping accuracies. Sections 4 and 5 conclude the
paper by discussing how the spatial resolution, spectral bands, and temporal information
affect the OTBA method; moreover, we discuss how the OTBA method can be improved
and extended to large-scale regions.

2. Materials and Methods
2.1. Study Area

Jianli City, Hubei Province, Central China, is where the study area was located
(Figure 1a). Jianli is in a subtropical monsoon climatic zone. The average annual rain-
fall and temperature in this area are 1200 mm and 16 ◦C, respectively. Jianli is one of the
major food-producing areas in the middle reaches of the Yangtze River. Paddy rice, wheat,
corn, oilseed rape, and rice-crayfish are the primary crop types in this city. Among all
Chinese counties, Jianli has the largest RCF planting area (approximately 5.3 × 104 ha),
accounting for 15% of all RCFs in Hubei Province. According to the availability of high-
resolution images of Jianli, we selected a specific region to be the final study area, and the
land area of this region was approximately 25 km2 (Figure 1). The period of planting rice
in an RCF begins in June and harvest occurs in October. In general, farmers put crayfish
seeds into ditches in March, and then the crayfish will enter the rice fields for food as they
grow up. The adult crayfish are generally harvested twice per year in two time periods,
i.e., April to June and August to September.

2.2. Data

We used SuperView-1 images to extract the RCFs in this study. The SuperView-1
constellation, which comprises four satellites (SuperView-1 01, 02, 03 and 04), was designed
by China and launched in 2016. The camera onboard the SuperView-1 satellite has four
multispectral bands (blue: 450–520 nm, green: 520–590 nm, red: 630–690 nm, and near-
infrared (NIR): 770–890 nm) and one panchromatic band (450–890 nm) with a revisit cycle
of 1 day [43]. The spatial resolutions of the multispectral bands and panchromatic band
are 2 m and 0.5 m, respectively. Two SuperView-1 images acquired on 19 August 2018
(Figure 1b) and 7 April 2019, which refer to the rice growth phase and field flooding
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phase, respectively, were used in this study. The radiometric and geometric biases of the
two images were previously adjusted. We used the Gram-Schmidt algorithm to fuse the
multispectral image (2 m) and panchromatic image (0.5 m) into a multispectral image with
a 0.5 m resolution to identify the RCFs [24].
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Figure 1. The study area and dataset. (a) The study area in Hubei Province, China; (b) Crop field samples and SuperView-1
image; (c) A diagram of the rice-crayfish raising system.

A total of 51 RCF samples and 189 samples of other land cover types including
56 cropland, 105 artificial land, 11 water body, and 17 forest samples from field surveys
were selected as the training dataset for decision tree classification. The main paddy fields
in the study area were RCF, traditional paddy rice, and a small number of lotus root fields.
Due to the similar spectral characteristics between traditional paddy rice and lotus root,
they were grouped into the “cropland” type. Artificial land consisted of rural buildings
and roads. Rivers and ponds were classified as the water bodies. All training samples
were carefully selected from pure objects to build the decision tree model. The validation
samples were collected from two field surveys in Jianli in September 2018 and May 2019,
respectively. Finally, 124 RCF samples and 119 non-RCF samples in 2018 and 110 RCF
samples and 95 non-RCF samples in 2019 were respectively used for validating the derived
RCF maps.

2.3. Framework of the OTBA Method

The OTBA method was proposed to identify RCFs based on their unique crayfish ditch
features, and three sequential processes were performed: (1) multiresolution segmentation,
(2) crayfish ditch classification, and (3) extraction of RCFs. Figure 2 depicts the OTBA
technique flowchart. First, multiresolution segmentation was adopted to obtain crayfish
ditch objects. Second, we identified the crayfish ditches using a decision tree model, in
which the classification features were selected based on feature separability analysis. Finally,
we extracted the RCFs according to the topological relationship between paddy fields and
surrounding ditches. A detailed description of each step is provided in Sections 2.3.1–2.3.3.
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2.3.1. Multiresolution Segmentation

To create image objects, a multiresolution segmentation method which is embedded
in eCognition Developer 9.0 was employed, and it is one of the most widely used object
segmentation algorithms [20,44]. A multiresolution segmentation algorithm realizes the
purpose of region merging through the bottom-up strategy and is particularly suitable for
crop identification using high-resolution images [42]. The algorithm iteratively combines
pixels into objects and then merges small and similar objects into larger objects according
to the predefined homogeneity criterion [45]. The scale parameter, shape parameter, and
compactness parameter are the three important parameters for image segmentation [29].
The shape parameter represents the geometrical characteristics of the objects and the
compactness parameter represents the boundary smoothness. The scale parameter needs
to be carefully selected since it affects the average size and the internal homogeneity of
image objects [46]. Estimation of Scale Parameter 2 (ESP2), an automatic tool, was used
to identify the optimal scale parameter to circumvent the time-consuming and subjective
trial-and-error technique.
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The ESP2 tool evaluates the segmentation effects according to the local variance (LV)
as well as its rate of change (ROC) [47]. The ROC was calculated according to Equation (1):

ROC =

[
LV(L) − LV(L−1)

LV(L−1)

]
× 100 (1)

where LV(L) is the LV of objects at the targeted level, and LV(L−1) is the LV at the next lower
level. LV varies with changes in object level, and the ROC curve can illustrate this dynamic
change. When the ROC curve presents a local peak value, the corresponding segmentation
scale value at this point is potentially optimal [48]. Note that the local peak of ESP2 may
be observed at various segmentation scales for different land cover types for one image,
resulting in several optimal segmentation scales to be selected [34]. Thus, according to
visual inspection of the completeness and boundary consistency of the resultant objects,
we carefully selected the optimal segmentation scale for crayfish ditches.

2.3.2. Crayfish Ditch Classification Based on a Decision-Tree Model

A decision-tree classification method was adopted in this work to identify crayfish
ditch objects. Decision trees have been widely used in the thematic mapping of crops since
they have a flowchart-like structure that is straightforward and easy to interpret [39,42]. In
addition to crayfish ditches, the study area mainly included cropland, artificial land, water
body, and forest land types. Therefore, we constructed a four-layer decision tree model that
aimed to extract crayfish ditch objects by recursively eliminating the abovementioned four
other land cover types. The crucial step in building a good decision-tree model is to select
the appropriate classification features for different land cover types at tree nodes. In view
of the distinctive characteristics of crayfish breeding ditches, such as a narrow width and
water information, a total of 19 features (Table 1) were used as candidate features: (1) 10
spectral features including 4 vegetation indices and 6 spectral band features, (2) 4 geometric
features, and (3) 5 textural features. We selected these 19 features because they have been
extensively used in object-based classification for agricultural lands [38,49,50] and have
shown the potential to reflect the unique spectral and geometric characteristics of RCFs.

With these candidate features, we employed the separability index (SI), which has
been demonstrated to be a good indicator to reflect two-class spectral separability [51], to
identify the best features for targeted classes. The SI was calculated as follows:

SIdi =
∆inter(d, i)
∆intra(d, i)

=
|ud − ui|

1.96× (σd + σi)
(2)

where ud and ui are the mean values of a feature of crayfish ditch and land cover type
i, respectively, and σd and σi are the corresponding standard deviations. The |ud − ui|
reflects the interclass heterogeneity, whereas (σd + σi) reflects intraclass heterogeneity [51].
Higher interclass heterogeneity and lower intraclass heterogeneity will result in a higher
SI, which means that the corresponding features are the optimal features for crayfish
ditch classification.

2.3.3. RCF Extraction by Topology

Based on the identified crayfish ditches, the rice fields in the RCF farming system
were extracted according to the topological relationship between the crayfish ditches and
the adjacent rice fields. The crayfish ditch objects together with the embedded rice field
objects comprised the entire RCF. Specifically, we first calculated the centroid of each
unclassified object. Then, we estimated the minimum enclosing rectangle of each ditch
object, as shown in Figure 3. If the centroids of unclassified objects were located in any of
the outer rectangles of the ditches, these undefined objects were grouped into rice fields
(Figure 3). Following the above steps, all rice objects were identified from the unclassified
objects. Finally, the crayfish ditch objects and rice objects were merged as RCFs.
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Table 1. Classification features used in this study.

Feature Category Selected Features Equations Parameters References

Spectral features

NDWI (Normalized
difference water index) NDWI = Green−NIR

Green+NIR
Blue, Green, Red and NIR =
surface reflectance values of
Blue, Green, Red, NIR bands.
#Pv = total number of pixels
contained in the object Pv.
ck(x, y, z, t) = the image layer
intensity value at pixel (x, y, z, t).
NB

v = the darker direct neighbor
to v, with
NB

v {u ∈ Nv : ck(u) < ck(v)}·b(v, u)
= the length of common border
between v and u.

[52]

NDVI (Normalized
difference vegetation
index)

NDVI = NIR−Red
NIR+Red [53]

CEWI (Coefficient
enhanced water index)

CEWI =√
NIR2 − 2× (NIR− Blue) [54]

HRWI (High-resolution
water index)

HRWI = 6× Green− Red
+6.5× NIR + 0.2

[55]

Mean blue, green, red and
NIR ck(v) = 1

#Pv ∑
(x,y,z,t)∈Pv

ck(x, y, z, t)

[56]
Brightness c(v) = 1

4

4
∑

k=1
ck(v)

Rel. border to brighter
objects NIR ∑

u∈NB
v

b(v,u)
bv

Geometric features

Border length
bv = bo + bi

b0 = the length of outer border.
bi = the length of inner border.
u = the pixel size in coordinate
system units.
γEV

v = the ratio length of v of the
eigenvalues.
γBB

v = the ratio length of v of the
bounding box.

[56]Area Av = #Pv × u2

Length/Width γv = minγEV
v , maxγBB

v

Shape index sv = bv
4
√

Av

Textural features

GLCM Entropy
ei,j =

N−1
∑

i,j=0
Pi,j(− ln Pi,j)

i = the row number.
j = the column number.
Pi,j = the normalized value in the
cell i, j.
N = the number of rows or
columns.

[56]

GLCM Mean
µi,j =

N−1
∑

i,j=0
Pi,j

N2

GLCM Std Dev σi,j =

√
N−1
∑

i,j=0
Pi,j(i, j− µi,j)

GLCM Homogeneity hi,j =
N−1
∑

i,j=0

Pi,j

1+(i−j)2

GLCM Contrast ci,j =
N−1
∑

i,j=0
Pi,j(i− j)2
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To further improve the classification results, two post-classification steps were devel-
oped. First, since it was inevitable that a crayfish ditch may be segmented into multiple
objects in the segmentation process, which might reduce the integrity of the resultant RCFs,
we obtained the entire crayfish ditch by merging contiguous ditch objects. Second, we
removed the misclassified ditch from the crayfish ditch classification result when the outer
rectangle of a ditch did not contain any other object’s centroid.

2.4. Performance Evaluations

To evaluate the RCF classification performances of the OTBA method, we collected
a total of 243 field samples. The traditional error matrix and its adjunctive indicators,
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including the overall accuracy, user’s accuracy and producer’s accuracy, were adopted to
assess the classification accuracy.

Since the OTBA was developed to extract RCFs mainly according to the geometrical
features of crayfish ditches, which were characterized by a high spatial resolution image,
we assessed how spatial resolution impacted on RCF classification performance. To do
so, we resampled the original 0.5 m image to different resolutions (i.e., 1 m, 2 m, 3 m,
5 m, 8 m and 10 m) and implemented OTBA classification and validation. In addition, to
determine the lower limit of the spatial resolution for RCF mapping, we adopted the Z-test
to quantitatively assess the significance in differences of RCF classifications from images
with different spatial resolutions. The Z-test can be expressed as the Equation (3) [57]:

Z =

X1
N1
− X2

N2√
ρ(1− ρ)( 1

N1
+ 1

N2
)

(3)

where N1 and N2 represent the sizes of sample sets used in two different classifications,
X1 and X2 refer to the quantities of samples which are rightly classified, and ρ can be
derived from (X1 + X2)/(N1 + N2). There exists a significant difference between the two
classifications if the |Z| value is greater than or equal to 1.96, which is estimated at the
widely used 5% significance level.

In addition to the spatial resolution, we assessed the sensitivity of the OTBA approach
to spectral bands. Therefore, we compared the classification results derived from the
original image with four (i.e., red, green, blue, and NIR) spectral bands and the image
with only three (i.e., red, green, and blue) bands. Moreover, to evaluate how the temporal
information affected the OTBA method, we compared the classification results derived
from the image in the rice growth phase when the field was covered by rice (Figure 1c) and
the image in the flooding phase when the field was mainly covered by water (Figure 1c).

3. Results
3.1. Optimal Scale Parameter and Image Segmentation Result

The ideal scale parameter and image objects obtained from the multiresolution seg-
mentation method based on the ESP2 tool are shown in Figure 4. We observed that the
local variance decreased with increasing segmentation scale. Furthermore, when the scale
changed, the rate of change of local variance fluctuated significantly for the reason that
the heterogeneity of image objects generated by different scales may vary greatly. There
were four local peaks, i.e., 119, 141, 156 and 207, for the ROC curve, which represented
the potential optimal segmentation scales for crayfish ditches. According to the visual
judgments of segmentation objects, we selected 207 as the optimal scale parameter, at which
the completeness and boundary consistency of crayfish ditch objects were the best. After
several trial-and-error tests, the shape parameter and the compactness parameter were
finally adjusted to 0.7 and 0.2. As a result, a total of 10364 image objects were generated for
this area.

As shown in Figure 4, there were generally four patterns of image objects for an
RCF: (1) a crayfish ditch object and a paddy field object, (2) multiple crayfish ditch objects
and a paddy field object, (3) a crayfish ditch object and multiple paddy field objects, and
(4) multiple crayfish ditch objects and multiple paddy field objects. According to the
strategy described in Section 2.3, we merged the contiguous multiple ditch objects into a
circular crayfish ditch with high integrity.
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3.2. Classification Model and Result of Crayfish Ditch

Figure 5 presents the separability chart of four pairwise classes for the 19 features.
A high SI value indicates high separability between the two classes for a given feature.
The highest SI of 1.72 was observed for cropland and ditches at the feature Rel. border to
brighter objects NIR, indicating that ditches were most easily distinguished from cropland
by using this feature. The feature Rel. border to brighter objects NIR reflected how much
the perimeter of an object was surrounded by objects with higher near-infrared reflectance.
The reason for this observation was that the near-infrared reflectance of crayfish ditches
in the flooding state that were mainly covered by water was much lower than that of
the surrounding rice field, resulting in a higher Rel. border to brighter objects NIR of a
ditch than that of a paddy field. The Mean red, with an SI value of 1.24, performed better
than the other features in terms of separating artificial land and ditches. For water body
and ditches, the NDWI was the best feature for distinguishing them, and it had an SI
value of 1.44. Due to abundant vegetation around the ditch (Figure 1c), the near-infrared
reflectance of the crayfish ditch was higher than that of the water body, leading to a much
smaller NDWI for the crayfish ditch. Among all features, the textural feature GLCM
Mean presented the highest SI for separating ditches from forests. Thus, the decision tree
classification model was built by setting these features with the highest SI values as the
final classification features.
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feature to differentiate the pairwise classes is.

To determine the thresholds for the selected features of the decision-tree model, we
estimated the value ranges of these features for different pairwise classes (Figure 6a). The
feature Rel. border to brighter objects NIR was less than 0.88 for cropland, while the
minimum value of crayfish ditches was 0.90. Therefore, the threshold of Rel. border to
brighter objects NIR was set to 0.88 to distinguish between cropland and ditches. The
minimum of Mean red (multiplied by 10,000) was 348 for artificial land, and the value
was less than 294 for ditches. The NDWI of all ditch objects was less than 0.27, which was
significantly less than the minimum NDWI (i.e., 0.46) of water body objects. It was also
observed that the marginal value of GLCM Mean to separate ditches from forests was 127.5.
With these optimal features and associated thresholds, the decision tree used to extract the
crayfish ditches can be developed, as shown in Figure 6b.

The crayfish ditches were then identified using the above decision-tree classification
model (Figure 7a). We found that most ditches were circular and relatively enclosed.
Although a small number of road objects and river objects were misclassified into crayfish
ditches, the classification performance of ditches was generally satisfactory, based on a
visual comparison with the original SuperView-1 image.

3.3. RCF Map and Accuracy Assessment

With the classification results of the crayfish ditch, an RCF was extracted according
to the topological relationship between the crayfish ditch and its neighboring paddy rice
(Figure 8). Specifically, the minimum enclosing rectangles of ditch objects and the centroids
of unclassified objects are shown in Figure 8a. Figure 8b presents the map of the RCFs
in the study area, and the RCFs were composed of crayfish ditches and paddy rice. The
overall classification accuracy of RCFs was 91.77% by using the OTBA method and the
0.5 m SuperView-1 image on 19 August 2018 (Table 2). The producer’s accuracy for
RCFs was 90.32% and the corresponding user’s accuracy was 93.33%, indicating the good
performance of the OTBA method for extracting RCFs. In addition, our results showed
that the area of RCFs in 2018 was 822 ha in the study area.
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Table 2. The evaluation of derived RCF map using the field samples.

Class RCF Non-RCF Total Producer’s
Accuracy

RCF 112 12 124 90.32%
Non-RCF 8 111 119 93.28%

Total 120 123 243
User’s Accuracy 93.33% 90.24%
Overall Accuracy 91.77%

3.4. RCF Mapping Based on Different Spatial, Spectral and Temporal Information

Figures 9 and 10 show the RCF maps and corresponding classification accuracies
based on images with different spatial resolutions (i.e., 0.5 m, 1 m, 2 m, 3 m, 5 m, 8 m
and 10 m). We observed that all classification accuracies, including the user’s accuracy,
producer’s accuracy and overall accuracy of RCFs, decreased with spatial resolution as
expected. The accuracies of the RCF map based on images of 1 m resolution were greater
than 85%. However, when the spatial resolution decreased to 2 m, the accuracies of the
RCF maps, particularly the producer’s accuracy, dropped below 80%. According to the
Z-test statistics, the difference in RCF classification accuracies between 0.5 m and 1 m or
between 1 m and 2 m was not significant, with all Z values of less than 1.96 at the 95%
test level. However, the Z value between 2 m and 3 m was 2.94, indicating a significant
difference in their classification results.
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Additionally, the NIR band was excluded to analyze the impacts of different spectral
bands for identifying RCFs. It should be noted that we adjusted the candidate features for
crayfish ditch extraction (Table S1 in the Supplementary Material) due to the lack of an
NIR band. The RCF map and associated classification accuracies derived by using the RGB
image are shown in Figure 11 and Table S2 (Supplementary Material). Compared with
the classification accuracies of using the original four spectral bands, the overall accuracy,
user’s accuracy, and producer’s accuracy without using the NIR band decreased by 10%,
9% and 15%, respectively.
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Figure 11. The derived RCF map using the image with only RGB bands.

To understand the OTBA performance for RCF mapping in different observation
dates, the RCF extraction result based on the image from 7 April 2019 in the rice field
flooding phase was generated (Figure 12b). Compared with the RCF area (i.e., 822 ha) in
2018, the RCF area (i.e., 1085 ha) in 2019 was significantly increased, which was consistent
with the fact that the RCF area expanded rapidly between 2018 and 2019. The user’s and
producer’s accuracies and overall accuracy of RCF extraction in the field flooding stage
were 4%, 6% and 6% lower than those in the rice growth stage, respectively (Table S3 in
Supplementary Material).

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 11. The derived RCF map using the image with only RGB bands. 

To understand the OTBA performance for RCF mapping in different observation 
dates, the RCF extraction result based on the image from 7 April 2019 in the rice field 
flooding phase was generated (Figure 12b). Compared with the RCF area (i.e., 822 ha) in 
2018, the RCF area (i.e., 1085 ha) in 2019 was significantly increased, which was con-
sistent with the fact that the RCF area expanded rapidly between 2018 and 2019. The us-
er’s and producer’s accuracies and overall accuracy of RCF extraction in the field flood-
ing stage were 4%, 6%, and 6% lower than those in the rice growth stage, respectively 
(Table S3 in Supplementary Material). 

 
Figure 12. (a) SuperView-1 image and RCF samples in the flooding phase on 7 April 2019; (b) The 
corresponding RCF map based on the flooding phase image. 

  

Figure 12. (a) SuperView-1 image and RCF samples in the flooding phase on 7 April 2019; (b) The corresponding RCF map
based on the flooding phase image.

4. Discussion
4.1. The Sensitivity of Spatial, Spectral and Temporal Information on the OTBA Method

With the very high-resolution image of 0.5 m (i.e., SuperView-1), we well characterized
the topological relationship between crayfish ditches and paddy fields to accurately identify
RCFs. However, images with a 0.5 m spatial resolution are not always available, and
mapping RCFs in a large region with satellite images of less than 1 m often requires high
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costs. To evaluate the generalization of the OTBA method to different satellite images, we
investigated the lower limit of image spatial resolution that could achieve satisfactory RCF
classification accuracies (described in Section 2.4). Based on the performance of derived
RCF maps, we found that the classification result presented significant differences when
the spatial resolution decreased to 2 m (Figure 10). Therefore, the lower limit of the image
resolution for mapping RCFs with high reliability (overall accuracy = 81.07%) based on the
OTBA method was 2 m, indicating the good generalization capability of the OTBA method.
Additionally, these results provide important references for the selection of appropriate
images for mapping RCFs over large regions.

The OTBA method mainly took advantage of spatial features and topological rela-
tionships among land cover types to identify RCFs, which raised the question of whether
the OTBA method requires rich spectral bands. The results in Figure 11 show significant
declines in several accuracy indicators, suggesting that the NIR band is a very impor-
tant feature that cannot be ignored for the OTBA method. Furthermore, the decreased
accuracies using the RGB image was explained by the fact that the optimal crayfish ditch
classification features, including Rel. border to brighter objects NIR (to eliminate cropland
objects) and NDWI (to eliminate water body objects), which are both related to the NIR
band, were excluded in this case. Although the RGB image can be used to produce an
RCF map with acceptable accuracy (overall accuracy = 80.49%), an image with NIR band
information is recommended to further improve the performance of the OTBA method.

In addition, there were two important phases for cultivating RCFs: one was the field
flooding stage (the end of October to May of the next year) when the field was mainly
covered by water, and the other was the rice growth stage (June to October) when the field
was mainly covered by rice. The SuperView-1 image used in this study was in the rice
growth phase (i.e., 19 August 2018), with which we achieved satisfactory RCF mapping
results. However, very high-resolution images are not always available in every phase of
crop farming, particularly in South China, where cloudy and rainy weather is frequent.
Therefore, to evaluate the impact of temporal information of satellite images on the OTBA
method, we added the experiment using the image obtained in the field flooding phase
for RCF classification. Results showed classification accuracies based on the images in
flooding phase were lower than those in rice growth phase (Figure 12). Such results can
be explained by that the spectral signature of RCFs in the flooding stage was influenced
by a mixture of water and other impurities (e.g., straw and waterweeds), leading to the
increased probability of class confusion. Therefore, high-resolution images in the rice
growth stage from June to October are preferred for mapping RCFs. However, regardless of
the relatively low mapping accuracy in comparison with that in the rice growth period, the
RCFs in the rice flooding stage achieved an overall accuracy of 85.85%, which is generally
satisfactory for most agricultural applications.

4.2. Advantages and Further Improvements

Previous studies have shown that mapping rice is challenging because it is difficult
to capture the key phenological phase, and rice is easily misclassified with other crop
types [16,18,58]. For example, He et al. [59] claimed that the proportion of valid obser-
vations in key phenological phases of paddy rice was less than 60% in their study area,
resulting in extremely poor accuracy of early rice identification. Zhou et al. [60] and
Zhang et al. [15] pointed out that rice was very easy to be mixed with wetland or edge
pixels of rivers and lakes. In order to eliminate the interference of the abovementioned
land cover types, they introduced existing land cover classification datasets or established
many additional classification rules to improve the classification accuracy. RCFs, which
are composed of not only rice fields but also crayfish ditches, display higher intraclass
spectral variance than traditional rice patterns do. Therefore, identifying entire RCFs based
on the common strategy that relies solely on the spectral signature of land cover classes
tends to be difficult. Considering the specific characteristic of RCFs, our proposed OTBA
method first identified the crayfish ditches of RCFs using spectral and spatial features
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based on a decision-tree model and then extracted rice fields of RCFs using the topological
relationships between crayfish ditches and rice fields. In this way, the OTBA method does
not need to identify rice, which to a large extent avoids addressing the complex spectral
heterogeneity of rice fields and therefore can improve the performance of the OTBA method
effectively for extracting whole RCFs.

Furthermore, an accurate extraction of crayfish ditch is crucial for the OTBA method.
A large number of studies mainly used pixel-based methods and relied on spectral features
(e.g., spectral bands and water indices) to extract water bodies [61–63]. However, the
‘salt and pepper effect’ [35] existing in the pixel-based process will significantly affect the
extraction accuracy and integrity of small water bodies such as crayfish ditches. Huang
et al. [64] extracted multi-class urban water bodies (including rivers, lakes, small ponds,
and narrow canals) using spectral indices and machine learning, but they found that the
extraction performance at pixel level was inferior, with obvious omission and commission
errors. In addition, identifying water body only based on spectral features has great
uncertainty. For example, Wang et al. [65] used a water index to extract water, which
showed serious cases of misclassifying building shadows (sharing similar index value with
water) as water and missing small water bodies (mixed with other objects). By contrast,
we employed an object-based method, which ingested not only spectral signatures but
also spatial signatures and neighborhood relationships, to extract crayfish ditches. The
good accuracy and high completeness of the extracted crayfish ditch are essential for the
improvement of RCF mapping. It is noteworthy that although we developed the OTBA
method to map RCFs in Jianli City using SuperView-1 images, the OTBA can be easily
generalized to other regions even with fragmented landscapes and other high-resolution
images with spatial resolutions of higher than 2 m.

Additionally, two major improvements could be made when extending the OTBA
method for RCF identification in a larger area. First, most of the RCFs in this study were
rectangular, but a few RCFs were convex or concave. These nonrectangular RCFs could
increase the commission errors if using the minimum enclosing rectangle to characterize the
topological relationships between rice fields and crayfish ditches. More approaches, such
as the area filling method and other minimum enclosing polygons, will be tested to extract
RCFs with various shapes in future work. Second, since it is generally difficult to cover a
large area with single-source satellite data, considerable efforts should be made to collect
and integrate multisource high spatial resolution images for large-region RCF mapping.

5. Conclusions

In this work, we presented an OTBA method to map RCFs, which are an increasingly
popular farming pattern used in South China. The OTBA method first identified the
crayfish ditches using an object-based decision tree method and then extracted the paddy
field objects using the topological relationship between the ditches and paddy fields. The
final RCF was a combination of the ditch and paddy field objects. Jianli City, which has
the largest planting area of RCFs in Hubei Province, was chosen as the research site for
evaluating the OTBA method. In addition, we carefully explored the impacts of various
spatial resolutions, spectral bands, and temporal information on RCF mapping. Our results
showed that the overall accuracy, user’s accuracy, and producer’s accuracy of the derived
RCF map were 91.77%, 93.33% and 90.32%, respectively, indicating that the proposed
OTBA method performed well. The mapping accuracy of RCFs gradually decreased
with decreasing image spatial resolution, as expected. Nevertheless, the OTBA method
can generate satisfactory mapping results for RCFs as long as the spatial resolution is
greater than 2 m. The NIR band, which was used to calculate crucial spectral features (i.e.,
Rel. border to brighter objects NIR and NDWI) for identifying crayfish ditches, plays an
important role in accurately mapping RCFs. Moreover, high-resolution images in the rice
growth stage performed better than those in the flooding stage for mapping RCFs, with
a 5% accuracy gap, providing a good reference for the selection of images on a specific
observation date. Our proposed method fully utilized the spectral features, spatial features
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and neighborhood relationships among land use objects to identify whole RCFs, which
largely reduced the uncertainty of the high intraclass spectral variance associated with
paddy rice. The OTBA method can be easily generalized to other study areas regardless of
fragmented agricultural landscapes and other high-resolution (≤2 m) images. Furthermore,
since a single satellite that produces high-resolution images suffers from the long revisit
cycle, integrating multisource high-resolution images is an important direction for large-
region RCF mapping in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13224666/s1, Table S1: Classification features for extracting RCFs using RGB image,
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different phases.
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