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Abstract: The dynamics of the ecosystem represented by vegetation under the influence of human
activities have become an important issue in the study of the regional ecological environment.
Xinjiang is one of the most ecologically fragile areas in the world, and vegetation changes have
received extensive attention. Xinjiang is one of the most ecologically fragile areas in the world, and
vegetation changes have received extensive attention. However, the spatiotemporal patterns and
evolutionary trends of anthropogenic impacts on vegetation dynamics in Xinjiang are still unclear.
In this study, the anthropogenic impacts on vegetation dynamics were quantitatively assessed by
combining the improved normalized difference vegetation index (NDVI) prediction model and
the residual analysis method in Xinjiang, China. The human driving factors were analyzed with
the support of a stepwise multiple regression model for vegetation changes at the county scale.
Based on trend analysis and the Hurst exponent, the spatiotemporal characteristics and evolutionary
trends of the impact of human activities on vegetation change were discussed. The results show
that (1) the NDVI values in Xinjiang showed a gradually increasing trend at a rate of 0.005/10 years
from 1982 to 2018, and the vegetation dynamics mainly showed significant improvements (57.09%
of the vegetated areas), especially for crops. (2) The anthropogenic effects of vegetation changes in
Xinjiang mainly included positive impact increases (43.22% of the vegetated areas) from 2000 to 2018.
Human activities promoted the increase in the NDVI of various vegetation types. Both the positive
and negative impacts of human activities increased over the study period, and the growth rate of the
positive influence (0.08%/10 years) was higher than that of the negative influence (0.04%/10 years).
(3) The cultivated area, GDP of primary industry, and population are the main anthropogenic factors
causing the increase in NDVI, which dominate the vegetation greening in 30.34%, 29.22%, and 28.09%
of the counties in Xinjiang, respectively. The animal husbandry population, agricultural population,
and livestock number are the main anthropogenic factors causing the decrease in NDVI, which
dominate the vegetation degradation in 23.60%, 21.35%, and 17.98% of the counties in Xinjiang,
respectively. (4) The evolutionary trend of the anthropogenic impact on vegetation dynamics in
Xinjiang will be dominated by anti-persistence (53.84% of the vegetated areas), thereby mainly
showing that the positive impacts continued to increase (22.56% of the vegetated areas), especially
for crops, shrubs, grasslands, and alpine vegetation. Our results are helpful in understanding the
characteristics and evolutionary trends of vegetation changes in arid areas caused by human activities
and are of significance as a reference for policymakers to appropriately adjust policy guidance in
a timely manner to promote the protection and sustainable development of fragile ecosystems.

Keywords: vegetation dynamics; normalized difference vegetation index; anthropogenic impact;
spatiotemporal pattern; evolutionary trend
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1. Introduction

As a critical component of terrestrial ecosystems, vegetation plays an indispensable
role not only in the global carbon, nitrogen, oxygen, and water biogeochemical cycles [1–3],
but also in ecosystem services, including reductions in greenhouse gases, the maintenance
of climate stability [4–6], and the prevention of desertification [7]. Vegetation is commonly
considered as a comprehensive indicator of ecological environmental changes [8], and its
dynamics significantly affect regional ecological security [2,9]. In recent decades, as human
activities have increased, changes in vegetation have profoundly recorded the imprints
of human activities. Existing studies have found that anthropogenic activities change
land use through urbanization, agricultural planting, grazing, and ecological restoration
projects, thereby affecting the dynamic patterns of vegetation [10–12]. In the short term,
the effects of anthropogenic activities on vegetation changes exceed those of natural factors
in terms of the speed and extent of the vegetation changes [13]. In some ecologically
fragile areas, anthropogenic activities have played an especially critical role in changing
vegetation [14,15]. Therefore, understanding the impact of anthropogenic activities on
vegetation has become essential for sustainable development [11,16].

The normalized difference vegetation index (NDVI) is regarded as a valid indicator
used for the monitoring of vegetation dynamics and environmental changes and has been
widely used for the dynamic evaluation of vegetation at different scales [10,17,18]. Using
NDVI data, previous studies have focused on the relationship between vegetation dynam-
ics and human activities at a variety of spatiotemporal scales. For example, Ma et al. [19]
studied the quantitative contribution of climate change and human activities to vegetation
change in the Upper White Nile River and believed that the large proportion of agriculture,
rapid population growth, and rapid urbanization were the main anthropogenic driving
forces for vegetation change from 1982 to 2020. Liu and Xin [20] analyzed the impact of
climate change and human activities on the changes in desert vegetation in China. The
results show that human activities, especially the expansion of oases and sand control
measures, were the two main reasons for the large increase in the green area of deserts
in China from 2000 to 2017. Liu et al. [15] analyzed the impact of climate change and
human activities from 1982 to 2015 on vegetation changes in the farming-pastoral eco-
tone in northern China and showed that anthropogenic contributions dominate trends of
vegetation cover change in this area. These studies have improved our understanding of
vegetation changes and their driving factors, but a more comprehensive and clearer picture
for quantifying anthropogenic contributions to vegetation dynamics is still very necessary.

Currently, residual analysis is considered to be the most commonly used and most
effective method to separate the relative influence of human and natural factors on vegeta-
tion [21]. The previous NDVI prediction models, dominated by natural factors, generally
take temperature and precipitation as the primary indicators and lack consideration of
other natural factors, such as solar radiation and soil moisture [13,19,20,22,23]. However,
studies have confirmed that soil moisture and vegetation change cycles in arid areas have
similar changing trends [24]. Soil moisture is the main driving factor of drought pressure
in more than 70% of global vegetated areas, especially in semi-arid ecosystems [25]. Solar
radiation not only affects the surface energy budgets and temperature but also the soil
moisture balances, which is regarded as one of the most basic variables of the vegetation
environment [15,26]. Merely considering temperature and precipitation is not sufficient to
represent the state of vegetation change dominated by natural factors. Therefore, it is most
important to accurately quantify the contribution of natural factors to the actual NDVI
in the residual analysis method, because this process subsequently determines the level
of anthropogenic contribution [21]. In addition, existing studies mostly analyzed human
activities as a whole [15,19,20], and lacked analysis of the contribution of different types
of human activities to vegetation change. The contribution of different types of human
activities to vegetation dynamics varies from place to place [10,27,28]. For instance, urban-
ization has led to the degradation of vegetation in most urban centers and surrounding
areas in central and eastern China [10]. In the Pearl River Delta of China, economic growth
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(population and GDP) and vegetation cover have achieved a win-win situation [29], while
in the eastern part of the Loess Plateau, GDP dominates the degradation of NDVI [28]. The
expansion of cultivated land has promoted the greening of vegetation in Xinjiang [30]. The
population and the number of livestock are the main human factors affecting the vegetation
dynamics in Mongolia [27]. Therefore, it is essential for regional ecological protection to
systematically analyze the contribution of different human activities to vegetation dynam-
ics. Moreover, there are still a few results that specifically focus on the spatiotemporal
patterns and evolutionary trends of anthropogenic impacts on vegetation changes.

Xinjiang is an extremely vulnerable region, with widespread deserts, frequent environ-
mental challenges, and severe water scarcity [31–33]. Climate change effects have resulted
in Xinjiang experiencing a change in climate after 1987 from a warm-dry climate to a warm-
wet climate [34,35]. Simultaneously, population growth, social development [36,37], and
the implementation of a large number of ecological restoration policies, including the Three-
North Shelterbelt Forest Project (TNSP), Grain for Green Program (GGP), Comprehensive
Control Project in Tarim River Basin (CCPT), and the Ten Forests Project in Xinjiang (TFP),
has resulted in considerable changes to the ecological environment of the region, especially
after 2000 [16,18,31,38]. However, few studies have been conducted to analyze how these
factors affect vegetation variances in Xinjiang, especially for different anthropogenic factors.
What are the spatiotemporal variation laws of anthropogenic impacts on vegetation dy-
namics in Xinjiang? What is the relative importance of different types of human activities
to vegetation change in Xinjiang? What is the evolutionary trend of anthropogenic impacts
on vegetation dynamics? The above questions do not yet have clear answers.

In this context, this study focused on the effects of anthropogenic activities on vegeta-
tion dynamics and aimed to solve the following problems: (1) Examine the spatial patterns
and dynamic trends of vegetation in Xinjiang; (2) improve the NDVI prediction model
dominated by natural factors, and quantitatively calculate the anthropogenic impacts on
vegetation dynamics in Xinjiang; (3) analyze the relative importance of different types
of human activities to vegetation changes; and (4) explore the spatiotemporal patterns
and future evolutionary trends of anthropogenic influences on vegetation dynamics in
Xinjiang. By understanding the characteristics and patterns of the anthropogenic influence
on vegetation changes, decision-making support can be provided for the protection and
sustainable development of fragile ecosystems in this area.

2. Materials and Methods
2.1. Study Area

Xinjiang (73.66◦–96.38◦E, 34.42◦–49.17◦N) is located in the hinterland of the Eurasian
continent, northwestern China (Figure 1a). It covers an area of more than 1.66 million km2,
accounting for 1/6th of China’s land area. Xinjiang has a complex topography. The Altai
Mountains, Tianshan Mountains, and the Kunlun Mountains surround the Junggar Basin
and the Tarim Basin, forming a unique mountain-oasis-desert landscape [39]. The Tianshan
Mountains traverse the central part of Xinjiang and divide Xinjiang into two parts: Northern
Xinjiang and Southern Xinjiang. Far away from the ocean, Xinjiang has a typical temperate
continental arid and semi-arid climate. The annual precipitation is 145 mm, which is only
23% of the national average precipitation, and there is an abnormal shortage of water
resources [32,33]. Affected by topography and atmospheric circulation, precipitation in
Xinjiang is unevenly distributed. The annual precipitation can reach more than 400 mm in
the Yili River Basin, 100–200 mm in the north, and only 16–85 mm in the south [40]. Natural
vegetation is sparse, mainly comprising grassland and sparse vegetation (Figure 1b), and
the coverage is generally less than 20% [32]. In recent years, economic development,
population growth, accelerated urbanization, and large-scale ecological restoration projects
have had a significant impact on the local ecosystem.
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Figure 1. Study area. (a) Elevation; (b) vegetation types.

2.2. Data Sources and Pre-Processing

The datasets used in this study comprised NDVI, gridded temperature, precipitation,
solar radiation, specific humidity, soil moisture, vegetation type, digital elevation model
(DEM), land use data, and socio-economic statistics data (GDP of primary industry, popula-
tion, agricultural population, animal husbandry population, cultivated areas, and livestock
number). A summary of the data used in this study is listed in Table 1.

Table 1. Summary of the data sources used in this study.

Dataset Time/Space
Resolution Period Data Sources Purpose

NDVI

15 d/1/12◦ 1982–2015

Global Inventory Modeling and
Mapping Studies (GIMMS)

(https://ecocast.arc.nasa.gov/,
accessed on 1 November 2019) Geographical detector modeling

and residual analysis.

month/0.05◦ 2000–2018

Moderate Resolution Imaging
Spectroradiometer (MODIS)
(https://lpdaac.usgs.gov/,
accessed on 5 January 2020)

Meteorological 3 h/0.1◦ 1982–2018
Meteorological Forcing Dataset

(CMFD) (http://data.tpdc.ac.cn,
accessed on 15 January 2020)

Geographical detector modeling
and NDVI prediction based on

natural factors.
Soil moisture

month/0.25◦ 1982–2010

Global Land Data Assimilation
System (GLDAS-2.0)

(https://disc.gsfc.nasa.gov/,
accessed on 15 March 2020)

month/0.25◦ 2000–2018

Global Land Data Assimilation
System (GLDAS-2.1)

(https://disc.gsfc.nasa.gov/,
accessed on 15 March 2020)

Vegetation type 1 km 2001 Resource and Environment Data
Cloud Platform

(http://www.resdc.cn/,
accessed on 10 April 2020)

Regional division of different
types of vegetation.

DEM 90 m Calculate elevation, aspect, and
slope.

Land use data 1 km 2000 and 2018 Analyze land-use changes.

Socio-economic
statistics data county 2000–2018 Xinjiang Statistical Yearbook

2001–2019.
Analyze the relative contribution

of human activities.

https://ecocast.arc.nasa.gov/
https://lpdaac.usgs.gov/
http://data.tpdc.ac.cn
https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
http://www.resdc.cn/
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2.2.1. NDVI Dataset

The NDVI data of the Global Inventory Modeling and Mapping Studies (GIMMS)
group covering the period from 1982 to 2015 were sourced from the NASA Ames Ecologi-
cal Forecasting Lab (https://ecocast.arc.nasa.gov/, (accessed on 1 November 2019)) with
spatial and temporal resolutions of 1/12◦ and 15 d, respectively. The monthly GIMMS
NDVI data were preprocessed using the maximum value composite method to minimize
the impact of scattering by the atmosphere and aerosols [41]. The NDVI data of the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) covering the period from 2000 to
2018 were obtained from the NASA Land Processes Distributed Active Archive Center
(https://lpdaac.usgs.gov/, (accessed on 5 January 2020)) with spatial and temporal resolu-
tions of 0.05◦ and 1 month, respectively. Studies have shown a good linear relationship
between the NDVI data of GIMMS and MODIS, thereby indicating that MODIS NDVI data
can be linearly corrected [14]. Using data from the overlapping period of 2000–2015, we
established a per-pixel unary linear regression model [42,43]. The relationship expression
was then used to estimate and extend the time series of the GIMMS NDVI data. The
specific steps were as follows: first, the resolution of the MODIS NDVI data was resampled
from 0.05◦ to 1/12◦ by means of the bilinear interpolation method, in order to match the
resolution of the monthly GIMMS NDVI data [44]. A unary linear regression model was
then established using the overlapping time between the GIMMS NDVI data and the
resampled MODIS NDVI data (2000–2015). Linear regression was then used to extend the
monthly GIMMS NDVI data from 2016 to 2018. The growing season was defined as from
April to October each year, and the average value of the NDVI in each month of the growth
season represents the vegetation coverage state of that year.

2.2.2. Meteorological Dataset

The gridded temperature, precipitation, specific humidity, and solar radiation data
were collected from the China Meteorological Forcing Dataset (CMFD) at the National
Tibetan Plateau Data Center (http://data.tpdc.ac.cn, (accessed on 15 January 2020)). The
CMFD provided data for the period of 1982–2018 with spatial and temporal resolutions of
0.1◦ and 3 h, respectively [45,46]. The CMFD has been widely applied in many research
fields, such as for the validation of climate models, modeling of the land surface, scheduling
of crop planting, and assimilation of land data, due to its long length and high stability and
continuity [38,47]. To be consistent with the NDVI data, bilinear interpolation was used to
resample the meteorological data to 1/12◦ [44].

2.2.3. Soil Moisture Dataset

The soil moisture data were obtained from the Global Land Data Assimilation System
(GLDAS; https://disc.gsfc.nasa.gov/, (accessed on 15 March 2020)) and consisted of
four soil depths: 0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm. Based on data available
from multiple sources, many past studies [48,49] have validated GLDAS soil moisture
datasets. In this research, we used GLDAS-2.0 data (NOAH Model; 0.25◦ × 0.25◦) for the
period of 1982–2010 and GLDAS-2.1 data (NOAH Model; 0.25◦ × 0.25◦) for the period
of 2000–2018. Using overlapping data from 2000 to 2010, the GLDAS-2.0 soil moisture
data were estimated and extended according to the same data processing method used
for the NDVI data to maintain the consistency of the data series [42]. Similarly, to be
consistent with the NDVI data, the soil moisture data were resampled to 1/12◦ using
bilinear interpolation [44].

2.2.4. Other Data

This research also used DEM, vegetation type, and land use type data obtained from
the Resource and Environment Data Cloud Platform (http://www.resdc.cn/, (accessed
on 10 April 2020)). Among them, DEM data with a spatial resolution of 90 m were used
to calculate the elevation, aspect, and slope in the study area. The 1:1,000,000 vegetation
type data of China published in 2001 were divided into eleven vegetation types with

https://ecocast.arc.nasa.gov/
https://lpdaac.usgs.gov/
http://data.tpdc.ac.cn
https://disc.gsfc.nasa.gov/
http://www.resdc.cn/
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a spatial resolution of 1 km. The original eleven vegetation types were merged into seven
categories: crops (cultivated vegetation), forests (broadleaved forests, coniferous forests,
and mixed forests), shrubs, grasslands (steppes, meadows, grasslands, wetlands) [40],
alpine vegetation, sparse vegetation, and no vegetation (Figure 1b). The 2000 and 2018
land use data with resolutions of 1 km were used for the land use type transfer analysis.
The land-use types include 6 types of cultivated land, forest land, grassland, water area,
built-up land, and unused land (bare soil). To match the remote sensing data, the spatial
resolution of the above data was resampled to 1/12◦. For the DEM, this was conducted
using bilinear interpolation, and for vegetation type and land use type, this was conducted
using the nearest-neighbor approach [44]. The socio-economic statistics data at the county
level from 2000 to 2018 were obtained from the Xinjiang Statistical Yearbook 2001–2019. All
of the livestock data were transformed into sheep units in accordance with the “Calculation
of proper carrying capacity of rangelands” (NY/T 635–2002) issued by the Ministry of
Agriculture of the People’s Republic of China.

2.3. Methods

Figure 2 shows an overview of the general technical flowchart followed in this study.
It mainly includes five steps. (1) Screen the main natural factors that affect vegetation
changes through geographic detectors. (2) Improve the NDVI prediction model dominated
by natural factors, and calculate the predicted NDVI. (3) Use residual analysis to separate
the influence of natural factors and human activities on the changes in NDVI. (4) Analyze
the relative contribution of different types of human activities to vegetation changes based
on a stepwise multiple regression model. (5) Employ the Hurst exponent to explore the
evolutionary trend of human influence on vegetation dynamics.

Figure 2. Technical flowchart of the impact assessment of human factors on vegetation dynamics. NDVIobs, NDVIpre, and NDVIres

represent observed NDVI, predicted NDVI based on natural factors, and NDVI affected by human activities, respectively.

2.3.1. Geographical Detector Method

The geographic detector is a new set of spatial statistical methods that detect spatial
differentiation and reveal the driving forces behind them [50]. To solve different scientific
problems, four kinds of geographic detectors are proposed, namely factor, interaction,
risk, and ecological detectors. Among them, the factor detector can reveal to what extent
a certain factor explains the spatial differentiation of a geographical feature [50–52]. In
this study, we use the factor detector to detect the relative contribution of different natural
factors to the spatial differentiation of NDVI in Xinjiang. The main steps are as follows.

(1) Index selection and grading: previous studies have shown that natural factors such
as temperature, precipitation [22,32], solar radiation [15], soil moisture [4,53], and
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terrain [52] are considered to have important impacts on vegetation. Eleven indicators
were systematically selected based on the principles of representativity, scientific rigor,
quantifiability, and availability, to detect the influence of natural factors on changes
to the NDVI in Xinjiang (Table 2). Using the natural breakpoint method [52,54], the
average annual precipitation, average annual temperature, solar radiation, specific
humidity, soil moisture, and elevation were divided into six classes, whereas the slope
and aspect dimensions were divided into nine and ten categories, respectively.

(2) Information extraction: According to the area of Xinjiang, 16,600 random sampling
point files were generated in GIS software based on 10 km × 10 km grids [52]. Ac-
cording to the spatial location, the vegetation NDVI and natural factor grading data
of the sampling points were then correlated to generate a property sheet. Finally,
the quantitative relationship between the corresponding NDVI value and each index
was obtained.

(3) Geographical detector model: The factor detection module can be used to detect
the interpretation degree of the spatial differentiation of property Y by factor X.
The degree of spatial association between the natural factor (X) and the NDVI (Y)
can be measured by the q-statistic. The calculation of the q-statistic was completed
using geographic detector model software (http://www.geodetector.cn/, accessed
on 20 April 2020). The model formula is as follows:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (1)

where q represents the explanatory power of a natural factor on the NDVI value of
vegetation with a value range of [0,1], and the value of the natural factor is positively
correlated with its power to predict the NDVI [51]; h = 1,· · · , L denotes the classifica-
tion or partition of natural factor X; N and Nh are the samples of the study area and
sub-region h, respectively; and σ2

h and σ2 represent the variances in the sub-region h
and the Y value of the study area (in this study, the NDVI), respectively.

Table 2. The natural factor index for the study area.

Type of Natural Factors Code Index Unit q Statistic

Climate X1 Average annual temperature ◦C 0.3640 **
X2 Average annual precipitation mm 0.5332 **
X3 Solar radiation kw/m2 0.2471 **
X4 Specific humidity g/kg 0.0935 **

Soil moisture X5 Soil moisture (0–10 cm) kg/m2 0.2677 **
X6 Soil moisture (10–40 cm) kg/m2 0.0270 **
X7 Soil moisture (40–100 cm) kg/m2 0.1969 **
X8 Soil moisture (100–200 cm) kg/m2 0.1251 **

Topography X9 Elevation m 0.1042 **
X10 Slope degree 0.0233 **
X11 Aspect degree 0.0018 **

** Significance level was less than 0.01.

Through the above steps, the q values of each natural factor were calculated to reveal
the influence of the factor on the NDVI (Table 2). In this study, natural factors with
explanatory powers greater than 20% were selected to establish the NDVI prediction model
based on natural factors, including average annual precipitation, solar radiation, average
annual temperature, and soil moisture (0–10 cm).

http://www.geodetector.cn/
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2.3.2. The Estimation of Sen’s Slope

Sen’s slope method utilizes the median of a sequence to identify a trend, and this
approach can, to a certain extent, eliminate the influence of data anomalies in trend tests
and reduce noise interference [55]. The calculation formula is as follows:

β = Median
( xj − xi

j− i

)
, ∀ j > i (2)

where xi and xj represent the data values (j > i) at times i and j, respectively. The trend
degree β is used to judge the rise and fall of the time series trend. When β > 0, the time
series shows an upward trend; otherwise, it shows a downward trend.

2.3.3. Mann–Kendall Significance Test

The Mann–Kendall (M–K) significance test [56,57] is generally combined with Sen’s
slope method to complete the significance test of sequence trends [13,22,58]. The formulas
are as follows:

Z =


S−1√
var(S)

S > 0

0 S = 0
S+1√
var(S)

S < 0

(3)

S =
n−1

∑
i=1

n

∑
i=1

sgn
(
xj − xi

)
(4)

var(S) =
n(n− 1)(2n + 5)

18
(5)

sgn
(
xj − xi

)
=


1 xj − xi > 0
0 xj − xi = 0
−1 xj − xi < 0

(6)

where n represents the length of the time series, xj and xi are the data values at times j and i
(j > i), respectively, and sgn (xj − xi) is the symbolic function. Under a set significance level
α, |Z| > u1−α/2 represents a significant change in the time series. When |Z| is greater
than 1.65, 1.96, and 2.58, it means that the time series has passed the significance test at
90%, 95%, and 99% probability, respectively.

2.3.4. Residual Analysis

The direct quantification of the impacts of anthropogenic activities on vegetation is dif-
ficult due to the lack of long-term serial observation data on the impacts of anthropogenic
activities on the NDVI [13,22]. Residual analysis can separate NDVI changes caused by nat-
ural factors and NDVI changes caused by human activities and is widely used in the study
of the impact of natural factors and human activities on vegetation changes [13,15,19–23].
The basic concept of residual analysis is as follows.

First, a regression model between the predicted NDVI (NDVIpre) and natural factors
was established as follows:

NDVIpre = b0 + b1N1 + b2N2 + · · ·+ bmNm (7)

where NDVIpre is the NDVI based on natural factors; N1, N2, . . . , and Nm are the natural
factors that impact the NDVI; and b0, b1, b2, . . . , and bm are the regression coefficients
determined by the least square method.

Considering that large-scale ecological projects have been carried out in the study
area since 2000, this research divided the entire research period into two phases: 1982–1999
and 2000–2018. During the 1982–1999 period, human activities had relatively little impact
on vegetation changes, and so we used the observed NDVI (NDVIobs) and natural factors
during this period to calculate the regression coefficients [15,31]. Then, the NDVIpre values
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from 2000 to 2018 were calculated using the regression coefficients obtained from the
1982–1998 period.

Finally, the residuals between the NDVIobs and NDVIpre were calculated and defined as
the NDVIres. The NDVIres represents the NDVI values that are influenced by anthropogenic
activities. NDVIres > 0 indicates that vegetation increases under anthropogenic impacts,
and NDVIres < 0 indicates that vegetation decreases under human impacts. The calculation
formula is as follows.

NDVIres = NDVIobs − NDVIpre (8)

The correlation coefficients of NDVIobs and NDVIpre in areas without human influence
were used to verify the regression model. First, the areas without human influence are
extracted. Through many experiments and field observation experience, the areas where the
absolute value of NDVIres change trend less than 0.0001 from 2000 to 2018 were extracted as
the areas without human influence. By superimposing the land use type data, the extracted
grid areas were judged one by one, and the areas that may be affected by human activities
(such as built-up lands, cultivated lands) are eliminated, and the actual areas without
human influence were finally obtained. Then, correlational analysis was conducted on
NDVIobs and NDVIpre in areas without human influence, and the accuracy of the regression
model was judged by correlation coefficients.

2.3.5. Stepwise Multiple Regression Model

Population, agricultural planting, and grazing are the main anthropogenic driving
forces that affect the dynamic vegetation pattern [10,11,15]. Xinjiang is one of the most
important agricultural and pastoral areas in China. The irrigated area and the number of
livestock are related to the development of the local agriculture and pastoral economy, and
the population is undoubtedly the main participating factor in the economic development
of agriculture and animal husbandry. Based on the availability of data and the collinearity
between various factors (variance inflation factor is less than 10), we finally selected
six indicators (GDP of primary industry, population, agricultural population, animal
husbandry population, cultivated areas, and livestock number) as the driving factors of
changes in NDVIres.

A multiple stepwise regression model was used to determine the main human activity
driving factors affecting NDVIres in Xinjiang. The ultimately determined regression and
predictor variables are represented by Equation (9):

NDVIres ∼ GDP1 + Pop + Pop1 + Pop2 + CA + LN (9)

where GDP1 represents the GDP of the primary industry; Pop, Pop1, and Pop2 represent the
population, agricultural population, and animal husbandry population, respectively; and
CA and LN are cultivated areas and livestock number, respectively.

First, we calculated the average value of NDVIres according to the scope of each
county, to match the NDVIres with each human activity factor according to the scope of
the county. Then, based on the multiple regression framework, the relative importance of
a single human activity factor to the change in NDVIres was determined. The Lindeman–
Merenda–Gold (LMG) model can effectively avoid the order effect of regression variables
and accurately quantify the contribution of single regression factors to multiple regression
models, which has been widely used in relative importance analysis [27,59,60]. This study
used the LMG model to measure the relative importance of different types of human
activities to the vegetation changes in Xinjiang. The LMG model was bootstrapped using
1000 replicates, yielding a 95% confidence interval. This method uses the R package
“relaimpo” for calculations [59].

2.3.6. Hurst Exponent

The Hurst exponent [61] is widely used to evaluate the intensity of the persistence or
anti-persistence of a change in the trend of a time series [22,23,32]. The Hurst exponent was
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used in this study to explore the future evolution of anthropogenic impacts on vegetation
cover in Xinjiang. The main calculation steps for the time series of NDVIt (t = 1, 2, 3, . . . , n)
are as follows:

NDVI(τ) =
1
τ

τ

∑
t=1

NDVI(τ) τ = 1, 2, 3, . . . , n (10)

X(t,τ) =
τ

∑
j=1

(NDVI(j) − NDVI(τ)) 1 ≤ t ≤ τ (11)

R(τ) = max
1≤t≤τ

X(t,τ) − min
1≤t≤τ

X(t,τ) τ = 1, 2, 3, . . . , n (12)

S(τ) =

[
1
τ

τ

∑
t=1

(NDVI(t) − NDVI(τ))
2

] 1
2

τ = 1, 2, 3, . . . , n (13)

R(τ)
S(τ)

= (cτ)H (14)

where H ranges from 0 to 1. H > 0.5 indicates a persistent time series, thereby indicating
that the NDVIres time series will present the same trend in the future as that in the past.
H = 0.5 indicates a random time series, thereby showing that the future NDVIres trend is
independent of the trend occurring during the study period. H < 0.5 indicates an anti-
persistent time series, thereby indicating that the future patterns of the changes in NDVIres
will likely be opposite to those that occurred in the past.

3. Results
3.1. Spatiotemporal Changes in the NDVI

Judging from the spatial pattern of the average annual NDVI from 1982 to 2018
(Figure 3a), the NDVI of Xinjiang is generally high in the north and west and low in
the south and east. The high-value areas of NDVI are mainly concentrated in the Altai
Mountains, the central Tianshan Mountains, and the Yili River Valley, and the average
NDVI value exceeds 0.5. These areas are mainly dominated by forests and grasslands.
The areas with an average NDVI of 0.3–0.5 mainly occur in the oasis in the northern part
of Tianshan Mountains, Tacheng, and the northern and western parts of the Tarim Basin,
and these areas are mainly dominated by croplands. Other areas controlled by grasslands
have lower NDVI values, at between 0.2 and 0.3, and are mainly in the Junggar Basin and
northern foot of the Kunlun Mountains. The areas with the lowest NDVI values, at below
0.1 or even lower, are located in the southern Turpan Basin and the Taklimakan Desert, and
are mainly composed of deserts.

The changing trend of the NDVI obtained based on Sen’s slope method showed that
the annual change rate of the NDVI in Xinjiang was between −0.004/year and 0.013/year,
and the average change rate was 0.005/10 years, which means that the NDVI of Xinjiang
presents an increasing trend from 1982 to 2018 (Figures 3b and 4). A combination of the
results of the M–K test and those of Sen’s slope analysis can reflect the trends of the NDVI
variation more effectively. Based on the 0.05 confidence level, the results of the M–K test
could be divided into two categories: significant (Z > 1.96 or Z < −1.96) and insignificant
(−1.96≤ Z≤ 1.96). The results of Sen’s slope analysis and the M–K test were superimposed
according to Table 3, and the results were divided into five types. Figure 3c demonstrates
that the trend pattern of the NDVI series from 1982 to 2018 had obvious spatial hetero-
geneity, and the overall trend of vegetation in Xinjiang was gradually improving over
this period; however, decreasing trends still existed in certain areas. Overall, 78.33% of
the vegetated area showed an improving trend, of which 57.09% showed a significantly
increasing trend (p < 0.05). These regions were distributed mainly on the northern slope of
the Tianshan Mountains, in oasis areas in the middle and upper reaches of the Tarim River,
and at the northern foot of the Kunlun Mountain. Approximately 21.67% of the vegetated
area showed decreasing trends, and the areas with significantly decreasing trends (p < 0.05)
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were mainly located in Junggar Basin, Turpan Basin, and northern Tarim Basin, accounting
for 15.17% of the vegetated area (Figure 3c,d).

Figure 3. Changes in vegetation NDVI from 1982–2018. (a) Spatial patterns of average NDVI; (b) annual change trends;
(c) types of change patterns and (d) percentage changes of NDVI for different vegetation types. The legend of (d) is the
same as that of (c). XJ: Xinjiang; CP: crop; FT: forest; SB: shrub; GL: grassland; AV: alpine vegetation; SV: sparse vegetation.

Figure 4. Interannual change of NDVI during the growing season in Xinjiang from 1982 to 2018. The
linear trend (red dashed line) is based on Sen’s trend estimation, and the nonlinear trend (blue solid
line) is fitted with LOWESS. In the calculation of LOWESS, the smoother span is set as 0.5.



Remote Sens. 2021, 13, 4651 12 of 25

Table 3. Division and statistics of the NDVI variation trend.

SNDVI |Z| NDVI Trend

≥0.0001 >1.96 Significant improvement
≥0.0001 ≤1.96 Slight improvement

−0.0001–0.0001 ≤1.96 Stable or non-vegetated area
≤−0.0001 ≤1.96 Slight degradation
≤−0.0001 >1.96 Significant degradation

In the last 37 years, the changes to all types of vegetation have shown an improvement
trend (that is, NDVI showed an increasing trend), especially for crops, for which the
area significantly improved, accounting for 85.65% (Figure 3d). For forests, 48.17% and
28.73% of the area showed significant and slight improvement trends, respectively, and
the proportion of significant degradation was 9.30%. The areas where shrubs, grasslands,
alpine vegetation, and sparse vegetation were significantly improved accounted for 58.65%,
53.50%, 59.80%, and 55.45% of their respective areas, respectively. Significantly degraded
(that is, NDVI showed a decreasing trend) areas accounted for 11.28%, 7.12%, 4.64%, and
15.59% of their respective areas, respectively.

3.2. Spatiotemporal Characteristics of Anthropogenic Impacts on Vegetation Dynamics

Figure 5a shows that the average NDVIres value in the study area was 0.0013, and most
areas (54.99%) had positive NDVIres values; these areas were mainly distributed on the
northern slope of the Tianshan Mountains and in the northwest region of the Tarim Basin.
From the changing trends, the annual change rate of the NDVIres value was between−0.021
and 0.025 (Figure 5b), with an upward trend in most areas (64.27%). This means that in
most areas of Xinjiang, human activities have slightly increased the vegetation coverage.

To reflect the intensity and direction of the changing trend of anthropogenic impacts
on vegetation cover more intuitively, the positive and negative directions of the average
NDVIres values and the changing trend were superimposed, and the results were divided
into five types (Figure 5c). Among them, positive impact increases (decreases) meant that
the vegetation improvement (increase in NDVI) caused by anthropogenic activities showed
an increasing (a decreasing) trend, while negative impact increases (decreases) meant that
the vegetation degradation (decrease in NDVI) caused by anthropogenic activities showed
an increasing (a decreasing) trend. From the perspectives of the proportions and spatial
patterns (Figure 5c,d), the regions demonstrating positive impact increases accounted for
the largest proportion (43.22%), mainly distributed on the northern slope of the Tianshan
Mountains, the oasis around the Tarim Basin, and the Altun Mountains. This type was
followed by the areas with negative impact increases (23.96%); these areas were mainly
scattered in the Junggar Basin, the Turpan Basin, and the western Tianshan Mountains.
The areas with a negative impact decrease accounted for 21.05% of the vegetated areas,
and mainly appeared in the Ili River Valley, Tacheng, and the northern foot of the Kunlun
Mountains. The distribution of the areas with positive impact decreases is relatively
scattered, accounting for 11.77% of the vegetated areas. In general, the anthropogenic effects
of vegetation changes in Xinjiang mainly included positive impact increases, indicating
that human activities have improved the ecological environment of Xinjiang from 2000
to 2018.

Positive trends dominated the impacts of anthropogenic activities on all types of
vegetation, but the changing trends of anthropogenic influences varied significantly among
different vegetation types (Figure 5d). Crops have the highest proportion of positive impact
increases, reaching 66.53%, followed by shrubs and sparse vegetation, which accounted for
47.55% and 45.03%, respectively. The highest percentage of positive impact decreases was
alpine vegetation (19.66%), followed by forests (19.07%). The proportion of negative impact
decreases was highest in grasslands (25.63%), followed by alpine vegetation (21.29%). The
highest proportion of negative impact increases occurred in forests, followed by shrubs and
alpine vegetation, which accounted for 29.34%, 27.97%, and 24.99% of the area, respectively.
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In general, anthropogenic activities promoted the continuous increase in the NDVI of
various vegetation types from 2000 to 2018, especially crops, shrubs, and sparse vegetation.
However, the increases in the negative impact of human activities on vegetation also
require special attention, especially for forests, shrubs, and alpine vegetation.

Figure 5. Change trends of NDVIres from 2000–2018. (a) Spatial pattern of NDVIres; (b) annual change trends; (c) types of
change trends and (d) percentage changes of different vegetation types. The legend of (d) is the same as that of (c). XJ:
Xinjiang; CP: crop; FT: forest; SB: shrub; GL: grassland; AV: alpine vegetation; and SV: sparse vegetation.

From the perspective of interannual changes, NDVIres showed an increasing trend,
with a growth rate of 0.06%/10 years (Figure 6), indicating that human activities have
generally promoted the greening of vegetation in Xinjiang. Both the positive and negative
impacts of human activities increased over the study period, and the growth rate of
the positive influence (0.08%/10 years) was higher than that of the negative influence
(0.04%/10 years) (Figure 6). For different types of vegetation, except for the slight decrease
in the NDVIres of alpine vegetation, the other types of vegetation showed an increasing
trend (Figure 7), especially for crops, the growth rate reached 0.28%/10 years (Figure 7a).
Separating the positive and negative effects, the growth rates of the positive impacts of
human activities on crops, shrubs, grasslands, and sparse vegetation were greater than the
negative impacts, while forests and alpine vegetation experienced the opposite impacts
(Figure 7).
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Figure 6. The interannual changes of NDVIres from 2000 to 2018. The black line: the average value of
NDVIres; the green line: the positive value of NDVIres; the red line: the negative value of NDVIres.

Figure 7. The interannual changes of NDVIres for different types of vegetation from 2000 to 2018. (a) crop; (b) forest; (c)
shrub; (d) grassland; (e) alpine vegetation; (f) sparse vegetation. The black line: the average value of NDVIres; the green line:
the positive value of NDVIres; the red line: the negative value of NDVIres.

3.3. Driving Analysis of Anthropogenic Impacts on Vegetation Dynamics

As shown in Figure 8, the results of the stepwise multiple regression model of the
driving factors for vegetation changes revealed the important role of human factors in
vegetation growth. Due to the significant spatial differences in the social economy of
Xinjiang, the relationship between vegetation and human factors varies with geographic
location, showing significant spatial heterogeneity. In general, the cultivated area, GDP
of primary industry, and population are the main factors causing the increase in NDVIres,
especially the cultivated area, which dominated the increase in NDVI in 30.34% of the
counties (Figure 8a). The livestock number, agricultural population, and animal husbandry
population are the main factors driving the reduction in NDVIres, especially the animal
husbandry population, which dominated the decrease in NDVI in 23.60% of the counties
(Figure 8b).
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Figure 8. The anthropogenic dominant factor for the increase (a) and decrease (b) of NDVI for each county in Xinjiang.

Generally, the changes in NDVIres are not driven by a single force, as different an-
thropogenic factors dominate different parts of Xinjiang (Figure 9). For instance, the
cultivated area dominated the increase in NDVIres in 27 counties which are located in
central and southern Xinjiang, especially Wusu City and Yuli County, with a relative
contribution of nearly 60% (Figures 8a and 9e). Among the 26 counties in eastern and
southern Xinjiang, the GDP of primary industry dominated the increase in NDVIres, and
the relative contribution to Qinghe County and Jimunai County is the highest, reaching
nearly 60% (Figures 8a and 9a). In the 25 counties in northern and southwestern Xinjiang,
the population dominated the increase in NDVIres (Figures 8a and 9b).

In the 21 counties in northern and western Xinjiang, the livestock number dominated
the reduction in NDVIres, especially in Aktao County, with a relative contribution of 85%
(Figures 8b and 9j). The agricultural population dominated the decrease in NDVIres in
19 counties in central and southern Xinjiang, and the relative contribution was nearly
60% in Nileke County (Figures 8b and 9i). The livestock number is the third-largest
anthropogenic factor that caused the decrease in NDVIres. It dominated the decrease in
NDVIres in 16 counties in northern and southern Xinjiang, especially in Luopu County,
where the relative contribution reached 55% (Figures 8b and 9l).
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Figure 9. The relative contribution of human activities for the increase (a–f) and decrease (g–l) of NDVI for each county in Xinjiang.

3.4. Evolution Trend of Anthropogenic Impacts on Vegetation Dynamics

Figure 10a represents the changing pattern of the future impact of human activities on
vegetation coverage based on the superimposed Hurst exponent prediction. Areas with
Hurst exponent values greater than 0.5 accounted for 46.16% of the vegetated area, which
indicates that the future evolution of the anthropogenic impact on vegetation coverage
is consistent with the past. These areas were mainly scattered on the northern slope of
the Tianshan Mountains, in the surrounding Tarim Basin, and the Altun Mountains. The
Hurst exponent values below 0.5 indicate that the future evolutionary trend of the impact
of human activities on vegetation coverage is opposite to the past. These areas account for
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53.84% of the vegetated areas and are mainly distributed in the Altai Mountains, Junggar
Basin, Ili River Valley, Turpan Basin, and eastern Tarim Basin. In general, the future
evolutionary trend of the anthropogenic influence on vegetation cover is dominated by
anti-persistence.

Figure 10. Spatial distributions of (a) the Hurst exponent values and (b) the evolutionary trends of anthropogenic impacts
on vegetation dynamics.

To further reveal the future evolutionary trend of the anthropogenic influence on
vegetation cover, we superimposed the positive and negative directions, change trend, and
Hurst exponent of the NDVIres series and divided the results into eight types (Figure 10b).
The classification results show that the persistence of the anthropogenic impact on vege-
tation dynamics has obvious regional characteristics. In the future, the positive impacts
continuing to increase is the main feature of the impact of human activities on the vegeta-
tion changes in Xinjiang. This type of evolution accounts for about 22.56% of the vegetated
area, and is mainly distributed on the northern slope of the Tianshan Mountains, the oasis
in the western part of the Tarim Basin, and the Altun Mountains. Approximately 20.64% of
the vegetated areas showed increasing-to-decreasing positive impacts; these regions were
mainly located in the southeast of the Junggar Basin, the south of the Turpan Basin, and the
southeast of the Tarim Basin. Areas with decreasing-to-increasing negative impacts were
mainly scattered in the Ili Valley, the central Tianshan Mountains, and the Pamirs, account-
ing for 14.52% of the vegetated area. Areas with increasing-to-decreasing negative impacts
accounted for 11.70% of the vegetated area, and mainly appeared in Tacheng, the Yili River
Valley, and the Kunlun Mountains. The proportion of regions where negative impacts
continued to decrease, negative impacts continued to increase, decreasing-to-increasing
positive impacts, and positive impacts continued to decrease is relatively small, accounting
for 9.44%, 9.36%, 7.02%, and 4.76% of the vegetated areas, respectively. In general, the
positive impact of human activities on vegetation changes in Xinjiang will continue to
increase in the future.

In terms of different types of vegetation (Figure 11), areas in which positive impacts
continued to increase accounted for a large proportion of crops, shrubs, grasslands, and
alpine vegetation, at 44.35%, 32.17%, 19.85%, and 20.91%, respectively (Figure 11b,d–f).
Forests and sparse vegetation accounted for large proportions of increasing-to-decreasing
positive impacts at 18.34% and 22.72%, respectively (Figure 11c,g). This result indicates
that the improvement effect of human activities on crops, shrubs, grasslands, and alpine
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vegetation will continue to increase, while the improvement effect on forests and sparse
vegetation will gradually weaken.

Figure 11. Percentage statistics of the evolutionary trends of anthropogenic impacts on vegetation dynamics. (a) Xinjiang;
(b) crop; (c) forest; (d) shrub; (e) grassland; (f) alpine vegetation; (g) sparse vegetation. The legend is the same as that of
Figure 8b.

4. Discussion
4.1. Relationship between Anthropogenic Activities and Vegetation Changes

In the last 37 years, the vegetation has shown a greening trend, and human activities
have promoted the greening of vegetation in Xinjiang as a whole (Figures 3 and 4). In gen-
eral, the cultivated area, GDP of primary industry, and population promoted the greening
of vegetation, while the livestock number, agricultural population, and animal husbandry
population aggravated the degradation of vegetation (Figure 8). Population dynamics
have an important impact on vegetation changes [28]. On the one hand, in the process of
accelerating industrialization and urbanization, surplus rural laborers are migrating to
cities in search of job opportunities and higher incomes. On the other hand, the govern-
ment has provided a large number of public welfare positions such as forest rangers and
border guards, allowing some farmers and herdsmen to engage in non-agricultural work,
especially in counties close to the border in western Xinjiang, such as Taxkorgan County,
Wushi County, Atushi City, Yumin County, etc. The migration of the population from
rural areas to cities and non-agricultural work have reduced human interference in the
rural ecological environment and contributed to the restoration of vegetation. Furthermore,
with the increase in population, a large amount of grassland and unused land has been
reclaimed as cultivated land. From 2000 to 2018, the population of Xinjiang increased from
18.49 million to 24.86 million, and the area of cultivated land increased from 2.9 million
hectares to 5.7 million hectares (Figure 12a). We found that a large amount of grassland
and unused land on the northern slope of the Tianshan Mountains and the edge of the
Tarim Basin has been reclaimed as cultivated land (Figure 13). The expansion of cultivated
land has further promoted the greening of the oasis edge. In addition, the agricultural sub-
sidies and long-term contracting rights policies implemented by government agencies [62]
and the introduction of modern agricultural technology have encouraged farmers and
herders to engage in agricultural activities. These measures have not only promoted the
growth of the GDP of primary industry but have also promoted the development of rural
greening, forming a win-win situation for farmers and the government. To alleviate the
environmental problems caused by anthropogenic activities resulting from rapid economic
development, China has implemented a series of large-scale ecological restoration policies,
such as the TNSP, GGP, Grazing Withdrawal Program (GWP), Ecological Subsidy System
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(ESS), CCPT, and TFP, which have greatly promoted the restoration of vegetation and the
natural environment [16,18,31,63]. It can be clearly found that a large amount of unused
land around the Junggar Basin and Turpan Basin, the Kunlun Mountains, and the Altun
Mountains has turned into grassland (Figure 13). Afforestation policies and intensive
agriculture in China have greatly contributed to global greening [64].

Figure 12. Change trend of human factors in Xinjiang from 2000 to 2018. (a) population, cultivated rea and
GDP of primary industry; (b) livestock number, agricultural population and animal husbandry population.

Figure 13. Major land-use changes in Xinjiang during the periods of 2000–2018. UL: unused land;
GL: grassland; CL: cultivated land; FL: forest land; BL: built-up land; WA: water area.
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Although the implementation of policies such as GWP and ESS has promoted veg-
etation greening, the increase in livestock number, agricultural population, and ani-
mal husbandry population (Figure 12b) may disturb the ecological environment and
hurt vegetation growth. For example, the phenomenon of grassland turning into un-
used land has been monitored in the eastern part of the Junggar Basin and southern
Tarim Basin (Figure 13). The rapid development of animal husbandry and overgraz-
ing may be the main cause of grassland degradation. Additionally, according to data
from the Water Resources Department of Xinjiang Uygur Autonomous Region (http:
//slt.xinjiang.gov.cn/slt/szygb/list.shtml, accessed on 5 April 2021), water consump-
tion for agricultural production accounts for more than 95% of the total water consumption
in Xinjiang, and animal husbandry has become the industry with the second-largest wa-
ter consumption. The increases in cultivated areas and the livestock number lead to the
consumption of large amounts of water resources, further directly or indirectly destroying
the living environment of downstream forests, shrubs, and sparse vegetation. From 2000
to 2018, the water body area of Xinjiang dropped from 5.10 × 104 to 3.42 × 104 km2,
and the areas with the greatest decrease were the central Tianshan Mountains and the
Kunlun Mountains (Figure 13, Table 4). Large-scale afforestation increased evapotranspi-
ration and reduced runoff and groundwater level, further leading to land degradation
and desertification, especially in arid and semi-arid areas [38,65–67]. One study found
that afforestation reduced the local groundwater level in arid regions of China by 0.5 to
3.0 m [68]. These negative effects offset the positive effects of human activities on vegetation
to a certain extent.

Table 4. The transfer matrix of land-use changes from 2000 to 2018 (unit: 104 km2).

Class
2018

GL CL BL FL WA UL 2018 Total Transfer in Change

2000

GL 31.59 2.54 0.15 1.34 0.51 11.53 48.1 16.07 0.44
CL 0.64 4.64 0.33 0.13 0.07 0.14 9.02 1.31 3.07
BL 0.04 0.2 0.15 0.01 0 0.03 0.87 0.28 0.44
FL 2.06 0.32 0.02 1.02 0.05 0.35 2.77 2.8 −1.05

WA 0.97 0.11 0.01 0.05 1.92 2.04 3.42 3.18 −1.68
UL 12.80 1.21 0.21 0.22 0.87 84.96 99.05 15.31 −1.22

2000 total 47.66 5.95 0.43 3.82 5.1 100.27
Transfer

out 16.51 4.38 0.72 1.75 1.5 14.09

UL: unused land; GL: grassland; CL: cultivated land cropland; FL: forest land; BL: built-up land; WA: water area.

4.2. Evolutionary Trend of Anthropogenic Impacts

In the future, the positive impacts continuing to increase is the main feature of the
impact of human activities on the vegetation changes in Xinjiang, especially in that the
improvement effect of human activities on crops, shrubs, grasslands, and alpine vegetation
will continue to increase. The following arguments may support this view that the positive
impacts will continue to increase. First, the construction of an ecological civilization in
China is aligned with the will of the country. A series of ecological restoration projects
(e.g., TNSP, GGP, GWP, ESS, CCPT, and TFP) are in the process of continuous and in-depth
development [16,18,31,63], and the ecological benefits brought about by them will continue
to increase. Second, the concept of ecological protection has been deeply rooted in the
hearts of the people, and the public’s awareness regarding practicing activities related to
ecological protection is unprecedentedly strong. Third, the Xinjiang government vigor-
ously promotes agricultural modernization technologies and efficient land management
technologies to lay the technical foundations for greening in oasis areas and sustainable
agricultural development [30]. Finally, the ecological benefits brought about by previous
ecological restoration projects in Xinjiang are conducive to the sustainable development
of the local ecological environment. For example, since the beginning of the 21st century,
desertification control in Xinjiang has achieved remarkable results in policy mechanisms,
technological models, industrial development, and management systems [69]. The reduc-
tion in desertification in Xinjiang has accelerated the increase in the vegetation greening

http://slt.xinjiang.gov.cn/slt/szygb/list.shtml
http://slt.xinjiang.gov.cn/slt/szygb/list.shtml
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rate to a large extent, and the ecosystem service functions damaged by desertification are
gradually being restored [30]. Therefore, we have reason to believe that human activities
can continue to promote the greening of Xinjiang’s vegetation in the future.

The evolution trend of anthropogenic impacts on vegetation dynamics also shows
that, in the future, the areas with increasing-to-decreasing positive impacts and decreasing-
to-increasing negative impacts will still account for 20.64% and 14.52% of the vegetated
area, respectively. Due to the arid and semi-arid geographical environment, natural fac-
tors, especially precipitation, have a profound impact on the vegetation dynamics in
Xinjiang [32,38,70]. The effectiveness of an ecological restoration project is closely related
to the combined effects of natural conditions and human management [71]. To some
extent, anthropogenic activities must conform to the laws of nature, and the benefits of
anthropogenic activities should not be exaggerated. This may be the reason why areas
in which anthropogenic positive impact increases or negative impact decreases are al-
ways highly consistent in space with areas with relatively superior natural conditions
(Figures 10b and S1). In areas with restricted natural conditions, the positive impact of
human activities on vegetation dynamics is limited. Thus, the over-reliance on ecologi-
cal restoration projects, especially afforestation, to increase the coverage of vegetation in
Xinjiang is risky. The formulation of ecological restoration policies requires the considera-
tion of climate change and the actual geographical environment [72]. Natural restoration
initiatives, such as restrictions on grazing and agriculture and the planting of drought-
tolerant vegetation types, may contribute to the ecological restoration of environmentally
stressed areas in Xinjiang. Therefore, policymakers need to adjust their policy guidance in
a timely and appropriate manner to promote the protection and sustainable development
of fragile ecosystems.

4.3. Potential Applications and Limitations

Compared with previous models that only considered temperature and precipita-
tion [13,22,23], the average value of the determination coefficient in this study, which
comprehensively considered temperature, precipitation, solar radiation, and soil moisture,
increased by 45.35% (Figure S2). This study effectively improves the robustness and re-
liability of the NDVI values predicted based on natural factors. Through the correlation
analysis of NDVIobs and NDVIpre in areas without human impact, it is found that the
correlation coefficients of the two in 2000 and 2018 reached 0.984 and 0.964, respectively
(Figure S3), indicating that the predictive regression model that we established has high
accuracy. Therefore, the improved model can be applied in other areas with similar envi-
ronmental backgrounds to separate the effects of natural factors and human activities on
vegetation changes. Additionally, we discussed the spatiotemporal change characteristics
and evolutionary trends of anthropogenic impacts on vegetation cover. This analysis is of
great significance for comprehensively understanding the impact of human activities on
the vegetation in Xinjiang and for further promoting the sustainable development of the
ecological environment.

There are some limitations to this study. The uncertainty of the remote sensing data
and meteorological data used in this study may have a certain impact on the accuracy of
the evaluation results. In addition, limited to the availability of human activity data, this
study mainly discussed the impact of different human activities on vegetation dynamics in
Xinjiang at the county scale. However, the effects of different human activities on vegetation
dynamics play different roles at different temporal and spatial scales. Therefore, it is of
great practical significance to carry out quantitative research on anthropogenic driving
factors at different temporal and spatial scales in future research.

5. Conclusions

This study improved the NDVI prediction model based on temperature, precipitation,
solar radiation, and soil moisture (0–10 cm). By combining the residual analysis method,
the anthropogenic impacts on the vegetation dynamics of Xinjiang from 1982 to 2018 were
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calculated. Based on the multiple stepwise regression model, the anthropogenic driving
factors of vegetation changes were quantitatively analyzed. Trend analysis and the Hurst
index method were employed to discuss the spatiotemporal characteristics and future
evolutionary trends of anthropogenic influences on vegetation cover. The results reveal the
following conclusions.

(1) From 1982 to 2018, the overall trend of vegetation in Xinjiang gradually improved,
and the vegetation dynamics mainly significantly improved (57.09% of the vegetated
areas). The changes to all the vegetation types showed a greening trend, especially
for crops.

(2) From 2000 to 2018, the anthropogenic effects of vegetation changes in Xinjiang mainly
included positive impact increases. Human activities promoted the continuous in-
crease in the NDVI of various vegetation types, especially crops, shrubs, and sparse
vegetation. Both the positive and negative impacts of human activities increased over
the study period, and the growth rate of the positive influence was higher than that
of the negative influence.

(3) The cultivated area, GDP of primary industry, and population are the main anthro-
pogenic factors driving the increase in vegetation NDVI, especially the cultivated
area, which dominated the increase in NDVI in 30.34% of the counties. The livestock
number, agricultural population, and animal husbandry population are the main
anthropogenic factors driving the decrease in NDVI, especially the animal husbandry
population, which dominated the decrease in NDVI in 23.60% of the counties.

(4) The evolutionary trend of the anthropogenic impact on vegetation dynamics in
Xinjiang will be dominated by anti-persistence, thereby mainly showing that the
positive impacts continued to increase. The evolutionary trend of anthropogenic
influences on crops, shrubs, grasslands, and alpine vegetation mainly show that
positive impacts will continue to increase, while forests and sparse vegetation will
mainly experience increasing-to-decreasing positive impacts.
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