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Abstract: In soybean, there is a lack of research aiming to compare the performance of machine
learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as
days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important
to developing an overall precision farming model, we propose a machine learning approach to
predict DM, PH, and GY for soybean cultivars based on multispectral bands. The field experiment
considered 524 genotypes of soybeans in the 2017/2018 and 2018/2019 growing seasons and a
multitemporal–multispectral dataset collected by embedded sensor in an unmanned aerial vehicle
(UAV). We proposed a multilayer deep learning regression network, trained during 2000 epochs
using an adaptive subgradient method, a random Gaussian initialization, and a 50% dropout in the
first hidden layer for regularization. Three different scenarios, including only spectral bands, only
vegetation indices, and spectral bands plus vegetation indices, were adopted to infer each variable
(PH, DM, and GY). The DL model performance was compared against shallow learning methods
such as random forest (RF), support vector machine (SVM), and linear regression (LR). The results
indicate that our approach has the potential to predict soybean-related variables using multispectral
bands only. Both DL and RF models presented a strong (r surpassing 0.77) prediction capacity for
the PH variable, regardless of the adopted input variables group. Our results demonstrated that the
DL model (r = 0.66) was superior to predict DM when the input variable was the spectral bands.
For GY, all machine learning models evaluated presented similar performance (r ranging from 0.42
to 0.44) for each tested scenario. In conclusion, this study demonstrated an efficient approach to
a computational solution capable of predicting multiple important soybean crop variables based
on remote sensing data. Future research could benefit from the information presented here and be
implemented in subsequent processes related to soybean cultivars or other types of agronomic crops.

Remote Sens. 2021, 13, 4632. https://doi.org/10.3390/rs13224632 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8236-542X
https://orcid.org/0000-0002-8121-0119
https://orcid.org/0000-0002-9522-0342
https://orcid.org/0000-0002-7102-2077
https://orcid.org/0000-0002-9586-2943
https://orcid.org/0000-0001-6633-2903
https://orcid.org/0000-0002-4915-3185
https://orcid.org/0000-0002-0258-536X
https://orcid.org/0000-0002-8815-6653
https://orcid.org/0000-0002-9096-6866
https://orcid.org/0000-0001-8181-760X
https://doi.org/10.3390/rs13224632
https://doi.org/10.3390/rs13224632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13224632
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13224632?type=check_update&version=1


Remote Sens. 2021, 13, 4632 2 of 15

Keywords: precision agriculture; multispectral remote sensing data; shallow learner; deep neural network

1. Introduction

Farmers must consider crop genotype management and environmental factors (tem-
perature, rainfall, soil, etc.) to obtain cultivars with maximum yield [1]. Recently, to help
monitor such conditions, they can count on remote sensing systems and technologies to
survey their production fields. Nonetheless, predicting agronomic variables such as days
to maturity (DM), plant height (PH), and grain yield (GY), is still a challenging task, espe-
cially when considering indirect methods, such as multispectral data collected with remote
sensing system based on unmanned aerial vehicle (UAV). Recently, the advent of new
UAV platforms promoted rapid and high-detailed mapping of multiple farmlands, which
generated high amounts of data to be evaluated and incorporated to support agricultural
management [2–7].

In the last decade, remote sensing data has been processed with machine learning
(ML) methods, which is a promising strategy to support varieties of evaluation and selec-
tion and other agricultural applications. In the related literature, it is possible to find a
representative number of studies addressing crop yield prediction based on ML models
for different crops, such as cherry tree (Prunus avium L.) [8], sugarcane (Saccharum offici-
narum L.) [9], wheat (Triticum aestivum L.) [10–12], potato (Solanum tuberosum L.) [10], coffee
(Coffea arabica L.) [13], rice (Oryza sativa L.) [14], and maize (Zea mays L.) [15], among others.
Review papers have [16,17] argued that the rapid technological advances in remote sensing
systems and ML techniques can provide a cost-effective and efficient solution for better
decision-making practices related to crop management in the next few years.

In the context mentioned above, it should be noted that agronomic variables inference
for soybean (Glycine max (L.) Merril) cultivars using only remote sensing data is still an
unsolved and challenging task, mainly when considering multiple genotype varieties in
different geographical areas and seasons. As agricultural activity represents an essential
component of the economic sector for many countries, identifying or predicting variables
such as DM, PH, and GY can support decision-making and benefit future crop manage-
ment strategies [2,6,18–20]. Soybean is the world’s major oilseed, accounting for 85% of the
world’s oil seeds, and given its economic importance, soybean cultivation area worldwide
is steadily increasing [21]. Brazil, for example, is the world’s largest producer of soybean,
obtaining a record production estimated at 124.8 million tons in the last season, which
represents an increase of 4.3% compared to the 2018/19 harvest [2]. The planted soybean
area in Brazil grew 3% compared to the last season (2019/2020), from 35,874 to the current
36,949.8 hectares [22]. Thus, technological solutions involving intelligent methods and
remote sensing data can improve yield and help to estimate other related agronomic vari-
ables while producing novel information to be incorporated to support crop management
for subsequent seasons.

Previous studies demonstrated that other plant-related agronomic variables, such
as biomass [3], chlorophyll content, macro and micronutrients [4], water content and
stress effect [5], already returned satisfactory results using artificial intelligence techniques.
However, predicting grain yield with remote sensing imagery is still somewhat difficult.
Wei and Molin [23] explored relationships between soybean yield and plant components
(number of grains—NG and thousand grains weight—TGW) using a regression approach.
They demonstrated that TGW and NG presented, respectively, weak and strong linear
relationships with yield. For maize yield prediction, Khanal et al. [24] implemented a
combination of multiple agronomic and sensing variables into an ML environment and
achieved satisfactory performances. These and other related research [25] demonstrated the
importance of the use of artificial intelligence to model this dataset. These methods included
most shallow learners, such as random forest, neural network, support vector machine,
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and gradient boosting model. Nonetheless, in recent years, a more robust approach, known
as deep learning (DL), has gained attention in this area of nontraditional statistical analysis.

DL is a computational intelligence technique based on artificial neural networks with
multiple layers that adopt a hierarchical learning process [18,26]. These layers consist
of activation, pooling, convolutional, recurrent, encode–decode, and others to form an
architecture capable of learning from a given pattern [27]. These approaches often require
an expressive amount of data compared to traditional or shallow methods to achieve high
performance. Regardless, the learning capability of these networks is superior, mostly
resulting in practical and reproducible alternatives; however, because of that, they also
demand a high computational cost. Even so, in agriculture-related problems, it has demon-
strated a high potential to model biomass phenotyping [28], counting plants and detecting
plantation rows [29], and, related to this research, yield prediction [1,12,16,19,30–32]. While
these studies have achieved considerable performance in estimating yield in different crops,
there is still a lack of research comparing different machine learning methods to predict
more than one variable, such as plant height (PH), days to maturity (DM), and grain yield
(GY), which are considered important for an overall precision farming model.

As mentioned, in the precision agriculture context, several approaches have been
implemented to obtain the maximum potential of machine learning models to predict
agronomic variables. A concern regarding studies associating agronomic variables and
multispectral imagery is that vegetation indices rely on a small number of available spectral
bands and therefore do not utilize all the information conveyed by the plant genetic
trait [16]. Thus, the question arises: Which spectral bands or vegetation indices (VIs) are
better for the given task? Previous studies [3,5,15] evaluated the importance of different
input variables configurations of remote sensing datasets using ML approaches related to
plant analysis. Marques Ramos et al. [15] analyzed the individual contribution of VIs for a
set of shallow learning models. There, the random forest (RF) returned the overall most
effective estimative for maize yield. However, studies comparing different input variables
configurations using both shallow and deep learning approaches are still lacking. As DL
can extract key features from the data for estimation, amplifying aspects of the input that
are important for prediction and suppressing irrelevant variations, it can be expected to
have less dependency on the input data than shallow learning models [16,33]. Additionally,
something that still needs to be further investigated is the performance evaluation of deep
and shallow learning models to predict variables such as DM, PH, and GY, since they are
important agronomic/plant parameters to support decision-making in soybean crops. To
perform such evaluation, several soybean genotypes, considering a multitemporal dataset,
should be required to produce representative conditions of farmers across the country.

To help fulfil the aforementioned gap, here, we propose machine and deep learning
approaches to predict soybean agronomic variables (DM, PH, and GY) using multispectral
data from a UAV-based sensor. Our approach implemented a multilayer deep learning
regression network, and we evaluated three different input configurations using spectral
bands and VIs to infer these variables. For this, a total of 34 spectral indices and different
combinations of spectral bands and VIs were used. Moreover, we compared the DL model
against three shallow learning models: random forests (RF), support vector machine (SVM),
and linear regression (LR), showing their potential to predict soybean-related variables.
The main contribution of this study is to demonstrate a computational solution capable of
predicting important soybean agronomic variables based on an efficient machine learning
approach. In this regard, we consider a challenging situation: 524 genotypes of soybean in
2017/2018 and 2018/2019 crop seasons in four different geographical areas.

2. Materials and Methods
2.1. Field Trials

The data used in this research consist of experimental field trials conducted with
soybean genotypes in the soybean macroregion 301, Brazil (Figure 1). The first trial
was conducted in the 2017/2018 crop season in Chapadão do Sul/MS. The second and
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third trials were conducted in Aporé/GO and Chapadão do Sul/MS, respectively, in
the 2018/2019 crop season. The fourth trial was conducted in Chapadão do Sul in the
2019/2020 crop season. In all site-years, the crop seasons corresponded from October to
January. We evaluated 123, 135, 103, and 163 soybean genotypes in trials 1, 2, 3, and 4,
respectively, in a randomized block design with two replications. The experimental plots
consisted of three 3 m rows spaced at 0.45 m. with a stand of 15 plants m−1. The cultural
treatments carried out during the tests followed the recommendation for the soybean crops
in the Brazilian Cerrado environment.
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Figure 1. Location of the studied areas in Chapadão do Sul (MS) and Aporé (GO), Brazil. EVI = enhanced vegetation index.

The variables evaluated in each trial were: plant height (PH, cm), days to maturity
(DM), and grain yield (GY, kg ha−1). PH was obtained with the aid of a tape measure,
measuring from the base of the plant to its apex. The DM was obtained by counting the
number of days between emergence and maturation of more than 90% of the plants in the
plot. Grain yield was obtained by harvesting 2 m long of the central row from each plot,
weighing the grains, correcting for 13% moisture, and extrapolating to kg ha−1.

2.2. Aerial Multispectral Image Acquisition and Vegetation Indices Calculation

At 60 days after crop emergence, the senseFly eBee® RTK fixed-wing UAV was used
in all four trials. This equipment has autonomous take-off, flight plan, and landing con-
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trol. The eBee was equipped with the senseFly Parrot Sequoia® multispectral sensor, a
multispectral camera for agriculture that uses a sunshine sensor and an additional 16 MP
RGB camera for scouting. The overflights were performed at 100 m altitude, allowing a
spatial image resolution of 0.10 m. The overflights were carried out near the zenith due
to the minimization of the shadows of the plants at 11 a.m., given that the multispectral
sensor is a passive type (i.e., dependent on solar luminosity). Radiometric calibration was
performed for the entire scene based on a calibrated reflective surface provided by the man-
ufacturer. Multispectral reflectance images were obtained for green (550 nm ± 40 nm), red
(660 nm ± 40 nm), red-edge (735 nm ± 10 nm), and near-infrared (NIR, 790 nm ± 40 nm)
spectral bands. The information obtained at these wavelengths allows the calculation of
various vegetation indices maps to be used in computational algorithms.

The images were mosaicked and orthorectified by the computer program Pix4Dmapper.
The positional accuracy of the orthoimages was verified with ground control points (GPC)
surveyed with real-time kinematic (RTK). Table 1 presents all the VIs used in experi-
ments. The group of VIs included in this work is based on the Osco et al. [5] and Marques
Ramos et al. [15] approaches, as they evaluated data from the same spectral regions.

Table 1. Vegetation indices used in the experiments.

Index Equation

ARVI2 (Atmospherically Resistant Vegetation Index 2) −0.18 + 1.17 ∗ ((Rλnir − Rλred)/(Rλnir + Rλred))

ATSAVI (Adjusted Transformed soil-adjusted VI) 1.22 ∗
[

(Rλnir−1.22∗Rλred−0.03)
(1.22∗Rλnir+Rλred−1.22∗0.03+0.08(1+1.222)

]
BWDRVI (Blue-wide dynamic range vegetation index) 0.1 ∗ (Rλnir + Rλred)

CCCI (Canopy Chlorophyll Content Index) [(Rλnir−Rλrededge)]

[(Rλnir+Rλrededge)]/[
(Rλnir−Rλred)
(Rλnir+Rλred)

]

CIgreen (Chlorophyll Index Green) (Rλnir)
Rλgreen

− 1

CIrededge (Chlorophyll Index RedEdge) (Rλnir)
Rλrededge

− 1

CVI (Chlorophyll Vegetation Index) Rλnir∗(Rλred)
Rλgreen2

DVI (Difference Vegetation Index) Rλnir/Rλred

EVEI2 (Enhanced Vegetation Index 2) 2.5 ∗ (Rλnir − Rλred) / (Rλnir + 2.4 ∗ Rλred + 1)

GDVI (Difference NIR/Green Difference Vegetation Index) Rλnir − Rλgreen

GEMI (Global Environment Monitoring Index) 2 ∗ (1− 0.25 ∗ 2)− ((Rλred − 0.125)/(1− Rλred))

GNDVI (Green Normalized Difference Vegetation Index) (Rλnir−Rλrgreen)
(Rλnir+Rλgreen)

GRNDVI (Green-Red NDVI) [Rλnir −
(

Rλgreen + Rλred
)
]/[Rλnir +

(
Rλgreen + Rλred

)
GRVI (Green-Red Vegetation Index) (Rλgreen−Rλred)

(Rλgreen+Rλred)

GSAVI (Green Soil Adjusted Vegetation Index)
[(

Rλnir − Rλgreen
)
/
(

Rλnir + Rλgreen + 0.5
)]
∗ 1.5

GTVI (Green Triangle Vegetation Index) (NDVI + 0.5)/(NDVI + 0.5) ∗
[(√

NDVI + 0.5
)]

IPVI (Infrared Percentage Vegetation Index) Rλnir/((Rλnir + Rλred)/2) ∗ (NDVI + 1)

LogR (Log Ratio) Log(Rλnir/ Rλred )

MSAVI (Modified Soil Adjusted Vegetation Index)
[

2 ∗ (Rλnir + 1)−
√
(2 ∗ Rλnir + 1)2 − 8 ∗ (Rλnir − Rλred)

]
/2

MSRNir_Red (Modified Simple Ratio NIR/RED) (Rλnir/Rλred−1)√
(Rλnir/Rλred+1

NDRE (Normalized Difference Red-Edge Index) Rλnir−Rλrededge
λnir+Rλrededge

NDVI (Normalized Difference Vegetation Index) (Rλnir−Rλred)
(Rλnir+Rλred)



Remote Sens. 2021, 13, 4632 6 of 15

Table 1. Cont.

Index Equation

NGRDI (Normalized Green-Red Difference Index) (Rλgreen−Rλred)
(Rλgreen+Rλred)

NormR1 (Normalized G) Rλgreen

(Rλnir+Rλred+Rλgreen)

NormR2 (Normalized NIR) Rλnir

(Rλnir+Rλred+Rλgreen)

NormR3 (Normalized R) Rλred

(Rλnir+Rλred+Rλgreen)

RGR (Red Green Ratio Index) (Rλred)
Rλgreen

RI (Redness Index) Rλred − Rλgreen/Rλred + Rλgreen

RRI 1 Rλnir
Rλrededge

SRQT_IR_R (Square root of the NIR/Red ratio)
√

Rλnir /Rλred

SRRed_NIR Rλred
Rλnir

TNDVI (Transformed NDVI)
√
[(Rλnir − Rλred)/(Rλnir + Rλred) + 0.5]

TVI (Transformed Vegetation Index)
√
[NDVI + 0, 5]

WDRVI (Wide Dynamic Range Vegetation Index) (0.1 ∗ ((Rλnir − Rλred))/ (0.1 ∗ (Rλnir + Rλred))

NIR = near-infrared; Rλ = wavelength reflectance; RRI = Simple Ratio NIR/Rededge RedEdge Ratio Index 1; SRQT_IR_R = square root of
the NIR/Red ratio; SRRed_NIR = Simple Ratio Red/NIR Ratio Vegetation-Index.

2.3. Machine Learning

A deep learning (DL) model was implemented and tested against three shallow learn-
ing models: random forests (RF), support vector machine (SVM), and linear regression
(LR). For all models, three data input configurations were adopted: (1) spectral wave-
lengths (WL), (2) spectral vegetation indices (VI), and (3) a combination between spectral
wavelengths and vegetation indices (WLVI).The DL architecture proposed in this work
(Figure 2) comprises three dense (completely connected) hidden layers, with 128, 256, and
256 neurons, respectively. The first hidden layer used dropout at 50% as a regularization
strategy. An adaptive subgradient method, adagrad, was used for training the model
over 2000 epochs, with a learning rate of 0.01, batch size of 32, and an early stop with 400
epochs (patience). The activation function used for all neurons was a rectified linear unit
(ReLU), and the weights were randomly initialized using a standard Gaussian method.
The mean squared error (MSE) was used as the loss function. The number of neurons in
the input layer depended on the three different input configurations used in the exper-
iments, as follows: (1) WL—4 neurons, (2) VI—34 neurons, and (3) WLVI—38 neurons.
The output layer comprises only one neuron, as the network was trained for a regression
approach. The number of trainable parameters (network weights) varied from 99,713 (WL)
to 104,065 (WLVI).
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Figure 2. Architecture of the three deep learning networks (DL) proposed in the study. (A) corre-
sponds to the network using the spectral bands of the images as input layer; (B) corresponds to
the network using the vegetation indices as input layer; (C) corresponds to the network using the
spectral bands and vegetation indices as input layer.

The RF algorithm was trained using 100% of the training set as the bag size and
100 trees. SVM used the optimizer proposed by Shevade et al. [29] that improves sequential
minimal optimization (SMO) for regression with a polynomial kernel. The LR performs
a ridge regression using the Akaike information criterion (ACI) for model selection. The
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ridge parameter was set to 1 × 10−8. All four models (DL, RF, SVM, and LR) were trained
and tested in 30 repetitions, using a random split of 80% for training and 20% for testing
each time. The deep learning model further used 20% of the training set as validation.
The other models (RF, SVM, and LR) did not need a validation set. For all the three input
configurations, WL, VI, and WLVI, the models were trained to independently predict PH,
DM, and GY output variables, given 36 tests.

2.4. Statistical Analyses

Mean absolute error (MAE), root mean squared error (RMSE), and Pearson’s correla-
tion coefficient (r) between the observed and estimated values were obtained in each test
and repetition. Boxplots were created for all these 36 test results. A two-way ANOVA was
performed for each output variable, PH, DM, and GY, followed by the Scott–Knott test at
a 5% significance to identify the input configurations and ML models that provided the
highest r means. In this ANOVA, the first factor consisted of the tested models (DL, RF,
SVM, and LR), while the second factor was composed of the data input configurations (WL,
VI, and WLVI).

3. Results

The results indicated that there was a significant interaction between the ML models
(DL, RF, SVM, and LR) and the input settings (WL, VI, and WLVI) for the mean absolute
error (MAE), root mean squared error (RMSE), and Pearson’s correlation coefficient (r)
between observed and estimated values for DM (Table 2) and PH (Table 3). The results
of the significant interaction between models versus input configurations for PH and
DM demonstrate that there is a variable relationship between these factors, i.e., the best
model depends on the configuration used, and vice versa. For GY, there were significant
differences between the ML models tested for MAE and RMSE (Table 4). The r was
statistically equal for ML models and tested inputs for GY.

Table 2. Grouping of means of mean absolute error (MAE), root mean squared error (RMSE), and
Pearson’s correlation coefficient (r) between estimated and observed values for days to maturity in
soybean obtained with different machine learning models and input configurations.

Model
Input

WL VI WLVI

MAE

DL 6.05 Bc 7.45 Aa 7.62 Aa

RF 6.24 Ac 6.09 Ac 6.04 Ac

SVM 7.11 Ab 6.65 Bb 6.38 Bb

LR 7.37 Aa 7.43 Aa 7.41 Aa

RMSE

DL 8.01 Cd 10.23 Ba 10.58 Aa

RF 8.58 Ac 8.28 Ac 8.23 Ad

SVM 9.76 Aa 9.25 Bb 8.82 Cc

LR 9.34 Ab 9.41 Ab 9.39 Ab

r

DL 0.66 Aa 0.57 Bb 0.54 Cc

RF 0.62 Ab 0.65 Aa 0.65 Aa

SVM 0.46 Cd 0.53 Bc 0.58 Ab

LR 0.51 Ac 0.50 Ad 0.50 Ad
Means followed by the same uppercase letters in the same row and the same lowercase letters in the same column
do not differ by the Scott–Knott test at 5% probability. DL: deep learning (DL); RF: random forests; SVM: support
vector machine; LR: linear regression; WL: spectral bands wavelengths; VI: spectral vegetation indices; WLVI: a
combination between spectral bands and vegetation indices.
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Table 3. Grouping of means of mean absolute error (MAE), root mean squared error (RMSE), and
Pearson’s correlation coefficient (r) between estimated and observed values for plant height in
soybean obtained with different machine learning models and input configurations.

Model
Input

WL VI WLVI

MAE

DL 8.32 Cb 10.89 Ba 11.92 Aa

RF 8.38 Ab 8.09 Ac 8.11 Ac

SVM 8.98 Aa 8.55 Bb 8.49 Bb

LR 9.03 Aa 8.65 Bb 8.67 Bb

RMSE

DL 10.51 Cb 13.38 Ba 14.55 Aa

RF 10.88 Ab 10.49 Ac 10.51 Ac

SVM 11.77 Aa 11.05 Bb 10.97 Bb

LR 11.78 Aa 11.24 Bb 11.21 Bb

r

DL 0.79 Aa 0.77 Ab 0.75 Bb

RF 0.77 Ba 0.79 Aa 0.79 Aa

SVM 0.73 Bb 0.76 Ac 0.77 Ab

LR 0.73 Bb 0.75 Ac 0.75 Ab
Means followed by the same uppercase letters in the same row and the same lowercase letters in the same column
do not differ by the Scott–Knott test at 5% probability. DL: deep learning (DL); RF: random forests; SVM: support
vector machine; LR: linear regression; WL: spectral bands wavelengths; VI: spectral vegetation indices; WLVI: a
combination between spectral bands and vegetation indices.

Table 4. Grouping of means of mean absolute error (MAE), root mean squared error (RMSE), and
Pearson’s correlation coefficient (r) between estimated and observed values for grain yield in soybean
obtained with different machine learning models.

Model MAE RMSE r

DL 788.31 b 1000.48 b 0.45 a

RF 807.16 a 1025.59 a 0.42 a

SVM 787.87 b 1010.11 b 0.44 a

LR 790.88 b 105.06 b 0.43 a
Means followed by the same uppercase letters in the same row and the same lowercase letters in the same column
do not differ by the Scott–Knott test at 5% probability. DL: deep learning (DL); RF: random forests; SVM: support
vector machine; LR: linear regression.

Table 2 demonstrates the unfolding of the significant interaction between ML and
input configuration for MAE, RMSE, and r between estimated and observed values for DM
in soybean. When analyzing the input for DL, we observed that WL had the lowest means
for MAE (6.05) and RMSE (8.01) and the highest mean for r (0.66). For RF and LR, there
were no statistical differences between the tested inputs. For SVM, the input with WLVI
provided statistically lower MAE (6.38) and RMSE (8.82) values and higher r (0.58). When
comparing the ML models using the WL as input, we found that DL had the lowest means
for MAE (6.05) and RMSE (8.01), as well as the highest mean for r (0.66). However, when
using VI or WLVI as inputs, RF was the best model due to the lower MAE (6.65 and 6.38,
respectively) and RMSE (8.28 and 8.23, respectively) and the higher r (0.65 for both inputs).

The unfolding of the significant interaction between ML and input for MAE, RMSE,
and between estimated and observed values for plant height in soybean is shown in Table 3.
When analyzing the input for DL, we observed that WL had the lowest means for MAE
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and RMSE and the highest mean for r. For RF and LR, there were no statistical differences
between the tested inputs for MAE and RMSE, but for r, the best inputs were VI and WLVI.
For SVM and LR, the inputs with VI and WLVI provided statistically lower MAE and
RMSE values and higher r. When comparing the ML models using the WL as input, we
found that DL and RF had the lowest means of MAE and RMSE, in addition to the highest
means of r. When using VI or WLVI as inputs, RF was the best model due to the lower
MAE and RMSE means and the highest r mean.

For GY, there was no significant interaction between inputs and ML models. The tested
inputs did not differ statistically from each other. There were differences only between
ML models in isolation for MAE and RMSE (Table 4). Among these, the DL, SVM, and LR
models stood out for presenting lower MAE and RMSE in relation to the RF. For r, there
was no difference between the ML models.

The boxplots for mean absolute error (MAE), root mean squared error (RMSE), and
Pearson’s correlation coefficient (r) values between estimated and observed values for
days to maturity (DM), plant height (PH), and grain yield (GY) in soybean obtained with
different machine learning models (DL, RF, SVM, and LR) and input configurations (WL,
VI, and WLVI) are grouped in Figures 3–5, respectively. In general, the combination
between DL and WL provided greater accuracy for all variables evaluated, as it obtained
lower median values for MAE and RMSE and higher values for r. Furthermore, in this
combination, the boxes were smaller, which indicates less dispersion between the results of
the 30 folds used to obtain the MAE, RMSE, and r. RF had slightly lower median accuracy
values than DL when using WL as input. However, for the other inputs (VI and WLVI),
this model had the lowest median values for MAE and RMSE, in addition to the highest
values for r. However, it is important to highlight that the boxes for this model showed
higher variability.
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LR: linear regression; WL: spectral bands wavelengths; VI: spectral vegetation indices; WLVI: a combination between
spectral bands and vegetation indices.
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linear regression; WL: spectral bands wavelengths; VI: spectral vegetation indices; WLVI: a combination between spectral
bands and vegetation indices.
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Figure 5. Boxplot for mean absolute error (MAE), root mean squared error (RMSE), and Pearson’s correlation coefficient (r)
between estimated and observed values for grain yield in soybean obtained with different machine learning models (DL,
RF, SVM, and LR) and input configurations. DL: deep learning (DL); RF: random forests; SVM: support vector machine; LR:
linear regression; WL: spectral bands wavelengths; VI: spectral vegetation indices; WLVI: a combination between spectral
bands and vegetation indices.
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4. Discussion

The significant interaction between inputs and ML models for DM and PH indicates
differences between the models when using WL, VI, or WLVI as inputs. In the other sense,
there are differences between the inputs for each ML model tested. The results obtained
from MAE, RMSE, and r between estimated and observed values for DM and PH variables
indicated a slightly superior performance of the proposed DL approach compared to
the other traditional machine learning methods when only the WL are considered. DL
methods extract features automatically, and this provides an advantageous approach. As
verified in our experiments, the establishment of vegetation indices was not required,
which implies an easy alternative to soybean variable prediction task. Another important
observation regarding DL methods is the ability of updating novel training information
based on a transfer learning strategy. Even though DL methods are known for demanding
a computational power higher than ML approaches, the mentioned ability should be
considered, especially in precision-farming tasks, as deep networks are more adaptive to
new areas, images, and variables than shallow methods.

When considering only vegetation indices (VI) or vegetation indices combined with
the wavelengths (WLVI) for both DM and PH, we found that RF outperformed the other
models (lowest means of MAE and RMSE and highest means of r). The highest performance
found here using RF possibly occurred due to the internal structure of the algorithm, which
is based on multiple decision tree sets. Recent studies have classified RF as an effective
and versatile machine learning method for crop yield predictions [4,10,15]. Moreover, RF
has been considered superior to other shallow learning algorithms because it can easily
handle many model parameters, reduce estimate bias, and has no problems with overfitting.
These findings are similar to previous reports on the prediction of agronomic traits using
spectral data and machine learning. Yu et al. [20] found a good accuracy in yield prediction
(r = 0.82) of soybean breeding lines by using the RF model on data obtained with the
UAV-based high-throughput phenotyping (HTP) platform. Sakamoto [18], when carrying
out a MODIS-based crop yield estimation for corn and soybean with the RF algorithm,
verified that the method provided an accurate estimate of yield reduction in soybeans
caused by a drought that occurred during late vegetative stages. However, as performed
here, the RF and shallow models have been little studied in predicting the maturity and
plant height in soybean.

Days to maturity (DM) has been an important trait in studies aimed at improving
soybean crops since, through this trait, it is possible to measure the earliness of cultivars.
Earliness is one of the main targets currently required by the Brazilian soybean market.
This occurs because farmers of the major producing regions, located in the Cerrado biome,
can grow corn or cotton in the second season, between February and July, increasing the
profitability of the agricultural system. Furthermore, early-cycle genotypes remain in the
field for less time and are subject to less disease pressure during the late growing season,
which causes considerable losses in crop yield [34]. However, measuring earliness is a
time-demanding and labor-intensive task [6,35], since it requires counting, in the field,
the number of days until each genotype blooms or matures. In this aspect, the approach
proposed here may help to minimize this cost by implementing only remote sensing and
computational options to perform said task.

Likewise, plant height (PH) is another important feature for improved soybean culti-
vars, since plants must be up to 1 m in height to avoid lodging and losses in mechanized
harvesting. Several studies on genetic progress and breeding in soybean have identified
a decrease in plant height and consequent reduction in the lodging score in modern cul-
tivars [36–38]. However, PH assessment is also a time- and labor-consuming task. Thus,
using a machine learning method that only needs spectral bands or vegetation indices from
UAV-based imagery, agricultural practices can benefit from this approach to estimate PH
with satisfactory performance. In a previous study, PH was also predicted with machine
learning methods and obtained good accuracies, as in here, but in maize plants [7].
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UAV-based multispectral imagery arises as a fast, cost-effective, and reliable technique
for assessing crop attributes of interest, which is critical for high-throughput phenotyp-
ing in agriculture [39]. The literature has already reported the prediction of important
agronomic variables (e.g., plant height, biomass, and grain yield) by using remote sensing
techniques [2,3,7,15,20,40]. Nonetheless, studies aiming to predict crop maturity are recent,
especially in soybean, and research using shallow and deep machine learning approaches
is still scarce in the literature [20]. To the best of our knowledge, this is one of the first
studies to perform a prediction for soybean maturity and plant height with shallow/deep
learning-based methods applied to multispectral data considering multiple agronomic
variables (PH, GY, and DM) at different cultivars, sites, and crop years. Our findings show
that it is possible to predict days to maturity and plant height in soybean. The use of
artificial intelligence techniques associated with data obtained by remote sensing shows
to be a fast, low-cost, and efficient approach to be adopted in precision-farming practices,
supporting crop management and helping in the decision-making process.

In this study, our interest was to investigate the performance of different machine
learning methods and input configurations to predict days for maturation, plant height, and
grain yield for soybeans using only multispectral UAV images. Overall, RF outperformed
the other models when considering as inputs all of the VI and WLVI variables. This
provided better accuracy in both the DM and PH predictions than when considering only
the spectral bands. Yet, when using only the spectral bands as input, the DL model returned
the overall best performance. We verified that the DL model can predict DM and PH in
soybean using lesser variables, which is an advantageous and promising approach in terms
of implementation and spectral data analysis.

The approach adopted here can be implemented with different datasets on different
soybean cultivars. For further studies, we recommend that this approach be tested for
different crop traits and using a larger number of wavelengths as input in the models.

5. Conclusions

We mainly verified significant interaction between machine learning models and
input settings for MAE, RMSE, and r between observed and estimated values for both DM
and PH traits. Our findings showed that the DL model outperformed the other models
when using only WL as input configuration. The RF algorithm performed better when
considering the VI, both single and combined with spectral bands (WLVI). Regardless,
mainly because of its characteristics, the DL approach may learn more patterns in new
datasets, which is an advantage over the traditional shallow learners. We conclude that our
method can be adopted in future research to evaluate other traits in soybean. With this, we
observed that this procedure can support the decision-making process on variety selection
and yield prediction and supply more information to assist precision agriculture practices.
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