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Abstract: Land development has impacted natural landforms extensively, causing a decline in
resources and negative consequences to elephant populations, habitats, and gene flow. Often, ele-
phants seek to fulfill basic needs by wandering into nearby human communities, which leads to
human–elephant conflict (HEC), a serious threat to conserving this endangered species. Under-
standing elephant space use and connectivity among their habitats can offset barriers to ecological
flow among fragmented populations. We focused on the Keonjhar Forest Division in Eastern India,
where HEC has resulted in the deaths of ~300 people and several hundred elephants, and dam-
aged ~4100 houses and ~12,700 acres of cropland between 2001 and 2018. Our objectives were to
(1) analyze elephant space use based on their occupancy; (2) map connectivity by considering the
land structure and HEC occurrences; (3) assess the quality of mapped connectivity and identify
potential bottlenecks. We found that (1) the study area has the potential to sustain a significant
elephant population by providing safe connectivity; (2) variables like forests, precipitation, rural
built-up areas, cropland, and transportation networks were responsible for predicting elephant
presence (0.407, SE = 0.098); (3) five habitat cores, interconnected by seven corridors were identified,
of which three habitat cores were vital for maintaining connectivity; (4) landscape features, such as
cropland, rural built-up, mining, and transportation networks created bottlenecks that could funnel
elephant movement. Our findings also indicate that overlooking HEC in connectivity assessments
could lead to overestimation of functionality. The study outcomes can be utilized as a preliminary
tool for decision making and early planning during development projects.

Keywords: landscape connectivity; least-resistant paths; habitat core; Asian elephant (Elephas maximus);
human–elephant conflict; movement barrier; centrality

1. Introduction

Land cover transformations have profound consequences on species populations and
habitats and are the main causes of the current biodiversity crisis [1]. Habitat fragmentation
and loss mostly affect species in small and sometimes isolated populations. This increases
their risk of extinction as they are exposed to demographic and environmental stochastic
events, along with lack of gene flow or inbreeding depression [2–4]. The survival of a ma-
jority of species within expanding human-dominated landscapes is highly dependent upon
the ecological connectivity among their spatially separated populations and habitats [5].
This is particularly true of wide-ranging mammals who are declining worldwide, as the
connectivity among their habitat patches is being deteriorated due to conversion of the
natural landscape into various land use patterns (e.g., transportation networks, patches of
cropland, or other land use factors that hinder species movement) [6–9]. Thus, detecting
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habitat patches and the linkages that establish connectivity among them is essential to
facilitate effective spatial planning to conserve these habitat networks.

Umbrella species like elephants play a major role in the ecosystem and their loss
would detrimentally affect the wellbeing of other species and communities sharing the
same habitat [10–14]. The Asian elephant (Elephas maximus) is an endangered species that is
threatened by habitat degradation, poaching for ivory, and especially by conflicts with peo-
ple (such as house damage, crop raiding, and human death and injury caused by elephants),
which makes it challenging to gather support from the local community to conserve this
species [15–19]. They are scattered among 13 range countries in Asia and occupy only 5%
of their original habitat range [20]. India harbors 60% of the current Asian elephant popula-
tion, but 70% of elephant habitats in India have been disturbed by escalating anthropogenic
pressures, such as rising human population, economic development, agriculture, logging,
and livestock raising [21,22]. These activities have not only fragmented elephant habitats,
but also hindered elephant movement pathways, allowing room for greater contact be-
tween elephants and people, especially in human-dominated landscapes [23]. Isolated
elephant populations, thriving among ever-decreasing foraging resources, are being forced
out of their native habitats into adjoining human communities, leading to human–elephant
conflict (HEC) [24,25]. This has caused the death of ~2400 people and ~500 elephants in
India during 2015–2018 [26] and between 2000 and 2010, and over 0.5 million households
suffer from crop raiding by elephants annually [26,27]. More than US $19.2 million has
been paid by the Indian government in compensation for the crops and property damaged
in HEC, and around US $5 million has been paid for human casualties caused by HEC
during 2014–2018 [26]. Wide-spread HEC can further deplete the already scattered and
scarce population of Asian elephants and pose a serious threat to their survival [28,29].

The magnitude of threat to Asian elephants is directly linked to the consumption of
resources by a rising human population [17,19]. Former elephant ranges and migratory
pathways have been mostly altered into agricultural land, followed by human settlements
and infrastructure [16,18], which has threatened the long-distance movement of elephants
in search of food, water, and social interactions. Space use by elephants is influenced by
vegetation type, distribution of available resources, land use change, and human interfer-
ence to their habitation [30–33]; therefore, understanding their space use is a key factor
that is necessary for conservation planning, identifying burdens that restrict their pres-
ence, and mitigating HEC [31,34–36]. Several methods have been employed for detecting
space use by elephants, such as field methods (telemetry data, direct sighting, and scat
observation) [31,34,35,37–40] and analytical methods (spatial regressions, habitat suitability,
resource-selection functions, and presence-only modelling) [41,42]. However, these meth-
ods do not consider observation errors, such as imperfect detectability (sometimes animals
might pass unobserved) and sampling biasness [31,43–46]. In addition, presence–absence
surveys can underestimate species distribution [31,46,47] as they barely differentiate be-
tween the true absence of species and the non-detection of signs. Occupancy modelling,
which is an unbiased estimate of the probability of species presence that explicitly accounts
for imperfect detectability, can meet conservation needs because it also facilitates an assess-
ment of the influence of anthropogenic and ecological variables on detection, as well as
habitat occupancy [31,46–48].

Connectivity between resource patches and species populations, based on land struc-
tures (such as vegetation, transportation networks, human settlements, water bodies,
industries, and cropland), is a crucial need for species conservation as it helps in maintain-
ing ecosystem functioning, determining the ability of the species to adapt to the human
dominant landscape [49,50] and gives insight into factors impeding or facilitating elephant
movement [51–55]. Thus, assessing connectivity across heterogeneous landscapes will facil-
itate safe movement of elephants, which can help not only in preserving their sub-divided
populations and reducing the risk of extinction by maintaining genetic flow [56–58], but
also in managing conflict occurrence [59]. Many quantitative approaches, such as the least-
resistant path [53,57,58,60–62] and the circuit theory [63–67], have been recently developed
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to assess the connectivity and barriers associated with movement pathways. However,
a majority of the studies on connectivity analysis are based on the characteristics of the
landscape [59,63,64,68–76], while only few studies [69,70] have considered human–wildlife
conflict occurrence when assessing connectivity. Conflict-prone regions act as a significant
movement barrier, which forces the species to adapt accordingly by changing their use of
resources [76–78]. Therefore, ignoring conflict occurrence can overestimate the effective-
ness of connectivity, as it could lead researchers to overlook the probable effects of conflict
along the estimated pathways that lead to the funneling of species into ecological traps in
the conflict prone regions [69–78].

Our study focused on the Keonjhar Forest Division in Eastern India (Figure 1), home
to a population of 70–75 elephants. This area is also famous for tuskers and hosting ele-
phants that are migrating from adjoining areas [26]. HEC in this region has escalated
to an extreme level, taking more than 300 human lives, and damaging 4100 houses and
12,700 acres of cropland between 2001 and 2018. Several elephants were also killed as a
result of electrocution, road-train mishaps, falling from hills, HEC, and very few were
lost due to poaching [26,79]. Therefore, analyzing elephant space use and delineating safe
dispersal pathways in this human-dominated landscape can help to mitigate HEC [26]. We
used three years of elephant location data collected by the forest staff, based on direct and
indirect (tracks, scats, and feeding sign) observations on a daily basis to (1) analyze the
intensity of elephant space use through occupancy modelling; (2) map potential connec-
tivity pathways among elephant habitat patches based on landscape structure and HEC
occurrence; (3) assess the major bottlenecks along the estimated pathways.
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Figure 1. Map of the study landscape showing the pattern of the estimated probability of elephant occupancy with the red
region showing a very high probability of elephant presence. Five elephant habitat cores (pink color polygon) were identified
and named as CFR, KFR, BFR, GFR, and TFR. Keonjhar Forest Division has seven forest ranges (Barbil, Bhuiyan-Juang
Pihra (BJP), Champua, Ghatgaon, Keonjhar, Patna, and Telkoi).
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2. Materials and Methods
2.1. Study Area

Keonjhar Forest Division (Figure 1) was selected for this study, which is aimed at
identifying connectivity pathways for Asian elephants that would limit potential contact
with human communities. The division is situated between latitudes 21◦1′ N–22◦10′ N
and 85◦11′ E–86◦22′ E, in the eastern part of India and covers an area of nearly 6038 km2,
with approximately 3400 km2 of forest cover that provides suitable habitat for many
species. Keonjhar Forest Division is rich in biodiversity and is a stronghold for Asian
elephants [78–80]. The study area has seven forest ranges, namely Champua, Barbil,
Keonjhar, BJP, Patna, Ghatgaon, and Telkoi. The majority of the tree species found in
this district are dry deciduous and semi-evergreen, where the Sal tree (Shorea robusta) is the
dominant species. More than 85% of the total human population lives rurally [70] and 80%
of the residents earn their livelihoods from agriculture.

2.2. Data Collection and Analysis

Beginning in 2017, information on elephant sightings was recorded on a daily basis
through direct observations by the Divisional Forest Office of Keonjhar District. There are
seven forest ranges, where 45 forest beats (smallest administrative unit of a forest division,
usually 50–60 km2 in expansion) cover the whole study area. A forest guard, patrolling
staff, and a para staff or protection squad are assigned to each beat and are responsible for
controlling human wildlife conflict, especially HEC, in their respective regions. The staff
collects locational data of elephants through direct sightings as well as indirect observations
such as foot marks, fresh dung, feeding signs, broken branches, and conflict incidences, on
a daily basis. This data contains GPS readings (latitude-longitude), village name, number
and characteristics of elephants (male or female), direction of their movement, and their
distance from railway track, etc. In order to assess the patterns of elephant space use, we
collected around 10,300 elephant locations from July 2017 to August 2020.

The landscape level variables used in the study were divided into two categories:
(i) environmental variables—open forest (%), dense forest (%), bush (%), enhanced veg-
etation index (EVI), terrain roughness index (TRI), annual average precipitation, land
surface temperature (LST), Euclidian distance (ECD) from waterbodies; (ii) anthropogenic
variables—ECD to mining, ECD to cropland, ECD to rural built-up, ECD to urban areas,
road–railway density and population density. The datasets used in this study are provided
in Supplementary Table S1.

Although the normalized difference vegetation index (NDVI) is an effective substitute
for forage availability that can increase the elephant occurrence [81,82] we used EVI, which
has shown better saturation in high biomass regions, apart from being modified for aerosol
effect and controlled for noise from soil background [19,83–85]. Elephants face difficulties
in thermoregulation when temperatures exceed their core body temperature [86], so their
occupancy will be lesser in the regions with high temperatures. Studies have shown that
foraging, movement rate, and habitat preferences of Asian elephants increase in the open
forest and bush habitat [16,63] compared with dense forests. Thus, we categorized the forest
cover into open forest (%), dense forest (%), and bush (%). Although the presence of water
sources enhances the space use by elephants, linear water bodies like rivers or drainage
canals can act as barriers [32,87]. Nevertheless, overall, we assumed that the farther the
distance from waterbody, the lesser the detectability of elephants would be. Moreover,
in this study, we considered all water bodies, comprising proximal rivers, non-proximal
rivers, canals, dams, and ponds.

Dense human settlements, mining areas, and road–railway networks are associated
with higher risks to elephants, which, in turn, create a hindrance for their movement [30,31].
It was observed that houses, farmlands, and water sources located within 1 km of the
elephant range are frequently raided by elephants [88–91] because of their easy accessibility
and higher food availability (e.g., stored grains, fruits. and kitchen food). According to
Tripathy et al. [26], since house damage occurred frequently in the villages of the study



Remote Sens. 2021, 13, 4661 5 of 19

area, we assumed that elephant detection might be higher near rural built-up, especially in
the forest fringe zone, while there will be lesser detection closer to urban areas. Although
elephants prefer to forage in croplands, which are an easily accessible food source, crop
raiding is a source of HEC [53,92–94], which poses a serious threat to elephants. We
used a Sentinel-2 Level-1C product of 10 m resolution to extract settlements, croplands,
water bodies, and mining, which was later improved for classification accuracy using
Google Earth products. The ECD for these variables, along with that of waterbodies, was
calculated using the straight line function in the Spatial Analyst module in ArcMap 10.5,
which calculates the distance from every cell to the adjoining source. Roads and railways act
as major barriers and are associated with high risk due to road–railway accidents [95–97],
which eventually can reduce elephant detectability near dense transportation networks.
Thus, we calculated the density of road–railway networks using the Line Density tool
in ArcGIS 10.5 and categorized the results into four classes (high, medium, low, and
absent). The population density was also assumed to have a negative influence on elephant
detection, as it is a measure of direct human alteration of natural landscape based on the
intensity of development activities [19] that affect elephant movement.

All the covariates were projected again onto the WGS 84/UTM zone 45N and resam-
pled to 1 km resolution using cubic convolution. Prior to further analysis, collinearity
for all the covariates was examined using stepwise variance inflation factors (VIF). We
created a linear model using these explanatory variables, with less collinearity (VIF < 10),
to evaluate the significance (p < 0.01) of variables that are related to the response variable.

2.3. Occupancy Modelling and Habitat Core Estimation

We fitted a single-season, single-species standard occupancy framework to evaluate
elephant space use along with the factors affecting their presence in the study area. Ele-
phant occupancy (Ψ = Pr (site is occupied by elephants)) was estimated using elephant
locational data, while accounting for detectability (ρ = Pr (detection at a grid cell | ele-
phants present in the grid cell and site)) in the “unmarked” package in R [98]. Detection
probability was modelled using 3 years of elephant presence data, based on the pattern
of the presence–absence matrix [99,100]. We considered the effect of spatial autocorre-
lation on the accuracy of elephant space use detection and followed a spatial thinning
processes [101,102] for daily locational data, where all the observed locations within each
1 × 1 km grid cell were aggregated. Then, we categorized each cell to make a daily
presence–absence matrix, where “1” (presence) was assigned if the grid cell has aggregated
observed locations, otherwise “0” (absence) was assigned. Moreover, we ensured that the
size of each grid cell was appropriate enough and less than the minimum home range
(~100 km2) of Asian elephants [20,103]. The number of repeated observations per grid cell
ranged from 4–71.

The modelling process was broken down into two stages, where occupancy probability
(Ψ) was modelled after detection probability (ρ) [69]. In the first stage, single covariate
models were built while keeping the occupancy constant at 1, in order to limit the possible
number of potential covariates for effective modelling of detection probability. All these
models were ranked using Akaike’s information criterion (∆AIC) [48,69] and the covariates
of models with ∆AIC values less than 2 (∆AIC < 2) were denoted as the plausible covariates
for detection modelling. The additive effect of these plausible covariates, along with
the global model (additive effect of all the covariates), were used for detection model
preparation. The covariate structure of Ψ was kept constant following Karanth et al. [69], as
we assessed the role of covariates for ρ by conditioning the covariate structures of Ψ (Ψ as
1) before modelling occupancy. Then, the structure of ρ in the model with the lowest ∆AIC
value was retained to build elephant occupancy models by combining all the covariates for
Ψ in all possible ways [103]. The models with ∆AIC values less than 2 were considered to be
the best-fitting elephant occupancy models [69,103]. Then, we applied a model-averaging
technique for these best-fitting models to create weight-averaged values for estimating
elephant occupancy probability within each grid cell across the landscape. From among
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the few goodness-of-fit tests for occupancy models, we used MacKenzie and Bailey’s (2004)
goodness-of-fit test. It calculated the chi-square fit statistics from the observed and expected
frequencies of detection histories for the average of plausible occupancy models using
“mb.gof.test” function in the AICcmodavg package. This process simulated a large number
of bootstrap samples (nsim = 100). We also estimated the over dispersion (c-hat) for the
average of plausible occupancy by dividing the observed chi-square statistic by the mean
of the statistics obtained from 100 simulations.

The time local convex hull (T-LoCoH) method was used to generate habitat cores
using the “tlocoh” package, based on the hulls, which is a prerequisite step for connectivity
analysis. Hulls are the building blocks of T-LoCoH analyses and are minimum convex
polygons constructed around each point from a set of nearest neighbors. We used the
“lxy.nn.add” function to determine the nearest neighbors (k), which was found to be 17 in
number, and thus created a hull set with up to 17 nearest neighbors for each location. And
the “tlocoh::lxy.lhs” function was used to create hull sets, by setting the parameter s = 0,
because we did not consider the temporal component (re-visitation), which represented
the hulls of heavily used areas that did not cut across unused areas [104]. Finally, isopleths
were created using the “lhs.iso.add” function by aggregating the hulls that were sorted
according to density, reflecting the intensity of use [104]. Thereafter, we extracted a 50%
isopleth [105,106] and overlaid it on the occupancy map to clip the core regions of elephant
space use.

2.4. Landscape Connectivity Analysis
2.4.1. Resistance Surface

Resistance surface is a significant factor in estimating the suitable least-resistant
movement pathways [61,106], where each grid cell value indicates the cost of, or difficulty
of, a hypothetical elephant movement through that cell. The higher the estimated resistance
for a grid cell, the lower the chance of an elephant moving through it. The resistance score
for each landscape factor was assigned based on the literature [62,64,71,72,107] along with
expert consultation. We included land use land cover (LULC), slope, road, railway, human
population density, and HEC density factors and categorized them to develop a resistance
surface (Supplementary Figure S1). As HEC is a serious threat that can act as a movement
barrier for elephants [18,21,22,77,78], a higher resistance value was assigned for areas with
higher HEC density in order to estimate pathways that will have lesser interaction with
human society.

Overall, we assigned a resistance score between 1 and 100 (where 1 = least resistance
level and 100 = highest resistance level, Table 1) to every category for each specific factor and
then assigned a weight between 1 and 5 (1 = least impact, 5 = highest impact, Table 1). Here,
the weight of a factor quantitatively indicates its probability level of impact on elephant
movement. The resistance surface was produced by using the weights of each layer and
scores of each variable that consisted of environmental and anthropogenic variables in
ArcGIS 10.5. The resistance surface (Figure 2a) was classified into five classes (0–25 = very
low; 25–40 = low; 40–65 = medium; 65–85 = high; 85–100 = very high).

2.4.2. Mapping Elephant Movement Pathways

The Linkage Mapper tool [108] was used to delineate potential elephant movement
pathways, based on circuit theory, graph theory, and cost distance assessment (resistive
distance) [65,66]. Circuit theory evaluates the path of electrical current flow (i.e., elephant
movement) through the least-resistant path in a circuit having multiple paths [65]. Graph
theory elucidates the landscape as a set of nodes (habitat cores), where movement between
these nodes is possible through the connecting edges (connecting paths) [109,110]. Resistive
distance represents the distance to the nearest nodes for each grid cell, based on the least-
cumulative resistance. Therefore, the possibility of a trade-off between resistive distance
and travel distance among the nodes assesses the significance of linkages in the landscape,
by offering the shortest least-accumulative resistive distance [66,74,111].
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Table 1. Variables used to create the elephant movement resistance surfaces. Resistance score
represents the resistance to elephant movement posed by each category (e.g., open forest, agriculture,
or barren land) for each variable (e.g., LULC, slope or HEC density), which was scored on a scale of
1–100 (where 1 = least resistance level and 100 = highest resistance level). Score denotes the probable
impact of each layer on connectivity among elephant habitats on a weight of 1–5 (1 = least impact
and 5 = highest impact).

Variable Category Resistance
Score Weightage

LULC

Bush/Scrub 5

2

Open Forest 1
Dense Forest 20

Rural built-up 80
Urban development 100

Agriculture 75
Barren 15

Water bodies

River 20

3
Canal/Drain 40

Reservoir/Tank 5
Lake/Pond 5

Mining

Active Mining and
Quarry 90

2Industrial Areas 100
Waste and

abandoned area 80

Railway Absent 1
1Present 100

Road
Absent 1

2Present (Major) 100
Present (Minor) 60

Slope
High 85

3Medium 50
Low 1

Population
Density

Absent 1

1
Low 30

Medium 60
High 100

HEC Density
High 90

3Medium 60
Low 20

The tool identifies habitat cores and connects them to one another by edges using a
one-to-many condition. The grid cells were treated as a network of nodes and abstracted as
a graph to quantify the distance via the graph–theoretic metric [74,112]. The shortest, least-
resistant pathways for each pair of habitat cores were then mosaicked to plot connectivity
maps [65,67,108] where the movement flow densities were high. We used a cutoff width of
1.5 km to denote the potential extent of elephant movement pathways that may comprise at
least 30–40% forest cover. Moreover, connectivity of this width would be more practical and
it would accommodate the uncertainty in the underlying GIS layers, estimated resistance
surfaces, and connectivity modelling.

2.4.3. Assessing the Characteristics of Least-Resistant Paths

The Centrality Mapper function was used to quantify the importance of habitat
cores and least-resistant pathways in maintaining connectivity in the entire habitat net-
work [65,108,113]. It calculated the current flow centrality (elephant movement flow) by
deducing the cumulative flow through all pairs of habitat cores and estimated the pathway
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networks. Furthermore, two ratios are calculated to determine the characteristics of po-
tential pathways. Firstly, the ratio between the resistance-accumulated distance and the
Euclidean distance (Ra:Ed) was used to measure the quality of the connectivity pathways,
by assessing the elephant movement difficulty between a pair of habitat cores with respect
to their surroundings. The second ratio, between the resistance-accumulated distance and
the length of the least-resistant path (Ra:Lr), calculates the resistance per unit length for
elephant dispersal along the estimated pathways [113].
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Figure 2. Landscape resistance and connectivity for elephant movement. (a) Surface map representing the landscape
resistance to elephant dispersal, where each grid cell indicates the struggle for hypothetical elephant movement through
that grid cell. (b) Map showing the least-resistant passage for elephant dispersal, which was clipped at a 1.5 km resistance-
accumulated distance. The blue regions represent the lowest resistance-accumulated path, while the green regions represent
the highest. The estimated pathways are safer as they avoid the dense HEC (shown in the background)-occurrence regions.

Finally, the Pinchpoint Mapper tool was used, to calculate the cumulative movement
flow for each grid (amp/grid), which identified the bottlenecks for movement within the
pair of estimated pathways and for the entire connectivity network. The current study
evaluated the bottlenecks with respect to the entire network, as we were interested in
finding the regions for prioritizing conservation efforts, where elephant movement may
get funneled, or connectivity might be disproportionately interrupted by even minimal
obstruction around the pinch points [75]. It identified the regions where the low-resistance
cover types were narrowed due to factors such as transportation networks, high density of
HEC occurrence, and developed areas.

3. Results
3.1. Elephant Occupancy

Environmental variables, such as terrain roughness index, land surface temperature,
and dense forest (%), as well as anthropogenic variables, such as ECD mining, ECD urban,
and population density were removed because of collinearity, and the AICs of significant
variables were used for occupancy prediction, as listed in Table 2. In the first stage of
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occupancy analysis, additive effects of variables such as open forest (%), precipitation,
ECD cropland, and ECD rural received the lowest AIC to model ρ (Table 2). By retaining
this covariate structure of ρ, occupancy models were built using the additive function of
various covariates for Ψ. We found three plausible models (∆AIC < 2) that fit the data
very well and determined the probability of elephant occupancy in our study landscape.
Subsequently, we averaged these plausible models to derive the final parameter estimates.

Table 2. List of top models for probability of elephant detection (ρ) and occupancy (ψ), ranked based on Akaike’s information
criterion (AIC). The first part of the table lists best-fit covariates, while the second part lists the top ρmodels built using the
best-fit covariates. The last part lists the best ψmodels built using the top ρmodel’s structure. ECD—Euclidean distance;
EVI—enhanced vegetation index.

Scheme Model AIC ∆AIC

Covariates selection
1 ρ (Open forest %) ~ Ψ (1) 882.31 0
2 ρ (Precipitation) ~ Ψ (1) 882.66 0.35
3 ρ (ECD_cropland) ~ Ψ (1) 883.04 0.73
4 ρ (ECD_rural) ~ Ψ (1) 883.79 1.48
5 ρ (Road–railway density) ~ Ψ (1) 883.86 1.55
6 ρ (Bush %) ~ Ψ (1) 884.02 1.71
7 ρ (ECD_waterbodies) ~ Ψ (1) 884.31 2.00
8 ρ (EVI) ~ Ψ (1) 884.62 2.03

Detection model

1 ρ (Open forest % + Precipitation + ECD_cropland +
ECD_rural) ~ Ψ (1) 1123.86 0

2 ρ (Open forest % + Precipitation + ECD_cropland +
ECD_rural + Road–railway density + Bush %) ~ Ψ (1) 894.04 0.18

3 ρ (Open forest % + Precipitation + ECD_cropland +
Road–railway density) ~ Ψ (1) 894.57 0.71

4 ρ (Open forest % + ECD_cropland + Road–railway
density + ECD_rural) ~ Ψ (1) 895.24 1.38

5 ρ (Open forest % + ECD_cropland + ECD_rural +
Bush % + ECD_waterbodies) ~ Ψ (1) 895.95 2.09

Occupancy model

1

ρ (Open forest % + Precipitation + ECD_cropland +
ECD_rural) ~ Ψ (Open forest % + Precipitation +

ECD_cropland + ECD_rural
+ Road–railway density)

894.63 0

2
ρ (Open forest % + Precipitation + ECD_cropland +
ECD_rural) ~ Ψ (ECD_cropland + Precipitation +

Road–railway density + Bush %)
895.12 0.49

3

ρ (Open forest % + Precipitation + ECD_cropland +
ECD_rural) ~ Ψ (Open forest % + Precipitation +

ECD_cropland + ECD_rural + Road–railway density +
Bush %)

895.96 1.33

4
ρ (Open forest % + Precipitation + ECD_cropland +

ECD_rural) ~ Ψ (Open forest % + ECD_rural +
Road–railway density + Bush % + ECD_waterbodies)

896.54 1.91

5
ρ (Open forest % + Precipitation + ECD_cropland +
ECD_rural) ~ Ψ (Open forest % + ECD_cropland +

ECD_rural + ECD_road–railway + ECD_waterbodies)
896.87 2.24

The overall probability of elephant occupancy was 0.407 (SE = 0.098), based on the
averaged model, while it was only 0.372 as per the naive occupancy of the study area.
We estimated that elephants were distributed over 43% (about 2710 km2) of the study
area and BJP, Ghatgaon, and Champua forest ranges represented a higher potential of
elephant occupancy. The probability of elephant occupancy within each grid cell across the
study area is shown in Figure 1. The p-value (the probability of obtaining the calculated
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chi-square statistic) was found to be 0.621, which proves that there is no evidence of lack of
fit (as p-value > 0.1) [48]; additionally, the estimate of the over-dispersion parameter for the
averaged elephant occupancy model (c-hat) was 0.703, indicating that there is no evidence
for over dispersion as the variance is not greater than the mean (c-hat is close to 1) [48]. We
found five elephant habitat cores in the study area, Champua, Keonjhar, BJP, Ghatgaon,
and Telkoi forest ranges, which were named as CFR, KFR, BFR, GFR, and TFR, respectively.

The probability of elephant occupancy varied asymmetrically with each variable, as
shown in Supplementary Figure S2. The magnitude of coefficient estimates for the aver-
aged model, shown in Table 3, indicated the strength of their expected influence, while the
(+)/(−) signs demonstrate the relationship. In our study area, open forest (%), precipitation,
and ECD_rural were the key covariates that positively influence elephant presence, while
ECD_cropland, bush (%), and road–railway density were shown to negatively influence
elephant presence (Table 3). We found that elephant occupancy was high when the open
forest % in the study area was above 40%. Occupancy was also high when the bush
% increased up to 50% but then reduced with further increments of bush %. Although
Euclidian distance to water bodies has been identified as a potential factor in estimating
elephant distribution in India, Indonesia, China, and Thailand [35,64,114,115], it did not
become a prominent predictor in this study, due to difficulties in identifying water bodies
using coarse resolution satellite images; however, it showed a positive association with the
annual average precipitation in the study area. A relatively higher elephant presence was
observed farther away from rural built-up because of the cumulative effect of a variety of
anthropogenic pressures on elephants [37,103,116]. Road–railway mishaps of elephants
have been mentioned as one of the major causes of elephant mortality [95–97] and conse-
quently, we evidenced lower elephant occupancy in the regions with denser transportation
networks. Moreover, we observed higher elephant detectability near croplands because
they prefer grazing crops over natural forage due to higher accessibility, palatability, and
nutrition [10,58].

Table 3. Coefficient estimates of the Asian elephant occupancy model, averaged from 3 oc-
cupancy models with ∆AIC < 2 (ECD—Euclidean distance; EVI—enhanced vegetation index;
SE—standard error).

Model Estimate SE

Detectability
Intercept 2.21 0.11

Open forest % 1.68 0.51
Precipitation 0.20 0.35

ECD_cropland −0.74 0.09
ECD_rural 0.13 0.89

Occupancy
Intercept 0.96 0.04

Open forest % 2.17 0.16
Precipitation 0.32 0.22

ECD_cropland −1.17 0.07
Bush % −0.09 1.08

ECD_rural 0.03 0.61
Road–railway density −2.32 0.13

3.2. Elephant Habitat Connectivity

The central and northeast regions of the study area demonstrated a higher resistance
(Figure 2a) to elephant movement. When assessing the elephant habitat connectivity
(Figure 2b), each cell of the resulting map represented a relative value of landscape connec-
tivity that allowed us to outline the pathways that have the highest potential to facilitate
elephant movement among habitat cores. Seven potential linkages were identified—which
varied with respect to their importance in the overall network—where the pathway be-
tween GFR and TFR (19.76 km) was the shortest least-resistant distance, while the pathway
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between GFR and CFR was the longest least-resistant pathway (103.12 km). Several pairs of
habitat cores appeared to have more than one connecting linkage, for instance, the linkage
between GFR and BFR has two alternative pathways available for elephants. One is a direct
connection having shorter distance with a higher resistance, while the other linkage, via
TFR, has a lower resistance. A similar case was also observed for the remaining pairs of
habitat cores, which had more than two linkages. A major insight from our analysis was
that most of the connectivity networks were through the BJP forest range and hardly any
least-resistant routes were identified from the central and western parts of the study area,
which are areas that were generally assumed to lack connectivity for elephants.

According to the measure of centrality (Figure 3a), KFR was the most important habitat
core, followed by GFR and TFR (core centrality values 6.57, 6.02, and 5.44, respectively, from
Table 4A), due to their relatively larger area and their significance in connecting habitat
cores in the study area. Similarly, the centrality of elephant movement was highest around
KFR–CFR, BFR–KFR, and GFR–TFR linkages (linkage centrality values 3.34, 2.83, and 2.48,
respectively, from Table 4B). Considering the GFR–BFR and GFR–TFR pathways, despite
being nearly equidistant least-resistant paths (19.7 km), the difficulty of elephant dispersal
along the GFR–TFR pathway was found to be the lowest (Ra:Ed ratio 1.33, Table 4B).
Meanwhile, the resistance per unit length for the GFR–TFR pathway (Ra:Lr = 1.24) was
less than that of GFR–BFR (Ra:Lr = 2.11), which resulted in a higher movement flow
(value of 2.83) between GFR and TFR. Thus, another major insight would be that, even
with equidistant least-resistant pathways, their quality in terms of difficulty in movement
varied, which was also true for the TFR–BFR (length = 24.5 km, Ra:Ed = 1.35, Ra:Lr = 1.21)
and BFR–KFR (length = 26.5 km, Ra:Ed = 1.84, Ra:Lr = 1.65) pathways.
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Figure 3. Characteristics of the estimated habitat cores and linkages. (a) Map representing the centrality of elephant habitat
cores and linkages in maintaining connectivity within the entire habitat network. The red polygon or line has high centrality
while the green has the lowest centrality. The pathways with the highest linkage centrality (KFR–CFR, KFR–BFR, and
GFR–TFR) are supported by open forests with fewer transportation barriers (shown in the background). (b) Map illustrating
the bottlenecks for elephant dispersal along the estimated linkages. The regions in shades of red have higher restrictions for
elephant movement between the adjacent pairs of habitat cores. Five bottlenecks were identified and are highlighted with
blue boxes.
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Table 4. Characteristics of habitat cores and elephant movement pathways, where centrality signifies the importance of each
pathway in maintaining the connectivity. The centrality of (A) 5 estimated habitat cores and (B) 7 least-resistant pathways
evaluated by the Centrality Mapper tool. Ra:Ed represents the movement difficulty between habitat cores, relative to the
whole connectivity network, while Ra:Lr represents the resistance per unit length along least-resistant pathways.

(A)

Habitat Core Area (m2)
Habitat Core

Centrality

CFR 1,55,57,714.91 4.49561
BFR 1,85,89,494.01 5.51905
TFR 1,90,63,388.80 5.54219
GFR 2,35,76,210.22 6.02567
KFR 1,78,06,542.70 6.57972

(B)

From_Core To_Core Ed (meter) Ra (meter) Lr (meter) Ra:Ed Ra:Lr Movement Flow
Centrality

GFR TFR 18,360 24,576 19,769 1.33856 1.24372 2.8322
TFR BFR 21,943 29,728 24,519 1.35478 1.21261 2.4845
TFR KFR 48,458 71,124 59,573 1.46772 1.1939 1.7817
KFR CFR 20,295 35,989 22,765 1.77325 1.58085 3.3494
GFR CFR 64,157 11,831 10,314 1.84427 1.14769 1.6431
BFR KFR 24,118 44,516 26,566 1.84575 1.65803 2.6478
GFR KFR 42,811 89,507 73,149 2.09076 1.22627 1.3545
GFR BFR 17,150 41,882 19,772 2.44219 2.11857 1.9408

The matrices of the two ratios (Ra:Ed and Ra:Lr) were calculated for characterizing
the linkage among habitat cores (Table 4B). The ratio of Ra:Ed (mean 1.76) is lowest for
GFR–TFR and TFR–BFR pathways, with a value of 1.33 and 1.35, respectively, which
indicates the highest quality along the least-resistant pathways. The movement resistance
per unit length (Ra:Lr) for these pathways was 1.24 and 1.21, respectively, which was the
lowest when compared with the rest of the connectivity network.

The grid cells of the bottlenecks map represent the cumulative elephant movement,
while the higher values highlight the significance of priority conservation. We identified
five major pinch points (Figure 3b) in almost every linkage, where elephant movement may
get funneled, or the connectivity may be interrupted by even the least obstruction. The
landscape characteristics of the regions that have the highest possibility of being constricted
are shown in Supplementary Figure S3. In bottleneck_1, which was found in the Champua
forest range, the major landscape feature hindering elephant movement was identified as
mining. Whereas croplands were a common key feature of this landscape that contributed
to bottlenecks to elephant movement. The KFR–CFR (bottleneck_2) and BFR–KFR (bottle-
neck_4) pinch points were along the shortest pathways where the bottlenecks between the
connectivity networks were extremely narrow, while bottleneck_3 and bottleneck_1 were
observed on the longer pathways of TFR–KFR and TFR–CFR. Moreover, the TFR–GFR
pathway had bottlenecks to some extent.

4. Discussion
4.1. Variables Influencing Elephant Detection

Forest covers with multiple land-use activities are usually preferred by elephants over
relatively intact forests [35,38,39,64]. Bushes, which are the primary forage of elephants,
can grow easily in open forests as they receive better space and light conditions [57,58,117].
Our study indicated that open forests, along with bush cover, strongly influenced ele-
phant occupancy in the study area, as they provide food and shelter and also help in their
thermoregulation [35,37,40]. We found a positive influence of precipitation on elephant de-
tection, contrary to a study [31] conducted in Southern India in an extremely wet landscape,
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which found that precipitation was the least influential covariate. But it is noteworthy that
extreme wet conditions (such as dense and evergreen-canopied regions) can lead to an
underestimation in the prediction of elephant occupancy. However, favorable rainfall con-
ditions improved water availability, while increasing the productivity of deciduous forests
with an abundance of palatable trees [26,40,103,118], which attracted more elephants to
these regions in the study area.

Elephants struggle to live in human-populated areas, due to the negative impacts
of linear infrastructure (road and railway networks, drains, canals, and wells), mining,
settlements, and electrocution, along with retaliatory killing [92,94–97]. Elephants were
present even in areas with a human density of ~2300 persons/km2 in the central region of
the study area; whereas, a previous study [103] had stated that elephants did not coexist
with humans when the density reached ~15.6 persons/km2. Roever et al. [33] indicated
that elephants can penetrate areas with dense human populations, but their sustainable
existence in these areas was questionable, particularly in areas with lower forest cover.
Hence, in determining elephant occupancy, anthropogenic factors predominated over
environmental factors, with the exception of open forest and precipitation. Despite this,
elephants were present in the rural areas, probably because of easier access to food (stored
grains, kitchen food, and local brew) from houses within the range from 200 m to 1 km of
an elephant habitat range near the forest fringes [88–90].

4.2. Interpretation of the Characteristics of Estimated Connectivity

Our results suggested that this landscape provides potential connectivity among
habitat cores, as a number of alternative pathways are available for species to move,
which provide flexibility for planning and proposed infrastructure development in the
landscape [113]. KFR–CFR, BFR–KFR, and GFR–TFR linkages can offer better functionality
due to their higher centrality. Also, the highest centrality habitat cores have a significant
role in maintaining the suitable least-resistant network, which was also consistent with
the conclusions of previous literature [107]. The GFR–CFR pathway was observed to have
the least resistance (value of 1.14) in the study area, but its movement flow centrality was
found to be very low (value of 1.64) because of the greater distance (nearly 103.12 km)
between the GFR and CFR habitat cores. Although the KFR–CFR pathway had the highest
movement flow (value of 3.34), its quality was considerably lowered due to the presence of
several bottlenecks along the pathway, such as from mining and rural development [58].
Our results could not find least-resistant movement pathways for elephants in the western
region of the area, where one of the major factors limiting connectivity was the existence of
a river pattern which acts as a barrier to elephant movement. However, in the central part,
the relatively lower forest cover with high human density, dense road–railway network,
and high HEC occurrence [18,26,52,58] also created hurdles for elephant movement.

Rural development, mining or industry, and transportation networks were the com-
mon key features that contributed to bottlenecks (Supplementary Figure S3), while cropland
was indirectly influential. Although elephants are adaptable and prefer to forage on crops,
they face a high mortality risk when crossing patches of cropland because of farmer re-
taliation due to crop raiding or other damages caused by their movement. As a result
of the funneling effect of these kinds of landscapes, they tend to act as ecological traps
for elephants [119–121]. Hence, another major insight drawn from this study was that
overlooking HEC in connectivity assessment could lead to overestimating the functionality,
because HEC is a major factor challenging elephant movement in these zones. Apart from
that, we observed that the mining activities, particularly in bottleneck_2, can significantly
affect the connectivity between KFR and CFR, as there were no alternative pathways for
elephant dispersal. Yet, sufficient knowledge is still lacking on elephant movement in a
human-dominated landscape in which suitable pathway selection may vary due to changes
in environmental aspects and responsive behavior [107].
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4.3. Implications and Recommendations

Connectivity, along with the spatial distribution of elephants, can be effective for
assessing the influence of landscape configuration on population level processes. It can
assist in improving the information on the factors influencing elephant conservation and
developing management plans to protect them by recognizing the threats present in the
habitat range [29,107]. Overall occupancy of elephants can be treated as a useful baseline
against which future changes in elephant distribution can be assessed [29]. In order to main-
tain the connectivity network, major landscape barriers (mining, transportation networks,
and dense HEC regions) along the estimated bottleneck regions should be kept intact and
protected from further degradation through necessary adaptive planning [107]. During
landscape planning, these regions should be given spatial prioritization for conservation
and restoration because they are narrow routes which lack alternative connectivity and
low resistance landscapes. Therefore, in order to facilitate effective planning, provision
of land and infrastructure development, the connectivity, bottlenecks, and region-based
connectivity characteristics could be useful and informative for authorities in allocating
conservation resources to areas with high conservation value. However, these passages will
also be helpful in connecting other species to their sub populations in the study area [18,68],
while minimizing interactions with human society.

The outcomes of this study endorse conservation and landscape planning recommen-
dations, based on the habitat use of elephants and landscape permeability by considering
resistances to elephant movement accompanied by HEC risk. First, we recommend im-
proving protection strategies in forest reserves that comprise habitat cores by enabling
appropriate expansion of the forests dimensions to control further degradation of these
habitats. Incorporation of neighboring forests is also recommended to restore connectivity
and facilitate dispersal among fragmented elephant populations outside our study area,
which can help to increase the functionality and genetic diversity [57,122]. Second, the
potential linkages with low resistance and HEC risk require strict law enforcement, so
that these areas are protected from future unregulated land cover alterations, poaching
for ivory, and retaliations that occur subsequent to damages caused during HEC. Addi-
tionally, individual development projects should be considered as case studies and the
consequences of land cover changes on elephant pathways and their movement behavior
should be carefully discussed with multiple stakeholders. Third, as an effort to control the
conflict risk, regions with more dispersal bottlenecks due to high HEC (in Keonjhar and
Ghatgaon forest ranges) require urgent conflict mitigation intervention, such as streamlined
compensation policies, community-based initiatives, and awareness programs to change
people’s attitudes towards co-existence [26,79]. As potential higher connectivity regions
allow frequent movement of elephants, leading to a higher possibility of conflict [122], in
order to predict HEC, the estimated connectivity values across the landscape should be
tested for their correlation with conflict occurrence.

The establishment of the proposed pathways should be considered as sustainable
conservation goals, since elephant movement across the estimated pathways will not be
evidenced in the immediate future. The effectiveness of the estimated pathways could be
sensitive to errors in the base data, collected through remote sensing, potential biases in the
expert opinions used in assessing resistance surfaces and uncertainty of the required width
for proposed corridors [59]. Actual connectivity could be more restricted than the estimated
connectivity, since elephants may opt for routes other than the ones indicated in the study,
depending on their behavior and adaptability to the landscape. Therefore, we suggest
using radio telemetry data, accompanied by data on elephant behavioral states, to assess
the effectiveness and utilization of the estimated pathways, and to reveal unaccounted site-
specific resistance for elephant dispersal. Careful interpretation of the estimated centrality
on a wider scale is recommended, as regions outside the study area may also have the
potential for maintaining connectivity among elephant populations of neighboring habitats.
Considering the negative perception towards elephants and the socio-economic status
of local communities, an inclusive ecotourism program with a focus on involving and
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benefitting these communities could increase the sustainability of the proposed elephant
pathways.

5. Conclusions

The central Indian landscape is a priority zone for elephant conservation but it is
highly fragmented and dominated by anthropogenic activities. While maintaining elephant
movement pathways in such a human-dominated landscape is challenging, a connectivity
study such as this can provide useful guidance for improving management and present a
low-cost alternative approach to improving connectivity quantification, while accounting
for HEC incidence. The connectivity characteristics related to HEC occurrence delivered
valuable insights on the spatial prioritization of research efforts. Estimated multiple
pathways between pairs of habitat cores indicated the potential of the study area to sustain
a significant elephant population by providing them safe connectivity, even in a human-
dominated landscape. Hence, connectivity analysis is a useful preliminary tool for planning
and land use decisions, while providing a degree of flexibility for managers in designing
ways to conserve the essential connectivity regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13224661/s1, Figure S1: Significant data layers used for modelling elephant occupancy and
building resistance surface. Figure S2: Relationships between the estimated probability for elephant
occupancy and the influential covariates. Figure S3: The landscape characteristics of the identified
major bottlenecks along with their respective average cumulative movement flow. Table S1: Variables
used for estimating elephant occupancy probability.
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