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Abstract: The global ecological environment faces many challenges. Landsat thematic mapper time-
series, digital elevation models, meteorology, soil types, net primary production data, socio-economic
data, and auxiliary data were collected in order to construct a comprehensive evaluation system
for ecological vulnerability (EV) using multi-source remote sensing data. EV was divided into five
vulnerability levels: potential I, slight II, mild III, moderate IV, and severe V. Then, we analyzed and
explored the spatio-temporal patterns and driving mechanisms of EV in the region over the past
20 years. Our research results showed that, from 2001 to 2019, the DRB was generally characterized
as being in the severe vulnerability class, with higher upstream and downstream EV classes and a
certain amount of reduction in the midstream EV classes. Moreover, EV in the DRB continues to
decrease. The spatio-temporal EV patterns in the DRB were significantly influenced by the relative
humidity, average annual temperature, and vegetation cover over the past 20 years. Our work
can provide a basis for decision-making and technical support for ecosystem protection, ecological
restoration, and ecological management in the DRB.

Keywords: ecological vulnerability; driving mechanisms; remote sensing; Dongjiang River Basin

1. Introduction

Since the middle of the 20th century, the intensification of human activities has led to
frequent climate-change-related disasters [1–4] and the intensification of ecological and
environmental crises [5]. These scenarios pose serious challenges to the ecosystems on
which humans depend for their survival. Among them, the issue of ecological vulnerability
(EV) is particularly prominent. EV was first introduced into ecological theory by Clements
as an “ecological staggering zone” [6,7] and was further discussed at the seventh SCOPE
(Scientific Committee of Environmental Problems) Conference in 1989 [6,8,9]. The ability of
a system to resist external environmental change and to be disturbed and recover itself is
defined as EV [10–13]. EV is determined by a combination of internal and external vulnera-
bility [14,15]. Internal vulnerability usually stems from the structure of the ecosystem itself
and is mainly influenced by natural conditions such as topography and climate. External
vulnerability is influenced by human activities [16]. Exploring regional EV is important for
ecological change and socio-economic development.

Scholars around the world have conducted relevant studies on the spatio–temporal
evolution patterns of EV and its driving mechanisms [2,13,17–23]. Most of these EV studies
are focused on China [21] and can be based on individual cities or regions [24], e.g., on the
northwestern part of the Songnun Plain [17], the Tibetan Plateau [18], the Loess Plateau [19],
the southwestern karst mountains [10], agricultural and pastoral areas [22], coal mining
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areas [2], the southern Shaanxi region [25], islands [26], coastal wetlands [27]; there are
also studies that focus on the Bangladesh–China–India–Myanmar economic corridor [21].
Recently, the ecology of red loam hilly areas in southern China has become a focus of
attention for many scholars [28].

Dongjiang is the third largest water system in the Pearl River basin and belongs to
the South China basin, which is characterized as having a typical tropical–subtropical
climate. The Dongjiang River Basin (DRB) is located in the red-loamy hilly region of
southern China, which, as a pioneering region for reform and opening up, has seen a rapid
economic development over the past 40 years. China’s 13th Five-Year Plan supports the
construction of an open and innovative transformation of the Pearl River Delta region,
namely the Guangdong–Hong Kong–Macao Greater Bay Area. Meanwhile, the DRB is
an important drinking water source for the Pearl River Delta and Hong Kong and an
essential focus of the sustainable development strategy in the Pearl River Delta region.
The socio-economic development of the basin and changes in the natural environment
affect the quality of the ecological environment and the sustainable use of resources in
the basin [29]. With accelerated urbanization, dramatic climate change, and increased
disturbance from human activities, the quality of the ecological environment in the DRB
faces unprecedented threats, and thus the DRB has become an ideal area for analyzing EV.
Hu [24] used the AHP method to evaluate the EV of Weifang city, China; however, the study
used limited the quantitative data and was heavily dependent on qualitative inputs. These
factors led to unconvincing results, especially when there were many factors, and it was
difficult to precisely determine the weights. Wu [30] used the fuzzy hierarchical analysis
method to evaluate the EV of the Yellow River Delta; however, there were drawbacks
related to the subjective factor weights and large computational effort. Principal component
analysis (PCA) is one of the most commonly used methods for model evaluation, as it can
reduce data complexity, identify the most important multiple features, and save significant
computational resources, and is easily implemented on a computer. In this paper, PCA was
used to model and analyze the time-series EV in the DRB.

Factors commonly used in EV assessment can be divided into two categories: those
reflecting human activities, such as population density, GDP per capita, etc.; and ecological
and natural conditions, such as slope, temperature, precipitation, vegetative cover, etc.
As a result of the complexity of human–nature interactions, there is currently no uniform
standard for the selection of factors for EV assessment models [31]. Moreover, there is the
problem of regional adaptability in EV assessment models [22]. The ecological environment
in the red soil hilly areas of southern China is fragile [32]; furthermore, there is a lack of
an EV zoning system. In addition, many of the current studies on EV are analyzed at a
regional scale and are less specific to county EV evaluations. Therefore, there is a need to
develop a reliable methodology to assess EV in the DRB.

Our work established a dynamic evaluation scheme for monitoring the spatio-temporal
EV changes in the DRB and calculated the dynamic EV weights in 2001–2019 using PCA.
Finally, we analyzed the spatio-temporal evolution of EV in the DRB and its driving mech-
anisms over the past 20 years. The research results and methods provide a theoretical basis
and technical support for the protection and restoration of the environment within the
DRB. The flowchart for this work is shown in Figure 1.
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Figure 1. Stepwise procedure for spatio-temporal EVI modeling.

2. Materials and Methods
2.1. Study Area

The DRB (Figure 2) is connected to Meishan in eastern Guangdong; to its west, it is
bordered by Shaoguan and Qingyuan in northern Guangdong; the South China Sea and
Hong Kong lie to the south, and the Dongjiang source area of southern Ganzhou lies to
the north. The geographical location of the DRB is 113◦52′–115◦52′ E and 22◦38′–25◦14′ N,
with hilly mountains in the center and north. The DRB is a valuable water resource for
social development within the basin, providing water to Hong Kong for production, living,
and ecology, and to more than 40 million people who live in the urban clusters along the
basin. The middle and lower reaches of the DRB are economically developed, and the
total GDP of the regions in Guangdong, China, that are supported by Dongjiang water
was RMB 4.17 trillion in 2019, accounting for approximately 39% of the total GDP of
Guangdong Province.

2.2. Evaluation Factors and Data Sources

We studied the “China Guangdong Environmental Protection Department on the
Comprehensive Water Environment Improvement Programme of the Dongjiang River
Basin (2015–2020)”, combined with related studies [33–35], and considered the availability
of relevant assessment factors. We selected factors from topography, climate, landscape,
vegetation, and socio-economic aspects to construct an EV evaluation system. The data
sources are shown in Table 1. There were some differences as regards the data sources
and spatial accuracies of the factors. In the Arc GIS10.1 software platform, the WGS 1984
coordinate system and Mercator projection were uniformly used to ensure acceptable
spatial coincidences for the factors. Moreover, all of these were unified to a raster image
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element size of 30 × 30 m using the ArcGIS10.2 platform to accommodate subsequent
spatial calculations. The data sources are shown in Table 1.

Figure 2. Study area. (a) Location of the study area in China; (b) The extent of the DRB; (c) The geographical location of
meteorological stations. (The meteorological stations marked in bold are located within the DBR, and the meteorological
stations not marked in bold are located outside the DBR).
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Table 1. Data sources and characteristics.

Name of Data Data Production Unit Data Source Website Resolution Processing Method

Landsat remote sensing
satellite data USGS https://earthexplorer.usgs.gov/ 30 m Spatial analysis

GDEMV2 Elevation Data Geospatial Data Cloud http://www.gscloud.cn/ 30 m Spatial analysis

GDP per capita
Statistical Yearbook of

Jiangxi and Guangdong
Province, China

_ _ Statistical analysis

1:4 million Chinese soil type data
National Earth System
Science Data Sharing

Platform
http://www.geodata.cn/ _ Spatial analysis

Population density WorldPOP dataset https://www.worldpop.org/ 100 m Spatial analysis

Meteorological data China Weather Data
website http://data.cma.cn/ _ Spatial analysis

Note: We last accessed the link above on 16 November 2020.

Topographic factors included elevation, slope, slope orientation, soil erosion, and other
factors. The GDEMV2 elevation data, which have a 30 m spatial resolution covering
29 scenes in Jiangxi and 31 scenes in Guangdong, were mainly obtained from the Geospatial
Data Cloud website (http://www.gscloud.cn/). Data such as elevation, slope, and slope
direction were calculated from the DEM data [29]. Soil erosion is one of the major fac-
tors related to soil degradation worldwide [36–38]. The widely used soil loss equation
model [39] was used to calculate soil erosion in the DRB. These data were resampled to
30 m in ArcGIS.

Climate factors included average annual precipitation, average annual temperature,
and relative humidity. These data were mainly obtained from the China Meteorolog-
ical Data website (http://data.cma.cn/), which catalogues 17 meteorological stations.
The inverse distance weighting method is a reliable method for spatial distribution that
takes full account of the geographical links between factors. The above data were obtained
by interpolation with the inverse distance weight method in ArcGIS 10.2.

Landscape factors included the mean patch area, boundary density, Shannon diversity
index, Shannon evenness index, and Simpson diversity index, from Landsat remote sensing
satellite data from the USGS website. Landsat-8 maintained a basic consistency with
Landsat 1–7 in terms of spatial resolution and spectral characteristics. The satellite has
a total of 11 bands, i.e., bands 1–7, and 9 bands have a spatial resolution of 30 m; band
8 is a panchromatic band with a 15 m resolution; and bands 10 and 11 have a spatial
resolution of 100 m; the satellite can achieve global coverage once every 16 days [40]. For the
12 scenes, Landsat satellite image data containing few clouds were selected and are detailed
in Appendix A Table A1. The calculation of landscape pattern indices, such as mean
patch area [41], boundary density [41], Shannon diversity index [42], Shannon evenness
index [42], and Simpson diversity index [42], was performed in Fragstats 4.2 as described at
https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf.

Vegetation factors, which comprise vegetative cover, were derived from Landsat
remote sensing satellite data, as described in the previous subsection. The vegetative cover
data were calculated using the linear spectral mixture model (LSMM) from Landsat remote
sensing satellite data [43].

Socio-economic statistics included population density and GDP per capita. Population
density data were sourced from the WorldPOP dataset, and GDP per capita data were
sourced from the ‘Statistical Yearbook of Jiangxi Province’ [44] and the ‘Statistical Yearbook
of Guangdong Province’ [45]. Population density and GDP per capita were selected to
calculate the impact of socio-economic activities on the EV of the watershed. The above
data were obtained using the inverse distance weighting method in ArcGIS 10.2.

2.3. The Principal Component Analysis

The main objective of this study was to establish a comprehensive factor system
based on PCA theory for assessing EV in DRB. PCA is a method for converting existing
variables into a small number of summary factors that can best represent the most original

https://earthexplorer.usgs.gov/
http://www.gscloud.cn/
http://www.geodata.cn/
https://www.worldpop.org/
http://data.cma.cn/
http://www.gscloud.cn/
http://data.cma.cn/
https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf
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information [46]. We first calculate the contribution rate, then look at the value of the
main factor contribution rate to determine how many main factors there are, and the
cumulative contribution rate of the main factors is considered to be satisfactory at 90% or
more [47]. This assessment method includes a series of processing steps, e.g., the selection
of relevant factors, standardization, the determination of the variance of common factors,
the calculation of weights, and finally EV assessment.

2.3.1. The PCA Structure of EV Based on the PSR (Ecological Pressure Ecological
Sensitivity, Ecological Resilience)

EV is the combined result of PSR [25,29,48,49]. Both natural and social factors can
constrain the development of EV. Therefore, EV can also affect the economic develop-
ment of a region, bringing about a series of developmental problems such as poor eco-
nomic activity, slow development of modern industries, and low per capita education [13].
By reviewing the relevant information on EV in the DRB and assessing the relevant factor
systems selected by researchers for the southern hilly mountains [50–55], it was found
that a causal relationship between man and nature can be established with the PSR model.
The general aim of this study was to establish a comprehensive PSR evaluation system
based on PCA theory, and our analysis and evaluation system contains a target level,
a criterion level, and a factor level. Both human activities and natural conditions affect
EV, and so the evaluation factor system should include these two factors [56,57]. We de-
veloped a system analysis model consisting of three levels and 15 factors (Table A2 in the
Appendix A). We consulted relevant experts from the Guangdong Dongjiang River Basin
Authority to understand the current situation in the basin.

Ecological response factors are the most direct characteristics expressed by the long-
term interactions of various factors within an ecosystem [29]. In the vicinity of the DRB,
the topography is fragmented, it has varying heights of terrain, there are hilly mountains
in the center and north, and deltas, lowlands, and coastal plains in the south; the DRB has a
subtropical monsoon climate, with an average annual temperature of 21 ◦C and an average
annual precipitation of 1750 mm, which is uneven and mainly concentrated in April–
September [34]. Ecological sensitivity factors can be divided into topographic and climatic
factors: topographic factors are selected for elevation, slope, slope orientation, and soil
erosion, which directly contribute to increased soil erosion problems [58]; climatic factors
include mean annual precipitation, average annual temperature, and relative humidity.
The DRB is cloudy and rainy. The average annual temperature and precipitation are key
climatic factors affecting the amount of vegetative production. Moreover, relative humidity
can reflect vegetation transpiration, so it is crucial for ecological protection [59].

Ecological state factors have a role in protecting ecosystems and can be divided into
landscape factors and vegetation factors. The mean patch area (mean patch area, area_mn)
can reflect landscape heterogeneity. It can, on the one hand, constrain the minimum
patches of the image landscape and, on the other hand, reflect the degree of fragmentation
of the landscape [41]. The boundary density (edge density, ED) is an important factor for
analyzing patch shape, as it indicates the extent to which the landscape is fragmented,
i.e., the higher the value, the more the boundary is fragmented, the more dispersed the
layout, and the more compact the patches [41]. The Shannon diversity index (SHDI) reflects
the landscape heterogeneity, primarily used to assess the contribution of rare patches to
information, i.e., the richer the land use, the greater the fragmentation in the landscape,
the higher the value, and the less damage to the landscape [42]. The Shannon evenness
index (SHEI) indicates the maximum likelihood of a given landscape, i.e., the richer the
landscape, the healthier and more stable its ecosystem [42]. The Simpson diversity index
reflects the heterogeneity of the community, and the higher its value, the more stable the
ecosystem [34].

Ecological pressure factors are mainly associated with human activities that constrain
the health of the ecosystem to a certain extent. The DRB is located in a humid zone.
Its watershed is important to Guangdong, Hong Kong, and Macau, which include the
more economically active cities of Shenzhen, Guangzhou, Dongguan, Huizhou, and Hong



Remote Sens. 2021, 13, 4636 7 of 21

Kong, the core city of the Greater Bay Area. In recent years, ecological and environmental
pollution and degradation have posed serious challenges as the population has increased,
and urbanization and industrial upgrading have accelerated [33]. Socio-economic activities
constantly influence the magnitude of EV within the watershed area; therefore, human
activities have a huge impact on the evolution of the ecological environment [60,61]. Popu-
lation density increase can lead to excessive resource consumption, and increases in GDP
per capita mean that more resources need to be consumed to achieve economic productivity,
which constrains the health of regional ecosystems to some extent [62]. It follows that many
anthropogenic activities can directly lead to environmental pollution and other serious
consequences, such as the degradation and depletion of natural resources.

2.3.2. Weight Calculation Based on the PCA

Given that the scale criteria and inter-factor attribute interval values are different for
each factor, standardization is used to maintain the same scale and criteria across factors in
order to facilitate the subsequent modeling analysis [25]. All the assessment factors were
controlled to be within [0, 1], i.e., values closer to 1 representing stronger vulnerability
and values closer to 0 denoting weaker vulnerability. Increasing positive factors brings
about increased vulnerability, and consequently, ecological damage becomes more frequent
and/or even more serious. Increasing negative factors partly alleviates EV and improves
the ecological environment. The formulae for the positive and negative correlation factors
calculated by normalizing the above data are as follows:

Positive: mi
’ = (mi − mimin)/(mimax − mimin) (1)

Negative: mi
’ = 1 − (mi − mimin)/(mimax − mimin) (2)

where mi
’ is the value of the first factor after standard processing; mi is the initial value of

the i-th factor; mimin is the minimum of the i-th factor in the layer; and mimax indicates the
maximum of the i-th factor in the layer.

The weights were calculated using PCA [56]. Furthermore, the weight of each principal
component αi was calculated using the following formula:

αi = λi/ ∑m
i=1 λi (3)

where λi denotes the variation degree of the i-th principal component. The PCA results
were obtained using ArcGIS10.2, and the common factor variance of each evaluation factor
was calculated from the factor matrix of the results.

Hj = ∑m
j=1 λ2

jk (j = 1, 2, . . . , 9; k = 1, 2, . . . , m) (4)

where j is the number of identified evaluation factor factors, k is the number of principal
components, and m is the total number of principal components. Equations (3) and (4) were
used to standardize the Hj (common factor variances) of the evaluation factors. Finally,
the weights of each factor were obtained using Formula (5).

Wj = Hj/ ∑15
j=1 Hj (j = 1, 2, . . . , 15) (5)

where Wj denotes the weights of the j-th factor.

2.3.3. Ecological Vulnerability Model Calculation

The original evaluation factors were standardized using the extreme difference method,
as was described in the previous subsection. We calculated the weighting coefficients of
the 15 evaluation factors in the DRB. Moreover, we were able to construct a comprehensive
EV evaluation model, which included the state of natural resources and socio-economic
development in the DRB. Formula (6) is able to represent the EV of the DRB through
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the comprehensive analysis of multiple evaluation factors, and thus the values of the
comprehensive evaluation factors were derived to calculate the EVI of the DRB.

EVIi = ∑15
i=1 pi ∗ Wi (6)

where EVIi is the EV index of the i-th image raster, between [0, 1]; pi is the value obtained
after normalization of the i-th factor of the raster image; and Wi is the weighting factor of a
factor for EV. The weighting values for the 3 years are shown in Table A2.

2.3.4. Threshold Definition Based on Net Primary Production

NPP (net primary production), which indicates the total amount of organic dry matter
produced by green plants per unit time and unit area, can be used to measure ecological
changes [10]. We used GEE (Google Earth Engine) to download annual NPP data with
a pixel resolution of 500 m (m) from MOD17A3H V6 (2001, 2008, and 2019). These were
introduced to assist in determining the EV thresholds for different classes within each
time series.

Current studies generally define EV thresholds randomly [18,24,63]. We used the
method for classifying EV described by Guo Bing [10] et al. To avoid randomness in
the definition of vulnerability (EV) thresholds, we introduced NPP data to assist in the
determination of EV thresholds for the 3 years (2001, 2008, and 2019), thus to some ex-
tent ensuring EV comparability in the same region over time. The main steps were as
follows: (1) we divided the three NPP data periods (2001, 2008, 2019) into four classes
using the equidistance method; (2) we combined the three NPP data periods to derive
the EV values of the corresponding periods; (3) the EV values were reverse-ordered to
obtain the EV thresholds of different classes in the three periods. The level was set at
five levels: potential, slight, mild, moderate, and severe (Table 2). The potential level
indicates a stable, fully functional ecosystem with a high sensitivity to external distur-
bance, a high self-recovery rate, and abundant vegetative cover. Slight-level ecosystems are
relatively stable, fully functional, with a low sensitivity to external disturbances, a weak
self-recovery rate, and good vegetative cover. The mild level indicates an ecosystem that is
marginally sensitive to external disturbances but generally stable. Moderate-level ecosys-
tems are relatively unstable, functionally deficient, find it difficult to recover from damage,
are highly sensitive to external disturbances, and have poor vegetative cover. Severe-level
ecosystems are extremely unstable, severely degraded, find it extremely difficult or even
impossible to recover from damage, are highly sensitive to external disturbance, and have
poor vegetative cover.

Table 2. Table of EV levels in the DRB in different periods.

Vulnerability Level 2001 2008 2019 NPP

Potential <0.47 <0.41 <0.38 -
Slight 0.47–0.51 0.41–0.48 0.38–0.42 0.75
Mild 0.51–0.52 0.48–0.50 0.42–0.44 0.5

Moderate 0.52–0.59 0.50–0.53 0.44–0.46 0.25
Severe >0.59 >0.53 >0.46 -

2.4. Geodetector

Geodetector is a statistical method for detecting spatial differentiation and revealing
the factors that influence it [64]. The four detectors of the Geodetector are factor detection,
interaction detection, risk zone detection, and ecological detection. The spatial distribution
of EV varies significantly and is influenced by a combination of factors. We use the
Geodetector to perform factor detection and interaction detection, i.e., to calculate the
drivers of variation in the spatial extent of EV affecting DRB, and then to infer the interaction
between two variables.
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(1) Factor detector: It detects the spatial heterogeneity of EV change Y and the explanatory
power of different factors X on EV change Y. Measured by the q-value, the expression
is [65]:

q = 1−
L

∑
h=1

Nhσ2
h /Nσ2 (7)

where h = 1,. . . , L, L is the stratification of variable Y or factor X, i.e., classification or zoning;
Nh and N are the number of cells in stratum h and the whole area, respectively; σ2

h and σ2

are the variance of stratum h and the whole area of Y values, respectively. q has a range of
[0, 1], with larger values of q indicating a stronger explanation of changes in EV Y by the
independent variable X and vice versa.

(2) Interaction detector: analyzes the possible causal relationships between different
influencing factors, i.e., whether the combined effect of different factors enhances the
explanatory power of EV. In the evaluation process, we first calculate the q-values
of Y for each of the two factors: q(X1) and q(X2); calculate the q-value of Y when
the two layers are tangent: q(X1∩X2); and compare q(X1), q(X2), and q(X1∩X2).
The relationship is detailed in the Table 3 [64].

Table 3. Interaction relationship.

Criterion Interaction

q(X1∩X2) < Min(q(X1), q X2)) Non-linear weakening
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) Single-factor non-linear attenuation

q(X1∩X2) > Max(q(X1), q(X2)) Two-factor enhancement
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) > q(X1) + q(X2) Non-linear enhancement

3. Results
3.1. Temporal Evolution Characteristics of Ecological Vulnerability

On the basis of the establishment of the PSR EV model in the previous section,
the spatial distribution of the EV index in the study area was calculated using Equation (6).
The grading map (Figure 3) and the percentage of area in EV levels (Table 4) were calculated.

This research reclassified the EV values in 2001, 2008, and 2019 in the DRB, and then
obtained three periods of vulnerability level results in this area, which are shown in
Figure 4. According to the level results, the research also counted the coverage and area
proportion of each classification, which are shown in Table 5. In 2001, 2008, and 2019,
the EV index of the DRB ranged from 0.15 to 0.82, with an annual average of 0.51, as shown
in Figure 5. According to the analysis of statistics in Table 6, the proportion of severe
(V) level in the DBR was the highest in all three periods, increasing and then decreasing,
indicating that EV in the DBR deteriorated and then improved. The proportion of moderate
(IV) level was the lowest in all periods. The proportion of mild (III) level decreased year by
year. The proportion of slight (II) level increased and then decreased, and the proportion of
potential (I) level followed the opposite trend. At the macro level, the overall fragility of
the eco-environment in the DRB decreased from north to south.
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Figure 3. Distribution of EV levels in the DRB, 2001–2019.

Table 4. Statistics on the percentage of area at each EV level in the DRB (2001, 2008, 2019).

Level Vulnerability Level
2001 2008 2019

Percentage of the Total Area (%) Percentage of the Total Area (%) Percentage of the Total Area (%)

I Potential 23 8 17
II Slight 14 17 15
III Mild 4 7 9
IV Moderate 29 13 9
V Severe 30 55 50
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Figure 4. Scale map of vulnerability areas at different levels (a) 2001; (b) 2008; (c) 2019.
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Table 5. Statistics of q-values for ecological vulnerability factor detection.

Name of the Factor
2001 2008 2019

q q Ranking p q q Ranking p q q Ranking p

Soil erosion(X4) 0.109 10 0 0.066 10 0 0.037 12 0
Area_mn(X8) 0.057 15 0 0.046 14 0 0.080 9 0

Slope orientation(X3) 0.250 5 0 0.259 2 0 0.002 15 0
Vegetation cover(X13) 0.280 3 0 0.208 4 0 0.102 4 0

Elevation(X1) 0.258 4 0 0.207 5 0 0.049 11 0
Boundary density (ed) (X9) 0.057 14 0 0.049 13 0 0.084 5 0

GDP per capita(X15) 0.132 9 0 0.089 9 0 0.148 3 0
Average annual precipitation(X5) 0.245 6 0 0.145 6 0 0.076 10 0

Population density(X14) 0.172 7 0 0.133 7 0 0.023 13 0
Average annual temperature(X6) 0.284 2 0 0.226 3 0 0.235 1 0

Shannon Diversity Index (SHDI) (X10) 0.059 11 0 0.050 11 0 0.083 8 0
Shannon’s evenness index (SHEI) (X11) 0.058 12 0 0.009 15 0 0.083 7 0

Relative Humidity(X7) 0.325 1 0 0.329 1 0 0.209 2 0
Simpson diversity index (SIDI) (X12) 0.058 13 0 0.050 12 0 0.084 6 0

Slope(X2) 0.144 8 0 0.090 8 0 0.015 14 0

Figure 5. Histogram of minimum, maximum, and mean values based on EV in DRB.
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Table 6. Interaction results for selected factors of ecological vulnerability in the DRB.

2001 2008 2019

X3/X7 * 0.564 X3/X7 * 0.570 X13/X6 * 0.351
X3/X6 ** 0.535 X13/X7 * 0.505 X13/X7 * 0.321
X3/X13 * 0.528 X3/X6 ** 0.476 X9/X6 * 0.311
X13/X7 * 0.517 X3/X13 * 0.471 X6/X12 * 0.311
X3/X1 * 0.506 X3/X1 * 0.464 X6/X11 * 0.310
X3/X5 ** 0.502 X4/X7 ** 0.442 X6/X10 * 0.310
X13/X6 * 0.481 X13/X6 * 0.434 X8/X6 * 0.307
X13/X5 * 0.454 X3/X5 ** 0.402 X7/X12 * 0.291
X4/X7 ** 0.447 X15/X7 * 0.394 X11/X7 * 0.291

X3/X14 ** 0.426 X3/X14 ** 0.394 X9/X7 * 0.291
X3/X2 ** 0.405 X10/X7 * 0.394 X10/X7 * 0.290
X4/X6 ** 0.403 X7/X12 * 0.394 X8/X7 * 0.287
X1/X7 * 0.397 X9/X7 * 0.393 X4/X6 ** 0.284
X5/X7 * 0.396 X8/X7 * 0.388 X5/X6 * 0.280
X1/X6 * 0.393 X13/X5 * 0.379 X5/X7 * 0.280

X15/X7 * 0.388 X5/X7 * 0.379 X13/X6 * 0.270
X6/X7 * 0.385 X1/X7 * 0.368 X15/X6 * 0.265

X3/X15 ** 0.383 X6/X7 * 0.367 X4/X7 ** 0.257
X13/X15 * 0.382 X15/X6 * 0.354 X15/X7 * 0.255
X10/X7 * 0.380 X3/X15 ** 0.354 X14/X6 * 0.253

(* represents a two-factor enhanced interaction, ** represents a non-linear enhanced interaction).

3.2. Change of Ecological Vulnerability Grade Index

We calculated the spatial distribution of the EV change intensity in 2001, 2008,
and 2019. Then, we differentiated the vulnerability maps for the three years (2001, 2008,
and 2019), and the spatio-temporal changes in EV in the DRB were further analyzed.
On the basis of the histogram distribution and related spatio-temporal map changes,
the four stages of EV change intensity (CI) were classified as follows: decreasing intensity
(CI ≤ −0.20); mildly decreasing (−0.20 < CI ≤ −0.1); stable (−0.1 < CI ≤ 0); mildly increas-
ing (0< CI ≤ 0.1); and intensity increase (CI > 0.1). We used the ArcGIS zonal statistics tool
to calculate the average of each factor for each district and county and combined it with
Figure 6. The results show that, from 2001 to 2008 (Figure 6A), the DRB was dominated
by two intensities, i.e., mild increase and stable, with mild increase occupying more than
half and stable mainly distributed in Huidong, Zijin, Huizhou, Yuancheng, Dongyuan,
and Boluo. From 2008 to 2019 (Figure 6B), mild decrease was mainly distributed in
Zengcheng, Boluo, Longmen, Lianping, Dongyuan, and Yuancheng, etc., and mild increase
dominated in Shenzhen, Dongguan, Huiyang, Huizhou, and Huidong in the southern
DRB. The quality of the environment has improved over the last 20 years in the DRB, with
a trend towards increased EV in a few areas, these being more obvious is the southernmost
part of the DRB (Figure 6C).

3.3. Analysis of the Drivering Factors of Ecological Vulnerability

We used the ArcGIS 10.2 software to create 30 m × 30 m grid points and extracted
18,249 sample points. We relied on the aforementioned sample points to extract the values
of each dependent and independent variable for the quantitative analysis and evaluation
of the driving force factors. EV was selected as the dependent variable, and the 15 EV
factors were selected as the independent variables. After standardizing them, the factors
for each period (2001, 2008, and 2019) were transformed from numerical quantities to
typological quantities using the natural breakpoint method at five levels. Finally, we used
Geodetector to analyze the impact of each factor on EV. Factor detectors were used to
calculate the influence of each factor on EV. As can be seen from Table 5, the p-value
of each factor was 0, which indicates that the explanatory power of the three period
factors on EV was sufficient. This also proves that the selection of topography, climate,
vegetation, landscape, and economic factors to calculate the EV of the DRB was feasible.
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In general, the influence of the DRB factors on EV was basically stable. From these,
the top two q-values were relative humidity and average annual temperature, with mean
q-values of 0.288 and 0.248, respectively, indicating that the EV of the DRB was most
influenced by relative humidity and average annual temperature. This is mainly due to
the fact that relative humidity and average annual temperature are the dominant factors
affecting evapotranspiration in most parts of China [65]. The DRB is located in the humid
subtropical monsoon climate of southern China, with abundant but unevenly distributed
rainfall; the average annual temperature is 20–22 ◦C, with little average annual temperature
variation [66]. Evapotranspiration affects regional climate change and vegetative growth,
and thus the EV of the DRB [67].

Figure 6. Dynamic changes in EV in DRB. (A) 2008–2001; (B) 2019–2008; (C) 2019–2001.

From 2001 to 2008, the q-values in the 3–6 range were mainly vegetative cover, ele-
vation, and precipitation. They exhibit a decreasing trend, indicating that the influence
of these three factors on the EV was gradually weakening. This is mainly because the
DRB is located in the humid region of southern China, with undulating terrain and dense
vegetation; changes in the ecological environment are largely influenced by vegetative
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cover, elevation, and precipitation. The q-values in 2019 were mainly for GDP per capita,
which is very different from the rankings in 2001 and 2008. As the DRB has undergone
a rapid developmental process in recent years, in general, the q-value of GDP per capita
exhibits an upward trend, which indicates a gradual rise in the impact of social activities
on EV.

Interaction detection was used to assess whether the explanatory power of EV was
enhanced when the two factors acted together. Overall (Table 6, Figure 7), the values of
the EV factor interactions were greater than the maximum values of the individual factors,
thus indicating that the effects of the factors on EV were not independent of each other,
but occurred synergistically. As shown in the table, from 2001 to 2008, all the factors were
bi-factorially enhanced, except for slope orientation, which was non-linearly enhanced
with precipitation, average annual temperature, population density, and GDP per capita.
In 2019, soil erosion was non-linearly enhanced with average annual temperature and
relative humidity, and each was bi-factorially enhanced. From 2001 to 2019, the DRB
interaction detection results were generally more stable, with relative humidity exhibiting
the highest interaction with other factors. Moreover, the interaction of the relative humidity
with the other factors was much higher than the number of interactions between two of
the other factors that occurred. The interaction between topography, climate, vegetation,
landscape, and economic factors was stronger than the interaction within each element,
and the interaction between natural and social factors was stronger than the interaction
within each factor, indicating that the EV of the DRB was the result of the combined effect
of all factors.

Figure 7. The explanatory power of interaction between factors in 2001, 2008, 2019. (* represents a two-factor enhanced
interaction, ** represents a non-linear enhanced interaction, p value represents the interaction detection value of the
two factors).
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4. Conclusions and Discussions
4.1. Discussions

We took the DRB as the study area and constructed factor models to analyze the
current situation through regional ecological problems. On the basis of the statistical data,
such as multi-temporal remote sensing data and multi-year meteorological station data,
this study used socio-economic statistics to characterize anthropogenic disturbance factors
and analyze the characteristics of EV. As a result of the high level of human activity in the
DRB, its ecosystem is under a certain amount of development pressure. In this study, we
also conducted a scientific analysis of the manifestation factors of EV from 2001–2019 in
terms of ecological pressure, ecological sensitivity, and ecological resilience, and screened
out various practical and typical integrated factors. In addition, vegetation inversion,
soil erosion factors, landscape pattern factors, and spatial interpolation were constructed
as evaluation factors based on three time periods from 2001–2019. Finally, the DRB EV
evaluation index system was established.

PCA generates principal components that are independent of each other after the
transformation of the original factors, which can reduce the workload of factor selection.
The weights of the principal components, i.e., the contribution rate, contain the proportion
of the information from the original data to the total information, and thus, this is consid-
ered an objective and reasonable assessment. Therefore, we used PCA to evaluate the EV
of the DRB. In addition, using the interpolation method, the overall trend state index, and
the comprehensive EV index, with the method of dynamically determining the EV rating
of NPP data used by Guo Bing [10], we finally analyzed the change in the EV rating in the
area, the overall EV trend, and the quality state of each district in the DRB for three periods
of vulnerability from 2001 to 2019.

The factors influencing the EV in the DRB were analyzed with the help of the Geode-
tector software developed by Wang Jinsong [64] et al. in order to obtain objective and
scientific results. This can also be confirmed by the research results of Guo Zeqing [56] et al.
and Liu Jiaru [68] et al. In this study, Geodetector was used to analyze the magnitude of
interactions between various factors in the EV model for each period and the anthropogenic
drivers of EV in the DRB.

On the basis of a PSR model with 15 evaluation factors, we analyzed the spatial
distribution of EV in the DRB over three periods and, using a geographic probe, carried
out a quantitative statistical analysis of the factors driving EV. The results show that EV
is decreasing from 2001 to 2019, with a stronger explanatory power for relative humidity,
mean annual temperature, and vegetation cover as the main driving factors of EV in the
DRB in the 3 years. In 2019, the explanatory power of GDP per capita increases, showing
that human activities further influence EV in the DRB. The relative humidity and mean
annual temperature did not change much [66]. Moreover, the woodland cover of the
DRB increased from 2001 to 2019 (Figure 8), showing that woodland ecosystems are the
most functional and structurally complex natural ecosystems of terrestrial ecosystems.
Thus, they have a decisive influence on the terrestrial ecosystem environment and play
an important role in safeguarding the ecosystem [69,70]. They are not only capable of
providing production and living resources for humans, they also have a variety of ecolog-
ical service functions, such as water containment, carbon sequestration, oxygen release,
and maintaining regional ecological balance, which are important for maintaining the
environment and promoting a sustainable urban development [71]. This coincides with
a consistent decrease in EV. Furthermore, in the interaction detection results, the study
found that the interaction between two driving factors had a greater impact on EV in the
DRB as compared to a single driving factor (Table 5, Table 6). In both driver indicators,
the slope orientation (X3)/relative humidity (X7), slope orientation (X3)/average annual
temperature (X6), and slope orientation (X3)/vegetation cover (X13) interactions had the
strongest impact on EV in the DBR, in 2001; In 2008, the strongest interaction factors were
slope orientation (X3)/relative humidity (X7), vegetation cover (X13)/relative humidity
(X7), and slope orientation (X3)/average annual temperature (X6). The interaction factors of



Remote Sens. 2021, 13, 4636 17 of 21

vegetation cover (X13)/average annual temperature (X6), vegetation cover (X13)/relative
humidity (X7), and (X9)/average annual temperature (X6) were strongest in 2019 (Table 6).
Ecosystems are complex systems where some factors interact with each other. For example,
the transpiration of the vegetation increases relative humidity, and changes in vegetation
cover affect relative humidity [59]. Jiang [72] showed that vegetation has the ability to
change the climate of an ecosystem. Moreover, we found that vegetation cover had a strong
EV explanatory power in all three years (Table 5). Limpid waters and lush mountains are
invaluable assets. Therefore, we believe that planned afforestation is a worthwhile project
that may influence (improve) EV.

Figure 8. Land use map of DRB (2001, 2008, 2019).

However, the evolution of the spatio-temporal patterns of EV in the DRB from 2001
to 2019 was also influenced by many other uncontrollable natural factors and multi-level
human socio-economic factors. Importantly, future studies need to cover a wide range
of scientific fields and thus analyze the evolution of EV in the DRB in all its complexity.
To this end, more factors must be considered in future studies.
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4.2. Conclusions

The DRB, which is an ecologically fragile area in South China, has an important
strategic position in terms of resources, environment, and ecology. In view of the unique
geographical characteristics and the limitations of relevant studies, we selected 15 well-
structured and statistically significant factors, such as topography, climate, landscape,
and socio-economy, to analyze the EV status of the DRB. Furthermore, we analyzed its
spatio-temporal changes based on the PCA analysis, and detected the driving factors using
geographic probes. The following conclusions were reached:

(1) The PCA method can objectively and reasonably calculate the changes in each factor
in the process of assigning weights to vulnerability factors in multi-temporal studies.
The method can better reflect the change process of each factor in the EV system,
and has good applicability in the southern red soil hilly ecosystem of China.

(2) NPP data can be associated with the assessment of the health of land surface ecosys-
tems, and the EV level thresholds in different periods can be obtained with the aid of
NPP data calculation, which is important for the analysis of EV in different years.

(3) Over the past 20 years, the overall EV intensity in the DRB can be characterized by
a mild decrease, while the upstream and downstream EV intensity in the DRB can
be characterized by a mild increase. The midstream exhibited a mild decrease. From
2001 to 2019, the mean EV value gradually decreased. From 2001 to 2008, The area
of EV intensity for mild increase is much larger than stable. From 2008 to 2019, EV
intensity is more widely distributed in areas of mild decrease than mild increase.

(4) During 2001–2019, the spatio-temporal pattern of EV in the DRB was significantly
affected by the relative humidity, average annual temperature, and vegetation cover.
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Appendix A

Table A1. Landsat image identifier, acquisition time, and type characteristics.

Image Identifier Acquisition
Time Sensor Type Track Number

(ROW/PATH)
Sun

Elevation/(◦)
Solar

Azimuth/(◦)

LT05_L1TP_121043_20011121_20161209_01_T1 21/11/2001

TM

43/121 39.428 149.338
LT05_L1TP_121044_20011121_20161209_01_T1 21/11/2001 44/122 40.544 148.454
LT05_L1TP_122043_20011230_20161209_01_T1 30/12/2001 43/121 34.59 147.199
LT05_L1TP_122044_20081201_20161028_01_T1 30/12/2001 44/122 35.663 146.415
LT05_L1TP_121043_20081210_20161028_01_T1 10/12/2008

TM

43/121 36.556 150.666
LT05_L1TP_121044_20081210_20161028_01_T1 10/12/2008 44/122 37.69 149.878
LT05_L1TP_122043_20081201_20161028_01_T1 1/12/2008 43/121 37.903 150.895
LT05_L1TP_122044_20081201_20161028_01_T1 1/12/2008 44/122 39.041 150.076
LC08_L1TP_121043_20191123_20191203_01_T1 23/11/2019

OLI

43/121 41.304 155.234
LC08_L1TP_121044_20191107_20191115_01_T1 7/11/2019 44/122 46.471 152.692
LC08_L1TP_122043_20191114_20191202_01_T1 14/11/2019 43/121 43.436 154.605
LC08_L1TP_122044_20191114_20191202_01_T1 14/11/2019 44/122 44.634 153.701
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Table A2. Data sources and evaluation indicators.

Target Layer Criterion
Layer Indicator Layer Name of Data Positive and

Negative
Weight
of 2001

Weight
of 2008

Weight
of 2019

Ecological
Response

Terrain
indicators

Elevation(X1)
GDEMV2

elevation data

Negative 0.03598 0.01263 0.00885
Slope(X2) Positive 0.0185 0.00718 0.00407

Slope orientation(X3) Positive 0.24991 0.24989 0.2499
soil erosion(X4) 1:4 million

Chinese soil
type data

Meteorological
Data

Positive 0.00021 0.00017 0.00008
Average annual

precipitation(X5) Negative 0.08956 0.09075 0.20449

Average annual temperature(X6) Negative 0.04795 0.05347 0.10973
Relative Humidity(X7) Positive 0.17487 0.20386 0.11149

Ecological
State

Landscape
indicators

Mean Patch area (Area_mn) (X8)

Landsat
remote sensing

satellite data

Negative 0.00059 0.00003 0.00012
Boundary density (ed) (X9) Positive 0.00107 0.00042 0.00071

Shannon Diversity Index (SHDI) (X10) Positive 0.00059 0.00039 0.00058
Shannon’s evenness index (SHEI) (X11) Negative 0.00001 0.00003 0.00012

Simpson diversity index (SIDI) (X12) Negative 0.00001 0.00003 0.00012
Vegetation
indicators Vegetation cover(X13) Negative 0.24466 0.24056 0.24606

Ecological
Pressure

Social
indicators

Population density(X14) Population
density Positive 0.00015 0.00009 0.00011

GDP per capita(X15) GDP density Positive 0.13595 0.1405 0.06357

References
1. Depietri, Y. The social–ecological dimension of vulnerability and risk to natural hazards. Sustain. Sci. 2020, 15, 587–604. [CrossRef]
2. Lv, X.; Xiao, W.; Zhao, Y.; Zhang, W.; Li, S.; Sun, H. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining

region in Western China. Ecol. Indic. 2019, 106, 105475. [CrossRef]
3. Bouwer, L.M. Have disaster losses increased due to anthropogenic climate change? Bull. Am. Meteorol. Soc. 2011, 92, 39–46.

[CrossRef]
4. Gu, D.; Gerland, P.; Pelletier, F.; Cohen, B. Risks of exposure and vulnerability to natural disasters at the city level: A global

overview. United Nations Tech. Pap. 2015, 2, 1–40.
5. Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al.

Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.

6. Niu, W.Y. Improvement of ablers model with regard to searching of geographical space. Chin. Sci. Bull. 1989, 34, 155–157.
7. Clements, F.E. Research Methods in Ecology; University Publishing Company: Lincoln, Nebraska, 1905.
8. Liao, X.; Li, W.; Hou, J. Application of GIS based ecological vulnerability evaluation in environmental impact assessment of

master plan of coal mining area. Procedia Environ. Sci. 2013, 18, 271–276. [CrossRef]
9. Nelson, R.; Kokic, P.; Crimp, S.; Martin, P.; Meinke, H.; Howden, S.M.; Voil, P.D.; Nidumolu, U. The vulnerability of Australian

rural communities to climate variability and change: Part II—Integrating impacts with adaptive capacity. Environ. Sci. Policy
2010, 13, 18–27. [CrossRef]

10. Guo, B.; Zang, W.; Luo, W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global
change and anthropogenic interference. Sci. Total Environ. 2020, 741, 140256. [CrossRef]

11. Keyes, A.A.; McLaughlin, J.P.; Barner, A.K.; Dee, L.E. An ecological network approach to predict ecosystem service vulnerability
to species losses. Nat. Commun. 2021, 12, 1586. [CrossRef]

12. Chang, H.; Pallathadka, A.; Sauer, J.; Grimm, N.B.; Herreros-Cantis, P. Assessment of urban flood vulnerability using the
social-ecological-technological systems framework in six US cities. Sustain. Cities Soc. 2021, 68, 102786. [CrossRef]

13. Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical
correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [CrossRef]

14. Mafi-Gholami, D.; Pirasteh, S.; Ellison, J.C.; Jaafari, A. Fuzzy-based vulnerability assessment of coupled social-ecological systems
to multiple environmental hazards and climate change. J. Environ. Manag. 2021, 299, 113573. [CrossRef]

15. Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.;
Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100,
8074–8079. [CrossRef]

16. Wang, B.; Ding, M.; Guan, Q.; Ai, J. Gridded assessment of eco-environmental vulnerability in Nanchang city. Acta Ecol. Sin. 2019,
39, 5460–5472.

17. Yang, Y.; Song, G. Human disturbance changes based on spatiotemporal heterogeneity of regional ecological vulnerability: A case
study of Qiqihaer city, northwestern Songnen Plain, China. J. Clean. Prod. 2021, 291, 125262. [CrossRef]

18. Xia, M.; Jia, K.; Zhao, W.; Liu, S. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic.
2021, 123, 107274. [CrossRef]

19. Li, Q.; Shi, X.; Wu, Q. Effects of protection and restoration on reducing ecological vulnerability. Sci. Total Environ. 2021, 761, 143180.
[CrossRef]

http://doi.org/10.1007/s11625-019-00710-y
http://doi.org/10.1016/j.ecolind.2019.105475
http://doi.org/10.1175/2010BAMS3092.1
http://doi.org/10.1016/j.proenv.2013.04.035
http://doi.org/10.1016/j.envsci.2009.09.007
http://doi.org/10.1016/j.scitotenv.2020.140256
http://doi.org/10.1038/s41467-021-21824-x
http://doi.org/10.1016/j.scs.2021.102786
http://doi.org/10.1016/j.jenvman.2021.112138
http://doi.org/10.1016/j.jenvman.2021.113573
http://doi.org/10.1073/pnas.1231335100
http://doi.org/10.1016/j.jclepro.2020.125262
http://doi.org/10.1016/j.ecolind.2020.107274
http://doi.org/10.1016/j.scitotenv.2020.143180


Remote Sens. 2021, 13, 4636 20 of 21

20. Tang, Q.; Wang, J.; Jing, Z. Tempo-spatial changes of ecological vulnerability in resource-based urban based on genetic projection
pursuit model. Ecol. Indic. 2021, 121, 107059. [CrossRef]

21. Jin, Y.; Li, A.; Bian, J.; Nan, X.; Lei, G.; Muhammand, K. Spatiotemporal analysis of ecological vulnerability along Bangladesh-
China-India-Myanmar economic corridor through a grid level prototype model. Ecol. Indic. 2021, 120, 106933. [CrossRef]

22. Dai, X.; Gao, Y.; He, X.; Liu, T.; Jiang, B.; Shao, H.; Yao, Y. Spatial-temporal pattern evolution and driving force analysis of
ecological environment vulnerability in Panzhihua City. Environ. Sci. Pollut. Res. 2021, 28, 7151–7166. [CrossRef]

23. Huang, M.; Zhong, Y.; Feng, S.; Zhang, J. Spatial and temporal characteristics and drivers of landscape ecological vulnerability in
the Chaohu Lake Basin since 1970s. Lake Sci. 2020, 32, 977–988.

24. Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single
parameter sensitivity and spatial autocorrelation for ecological protection–A case of Weifang City, China. Ecol. Indic. 2021, 125,
107464. [CrossRef]

25. Kang, H.; Tao, W.; Chang, Y.; Zhang, Y.; Li, X.; Chen, P. A feasible method for the division of ecological vulnerability and its
driving forces in Southern Shaanxi. J. Clean. Prod. 2018, 205, 619–628. [CrossRef]

26. Xie, Z.; Li, X.; Chi, Y.; Jiang, D.; Chen, S. Ecosystem service value decreases more rapidly under the dual pressures of land use
change and ecological vulnerability: A case study in Zhujiajian Island. Ocean Coast. Manag. 2021, 201, 105493. [CrossRef]

27. Shi, H.; Lu, J.; Zheng, W.; Sun, J.; Ding, D. Evaluation system of coastal wetland ecological vulnerability under the synergetic
influence of land and sea: A case study in the Yellow River Delta, China. Mar. Pollut. Bull. 2020, 161, 111735. [CrossRef]

28. Liu, M.; Liu, X.; Wu, L.; Tang, Y.; Li, Y.; Zhang, Y.; Ye, L.; Zhang, B. Establishing forest resilience indicators in the hilly red soil
region of southern China from vegetation greenness and landscape metrics using dense Landsat time series. Ecol. Indic. 2021,
121, 106985. [CrossRef]

29. Xue, L.; Jing, W.; Zhang, L.; Wei, G.; Zhou, B. Spatiotemporal analysis of ecological vulnerability and management in the Tarim
River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [CrossRef]

30. Wu, C.; Liu, G.; Huang, C.; Liu, Q.; Guan, X. Ecological vulnerability assessment based on fuzzy analytical method and analytic
hierarchy process in Yellow River Delta. Int. J. Environ. Res. Public Health 2018, 15, 855. [CrossRef] [PubMed]

31. Nguyen, K.A.; Liou, Y.A. Global mapping of eco-environmental vulnerability from human and nature disturbances.
Sci. Total Environ. 2019, 664, 995–1004. [CrossRef] [PubMed]

32. Wang, Y. Effects of Different Vegetation Restoration Patterns on Soil Reactive Organic Carbon in the Antaibao Mining Area; China
University of Geosciences: Beijing, China, 2015.

33. He, Y.; Guo, H.; Tan, Q.; Pan, W.; Chen, S. Identification of significant water problems in the Dongjiang River Basin of Guangdong
Province. Water Resour. Conserv. 2021, 37, 16–21.

34. Lv, L.; Gao, X.Q.; Liu, Q.; Jiang, Y. Effects of landscape patterns on nitrogen and phosphorus export in the Dongjiang River Basin.
J. Ecol. 2021, 41, 1758–1765.

35. Lv, L.T.; Zhang, J.; Peng, Q.Z.; Ren, F.P.; Jiang, Y. Analysis of landscape pattern evolution and prediction of changes in the
Dongjiang River Basin. J. Ecol. 2019, 39, 6850–6859.

36. Jiang, Q.; Zhou, P.; Liao, C.; Liu, Y.; Liu, F. Spatial pattern of soil erodibility factor (K) as affected by ecological restoration in a
typical degraded watershed of central China. Sci. Total Environ. 2020, 749, 141609. [CrossRef]

37. Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century.
Science 2015, 348. [CrossRef]

38. Wang, B.; Zheng, F.; Römkens, M.J.M.; Darboux, F. Soil erodibility for water erosion: A perspective and Chinese experiences.
Geomorphology 2013, 187, 1–10. [CrossRef]

39. Williams, J.R. The erosion-productivity impact calculator (EPIC) model: A case history. Philosophical Transactions of the Royal
Society of London. Ser. B Biol. Sci. 1990, 329, 421–428.

40. Diao, C.; Wang, L. Landsat time series-based multiyear spectral angle clustering (MSAC) model to monitor the inter-annual leaf
senescence of exotic saltcedar. Remote Sens. Environ. 2018, 209, 581–593. [CrossRef]

41. Mao, X.P.; Diao, J.J.; Fan, J.H.; Lui, Y.Y.; Xu, N.G.; Wang, Z.; Li, M.S. Analysis and prediction of landscape dynamics in the
forest-grass mosaic zone of the Daxingan Mountains, Inner Mongolia. J. Ecol. 2021, 1–12.

42. Xue, S.-S.; Gao, F.; He, B.; Yan, Z.-G. Analysis of landscape patterns and driving forces in the Wulungu River basin from 1989–2017.
Ecol. Sci. 2021, 40, 33–41.

43. Cui, T.-X.; Gong, Z.-N.; Zhao, W.-J.; Zhao, Y.-L.; Lin, C. Extraction method of wetland vegetation cover under different end
element models: An example from the Beijing Wild Duck Lake Wetland Nature Reserve. J. Ecol. 2013, 33, 1160–1171.

44. National Bureau of Statistics. Statistical Yearbook of Jiangxi Province; China Statistics Press: Beijing, China, 2002 2009 2020.
45. National Bureau of Statistics. Statistical Yearbook of Guangdong Province; China Statistics Press: Beijing, China, 2002 2009 2020.
46. Johnson, R.A.; Wichern, D.W. Practical Multivariate Statistical Analysis; Tsinghua University Press: Beijing, China, 2001.
47. Zou, T.; Yoshino, K. Environmental vulnerability evaluation using a spatial principal components approach in the Daxing’anling

region, China. Ecol. Indic. 2017, 78, 405–415. [CrossRef]
48. Siegel, K.J.; Cabral, R.B.; McHenry, J.; Ojea, E.; Owashi, B.; Lester, S.l. Sovereign states in the Caribbean have lower social-ecological

vulnerability to coral bleaching than overseas territories. Proc. R. Soc. B 2019, 286, 20182365. [CrossRef]

http://doi.org/10.1016/j.ecolind.2020.107059
http://doi.org/10.1016/j.ecolind.2020.106933
http://doi.org/10.1007/s11356-020-11013-6
http://doi.org/10.1016/j.ecolind.2021.107464
http://doi.org/10.1016/j.jclepro.2018.09.109
http://doi.org/10.1016/j.ocecoaman.2020.105493
http://doi.org/10.1016/j.marpolbul.2020.111735
http://doi.org/10.1016/j.ecolind.2020.106985
http://doi.org/10.1016/j.scitotenv.2018.08.321
http://doi.org/10.3390/ijerph15050855
http://www.ncbi.nlm.nih.gov/pubmed/29693619
http://doi.org/10.1016/j.scitotenv.2019.01.407
http://www.ncbi.nlm.nih.gov/pubmed/30901788
http://doi.org/10.1016/j.scitotenv.2020.141609
http://doi.org/10.1126/science.1261071
http://doi.org/10.1016/j.geomorph.2013.01.018
http://doi.org/10.1016/j.rse.2018.02.036
http://doi.org/10.1016/j.ecolind.2017.03.039
http://doi.org/10.1098/rspb.2018.2365


Remote Sens. 2021, 13, 4636 21 of 21

49. Guo, B.; Fan, Y.; Yang, F.; Jiang, L.; Yang, W.; Chen, S.; Gong, R.; Liang, T. Quantitative assessment model of ecological
vulnerability of the Silk Road Economic Belt, China, utilizing remote sensing based on the partition-integration concept.
Geomat. Nat. Hazards Risk. 2019, 10, 1346–1366. [CrossRef]

50. Zhou, S.; Tian, Y.; Liu, L. Adaptability of agricultural ecosystems in the hilly areas in Southern China a case study in Hengyang
Basin. Adaptability of Agricultural Ecosystems in the Hilly Areas in Southern China: A Case Study in Hengyang Basin.
Acta Ecol. Sin. 2015, 35, 1991–2002.

51. Dai, E.; Li, S.; Wu, Z.; Yan, H.; Zhao, D. Spatial pattern of net primary productivity and its relationship with climatic factors in
Hilly Red Soil Region of southern China: A case study in Taihe county, Jiangxi province. Geogr. Res. 2015, 34, 1222–1234.

52. Yao, X.; Yu, K.; Liu, J.; Yang, S.; He, P.; Deng, Y.; Yu, X.; Chen, Z. Spatial and temporal changes of the ecological vulnerability in a
serious soil erosion area, Southern China. Chin. J. Appl. Ecol. 2016, 27, 735–745.

53. Chen, Z.; Yao, X.; Yu, K.; Liu, J. Evolutionary Relation between Ecological Vulnerability and Soil Erosion in the Typical Reddish
Soil Region of Southern China. J. Southwest For. Univ. (Nat. Sci.) 2017, 37, 82–90.

54. Tian, Y.; Liu, P.; Zheng, W. Vulnerability assessment and analysis of hilly area in Southern China: A case study in the Hengyang
Basin. Geogr. Res. 2005, 24, 843–852.

55. Fan, S.; Guo, Y.; Qiu, L.; Jiang, C.; Huang, Y. Analyzing the effects of land cover change on urban ecological vulnerability in the
central districts of Fuzhou city. J. Fujian Norm. Univ. (Nat. Sci. Ed.) 2018, 34, 92–98.

56. Guo, Z.C.; Wei, W.; Pang, S.F.; Zhen, Y.; Zhou, J.; Xie, B. Spatio-temporal evolution and motivation analysis of ecological
vulnerability in arid inland river basin based on SPCA and remote sensing index: A case study on the Shiyang River Basin.
Acta Ecol. Sin. 2019, 39, 2558–2572.

57. Yao, K.; Zhou, B.; Li, X.; He, L.; Li, Y. Evaluation of Ecological Environment Vulnerability in the Upper-Middle Reaches of Dadu
River Basin Based on AHP-PCA Entropy Weight Model. Res. Soil Water Conserv. 2019, 26, 265–271.

58. Xie, Y.; Tu, X.; Wu, H.; Zhou, W.; Huang, B. Evolution of drought levels and impacts of main factors in the Dongjiang River basin.
J. Nat. Disasters 2020, 29, 69–82.

59. Shi, X.; Wu, M.; Zhang, N. Characteristics of water use efficiency of typical terrestrial ecosystems in China and its response.
Trans. Chin. Soc. Agric. Eng. 2020, 36, 152–159.

60. Abd El-Hamid, H.T.; Caiyong, W.; Hafiz, M.A.; Mustafa, E.K. Effects of land use/land cover and climatic change on the ecosystem
of North Ningxia, China. Arab. J. Geosci. 2020, 13, 1099. [CrossRef]

61. Chen, J.; Luo, M.; Ma, R.; Zhou, H.; Zou, S.; Gan, Y. Nitrate distribution under the influence of seasonal hydrodynamic changes
and human activities in Huixian karst wetland, South China. J. Contam. Hydrol. 2020, 234, 103700. [CrossRef]

62. Guo, B.; Kong, W.; Jiang, L.; Fan, Y. Analysis of spatial and temporal changes and its driving mechanism of ecological vulnerability
of alpine ecosystem in Qinghai Tibet Plateau. Ecol. Sci. 2018, 37, 96–106.

63. Jiang, Y.; Li, R.; Shi, Y.; Guo, L. Natural and Political Determinants of Ecological Vulnerability in the Qinghai–Tibet Plateau:
A Case Study of Shannan, China. ISPRS Int. J. Geo-Inf. 2021, 10, 327. [CrossRef]

64. Wang, J.; Xu, C. Geodetector:principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134.
65. Zhou, B.; Li, F.; Xiao, H.; Hu, A.; Yan, L. Characteristics and climate explanation of spatial distribution and temporal variation of

potential evapotranspiration in Headwaters of the Three Rivers. J. Nat. Resour. 2014, 29, 2068–2077.
66. Lin, K.; He, Y.; Lei, X.; Chen, X. Climate change and its impact on runoff during 1956–2009 in Dongjiang basin. Ecol. Environ. Sci.

2011, 20, 1783–1787.
67. Liang, S.; Bai, R.; Chen, X.; Chen, J.; Fan, W.; He, T.; Jia, K.; Jiang, B.; Jiang, L.; Jiao, Z.; et al. Review of China’s land surface

quantitative remote sensing development in 2019. J. Remote Sens. 2020, 24, 618–671.
68. Liu, J.; Zhao, J.; Shen, S.; Zhao, Y. Ecological vulnerability assessment of Qilian Mountains region based on SRP conceptual model.

Arid Land Geogr. 2020, 43, 1573–1582.
69. Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [CrossRef]
70. Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.; Laurance, W.F.;

Lovejoy, T.E.; et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 2011, 478, 378–381. [CrossRef]
71. Taye, F.A.; Folkersen, M.V.; Fleming, C.M.; Buckwell, A.; Mackey, B.; Diwakar, K.C.; Le, D.; Hasan, S.; Saint Ange, C. The economic

values of global forest ecosystem services: A meta-analysis. Ecol. Econ. 2021, 189, 107145. [CrossRef]
72. Jiang, P.; Ding, W.; Yuan, Y.; Ye, W.; Mu, Y. Interannual variability of vegetation sensitivity to climate in China. J. Environ. Manag.

2022, 301, 113768. [CrossRef]

http://doi.org/10.1080/19475705.2019.1568313
http://doi.org/10.1007/s12517-020-06047-6
http://doi.org/10.1016/j.jconhyd.2020.103700
http://doi.org/10.3390/ijgi10050327
http://doi.org/10.1126/science.1155458
http://doi.org/10.1038/nature10425
http://doi.org/10.1016/j.ecolecon.2021.107145
http://doi.org/10.1016/j.jenvman.2021.113768

	Introduction 
	Materials and Methods 
	Study Area 
	Evaluation Factors and Data Sources 
	The Principal Component Analysis 
	The PCA Structure of EV Based on the PSR (Ecological Pressure Ecological Sensitivity, Ecological Resilience) 
	Weight Calculation Based on the PCA 
	Ecological Vulnerability Model Calculation 
	Threshold Definition Based on Net Primary Production 

	Geodetector 

	Results 
	Temporal Evolution Characteristics of Ecological Vulnerability 
	Change of Ecological Vulnerability Grade Index 
	Analysis of the Drivering Factors of Ecological Vulnerability 

	Conclusions and Discussions 
	Discussions 
	Conclusions 

	
	References

