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Abstract: Conventional mathematically based procedures in forest data processing have some
problems, such as deviations between the natural tree and the tree described using mathematical
expressions, and manual selection of equations and parameters. These problems are rooted at the
algorithmic level. Our solution for these problems was to process raw data using simulated physical
processes as replacements of conventional mathematically based procedures. In this mechanism,
we treated the data points as solid objects and formed virtual trees. Afterward, the tree parameters
were obtained by the external physical detection, i.e., computational virtual measurement (CVM).
CVM simulated the physical behavior of measurement instruments in reality to measure virtual
trees. Namely, the CVM process was a pure (simulated) physical process. In order to verify our
assumption of CVM, we developed the virtual water displacement (VWD) application. VWD could
extract stem volume from an artificial stem (consisted of 2000 points) by simulating the physical
scenario of a water displacement method. Compared to conventional mathematically based methods,
VWD removed the need to predefine the shape of the stem and minimized human interference. That
was because VWD utilized the natural contours of the stem through the interaction between the
point cloud and the virtual water molecules. The results showed that the stem volume measured
using VWD was 29,636 cm3 (overestimation at 6.0%), where the true volume was 27,946 cm3. The
overall feasibility of CVM was proven by the successful development of VWD. Meanwhile, technical
experiences, current limitations, and potential solutions were discussed. We considered CVM as a
generic method that focuses the objectivity at the algorithmic level, which will become a noteworthy
development direction in the field of forest data processing in the future.

Keywords: stem volume; computational virtual measurement; physical simulation; virtual measuring
instrument; PhysX

1. Introduction

Mathematics is a powerful tool for humans to solve scientific problems and has been
commonly utilized in forest research [1]. From the early days to the present, various tree
parameters, e.g., stem volume, were determined by mathematical procedures using raw
data collected in forests [2,3]. These methods usually abstract the natural form of trees into
simple shapes by means of mathematical expressions [4]. For example, the stems of trees
are regularly represented using a cylinder or a collection of cylinders [5,6]. In this process,
a deviation between the natural form of trees and the trees is described using mathematical

Remote Sens. 2021, 13, 4627. https://doi.org/10.3390/rs13224627 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9596-4547
https://orcid.org/0000-0001-6182-1249
https://doi.org/10.3390/rs13224627
https://doi.org/10.3390/rs13224627
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13224627
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13224627?type=check_update&version=1


Remote Sens. 2021, 13, 4627 2 of 21

expression roots at the algorithmic level. Consequently, this deviation and underlying
wrong predictions raise the need for validation and calibration procedures. There is no
doubt that these mathematical tools can be of great help in science. However, some
technical information, e.g., optimum parameters determined in the course of a scientific
research [7], were not expected to contribute to other works. This is due to the diversity of
trees and forest sites. For industrial applications, e.g., national forest inventory (NFI) [8], it
is difficult to adopt a (new) method if it requires additional mathematical procedures to
provide justification on every sample plots.

From our point of view, there is little chance to overcome this deviation caused by
manual definition of trees if we still stand within the realm of conventional mathemat-
ically based procedures. Therefore, we developed a novel method that processed data
without the use of conventional mathematically based procedures. It was a generic method
called computational virtual measurement (CVM). CVM existed as a theory, but not in
combination with specific tree parameters. Namely, CVM was a measuring process. CVM
used a virtual measuring instrument (VMI) to measure the measuring object, i.e., the raw
data, in a virtual space by simulating the physical behavior of real measuring instrument
(RMI). Physical simulations were handled by PhysX, an external physics engine [9,10].
Accordingly, a tree parameter was determined by a virtual measuring process instead of
conventional mathematically based procedures. In order to prove the feasibility of CVM
and make a theoretical demonstration of how to implement CVM with a specific task, we
further developed the virtual water displacement (VWD) method. VWD aimed to measure
point clouds (consisted of 2000 points) of an artificial stem for stem volume.

In stem volume estimation, conventional mathematical methods are used to em-
ploy cylinders as stem equivalents [11], regardless of their differences in levels of details
(LoD) [12]. Technically speaking, methods with high LoD [13] are considered to be better
than the low LoD methods [14] for stem volume estimation. That was because high LoD
methods greatly improve the information utilization rate. However, as the quantity of
components within the model increases, the chance of accurately verifying each component
decreases. It is common that additional processes are needed to be introduced [15–17],
which increases the complexity of the method and further prevents the possibility of indus-
trial application. In some cases, one verified the stem volume obtained by the high LoD
method with the reference value obtained by the low LoD method [18,19]. This procedure
doubled the workload.

Parameterization is another issue that we consider as an algorithmic problem. Pa-
rameters have a significant contribution to tree modeling. They provide start conditions,
end conditions, thresholds, etc. [20,21]. Some of parameters were determined by users and
impacted by user decisions [22]. Although the automatic determination of modeling param-
eters has been a research hotspot [13,23], we believe that it is challenging to exclude human
inferences (decisions). This is because they are still staying in the conventional territory
of mathematics. The human influence was being hidden in a lower level of mathematical
processing [24]. This is, of course, a significant and user-friendly improvement.

Compared to current mathematical based for stem volume estimation, due to lim-
itations from computer software and hardware, our method, VWD, could not provide
superiority on technical indicators, e.g., accuracy, on a specific dataset. What it could
provide was the higher objectivity at the algorithm level. First of all, the predefinition of
the tree form was no longer needed, which eliminated the deviation between the nature
trees and the trees expressed using equations. Second, VWD removes the need for cal-
ibration and validation. In VWD, we made a virtual measuring instrument (VMI) that
measures point clouds by not making tree models. This VMI consisted of simulations
of physical scenarios of water displacements in reality, which was simple and clear. The
volume of stem was equal to the volume of displaced water. Accordingly, in a virtual space
(with a determined volume), the volume of point clouds of trees could be determined
after filling virtual water. Literally, this VMI in virtual space corresponded to RMI in
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reality. In summary, using VMI to measure stem volume was a purely physical process
without parameters.

2. Artificial Ground Truth

The first and fundamental step in this study was to determine stable physical scenarios
for simulating water displacement method. It is well known that water is not sensitive to
the shape of the measuring target. From this perspective, VWD is a universal VMI, not
limited to measure point clouds of trees. Due to the lack of reference for developing a VMI,
we employed two steps in this study. The first step was to develop and test VMI in regular
shape objects because they had the simplest geometry and was facile to locate problems.
The second step was to apply VMI in artificial stems, which were our measuring targets.

Regular shape objects and artificial stems formed artificial ground truths. As so-called
ground truths, each of them had a determined geometry, position, and true volume in
the standard unit system in Unity [25,26]. This unit system did not have a specific funda-
mental unit, e.g., meter and kilometer. Therefore, in this study, one standard unit in Unity
conceptually corresponded to one centimeter in reality.

2.1. Regular Shape Objects

In the long-term vision, the VMI of VWD could measure any objects, not limited to
trees. Therefore, we regarded the insensitivity of VMI to shapes as an important factor.
Unity considers cubes, spheres, and cylinders to be the three basic 3D shapes that provide
support for building various 3D shapes [25]. Accordingly, a sphere, a cube, and a cylinder
were created using default settings for the development and test on VMI. Each of them
had a coordinate, a scale parameter, and a surface mesh in virtual space. The coordinate
and scale parameter were designated variables. The mesh was a collection of vertices and
triangles. It was used to organize and display these three models. First, Unity assigned
a prebuild mesh to the determined position. Then, the appropriate size was granted to
this mesh. Finally, an object existed in the virtual space and was visible to the user. As
shown in Figure 1a–c, a sphere mesh has 515 vertices and 768 triangles. A cube mesh has
24 vertices and 12 triangles. A cylinder mesh has 88 vertices and 80 triangles.
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Figure 1. Regular shape objects and corresponding point clouds. (a) The cube model; (b) the
sphere model; (c) the cylinder model; (d) the point cloud resampled the cube model; (e) the point
cloud consisted of the original mesh vertices in the sphere model; (f) the point cloud resampled the
cylinder model.



Remote Sens. 2021, 13, 4627 4 of 21

According to the structures of the meshes, the volumes of sphere and cylinder differed
from their theoretical values. We applied a method using a normalized vector to calculate
the volume of the meshes [27]. As shown in Table 1, we were aware that there was
approximately a 2% in difference between the theoretical volumes and mesh volumes.

Table 1. The calculation of true values (the mesh volume) for regular shape objects.

Model Equation Geometric
Parameters

Theoretical
Volume Mesh Volume Absolute

Difference
Calibration
Coefficient

Cube V = r3 r = 20 8000 7999.99 0.01 none

Sphere V =
3
4

πr3 r = 10 4188.79 4098.68 90.11 97.85%

Cylinder V = πr2h r = 10 h = 40 12,566.37 12,360.69 206.68 98.36%

Once the volumes were determined, we continued to convert 3D models to point
clouds. Two methods were used in this process. For the sphere, we directly took its vertices
as the corresponding point cloud. The cube and cylinder have fewer vertices and are not
enough to be used directly as a point cloud. We had to resample them into point clouds.
Finally, we obtained point clouds for regular shape objects with true volumes (the mesh
volume in Table 1), shown in Figure 1d–f.

2.2. Artificial Stems

After the tests using regular shape objects, we attempted to apply VWD in point
clouds of artificial stems. We note that the artificial stems we used were simpler than the
artificial trees generated by algorithms in peer studies [28]. Due to limitations from PhysX
and computer performance (would be discussed in Section 5.2), a stem with minimum
“crown area” would help to reduce the consumption of virtual water molecules (VWMs).
We used tree editor [29] in Unity to manually create two artificial stems. As shown in
Figure 2, the “stem” model had only a main stem without any branches. The “stem with
branches” model had an additional three children branches based on the “stem” model.
They were resampled to a point cloud.
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Point Cloud Library (PCL) [30] and Visualization Toolkit [31] were used to resample
3D models back to a point cloud. Once a 3D model was resampled, we had a pair of a
3D model and the corresponding point cloud. The volume of the corresponding point
cloud was known, which was the volume of the 3D object. This was how we obtained
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exact ground truth for a point cloud. After that, we could compare volume measured using
VWD between the ground truth.

This resampling work was utilized by an interface in PCL. There are actually two
smaller interfaces in PCL, which are <fromPCLPointCloud2> and <pcl_mesh_sampling>.
A simple call of the <fromPCLPointCloud2> interface would lead to the points concentrated
around the area of vertices and left great gaps on the surface of triangles. It was insufficient
to generate an even distributed point cloud to simulate a terrestrial LiDAR derived point
cloud. Therefore, we had to use the <pcl_mesh_sampling> interface. This interface could
combine with the Visualization Toolkit. After that, a 3D object (e.g., a tree model) could be
resampled into a point cloud with an even distribution of points. In addition, we used a
random method to simulate the natural distribution of points on the stem surface. As shown
in Figure 1d,f, the larger gaps might represent the data defect caused by perspective
blocking or data noising.

Moreover, we applied quantitative structure models (QSM) modeling on the point
cloud of “stem with branches” using Simpletree (Jan Hackenberg, Freiburg, Germany),
a QSM model software. It was a single-blind experiment. The purpose of this experiment
was to show the human influence on modeling results due to manual operation. First, a
research staff (S.1), made the tree model using ten modeling parameters in Simpletree [32].
In short, these ten modeling parameters are labeled in P.1 to P.10 in this study. Second,
we applied small random jitter (less than 5% to original inputs) on the S.1’s parameters
in order to simulate modeling processes made by other staff. Table 2 shows that human
recognition impacted the modeling process that cannot be ignored. This was because the
shape of this artificial tree was simple, and its morphology was highly regular without
irregular parts. Therefore, the variations of result shown in Table 2 were considered to be
significant by us. Furthermore, without the knowledge of ground truth, it was unable to
evaluate modeling results.

Table 2. A simulation of human influence in the stem volume estimation using Simpletree. S.1 refers to a first tree model
made by a staff without prior knowledge of ground truth; S.2 to S.11 refers to the simulated model results made by another
ten persons; P.1 to P.10 refers to parameters used in the “choose thresholds” UI in Simpletree [32]; they are all mathematical
values without physical unit; Vol(l) refers to the stem volume, the unit is dm3.

Parameters S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9 S.10 S.11

P.1 1.634 1.647 1.626 1.622 1.626 1.632 1.619 1.645 1.630 1.630 1.630
P.2 0.048 0.047 0.049 0.049 0.049 0.049 0.047 0.049 0.047 0.047 0.049
P.3 0.052 0.051 0.051 0.051 0.051 0.053 0.051 0.053 0.051 0.053 0.053
P.4 0.030 0.029 0.031 0.031 0.029 0.029 0.031 0.031 0.029 0.029 0.031
P.5 173 174 172 173 173 173 175 174 172 173 171
P.6 10,000 9915 9967 10,042 9913 9975 9953 10,053 9907 9957 10,052
P.7 3 4 3 4 3 3 4 3 4 3 4
P.8 5 6 6 4 4 6 6 4 4 4 4
P.9 0.094 0.095 0.095 0.093 0.093 0.093 0.093 0.095 0.093 0.093 0.09
P.10 0.063 0.062 0.064 0.062 0.064 0.062 0.062 0.062 0.062 0.062 0.062

Vol (dm3) 26.44 24.97 26.32 26.31 26.96 25.58 26.81 26.44 25.86 25.86 26.16
Accuracy (%) * 4.0 10.1 5.8 5.9 3.5 8.5 4.1 5.4 7.5 7.5 6.4

True volume is 27.95 dm3. * The average accuracy is 6.9%.

2.3. Ideal Point Cloud and Ideal Tree Model

In this research, we used a resampling method to generate a point cloud from 3D
models (in Sections 2.1 and 2.2). Those point clouds have the following features: (i) all
structural information on the object surface was recorded; (ii) a generally equivalent
distribution of points. We named those resampled point clouds as ideal point clouds. In
fact, due to the shading effect between canopy structures and the perspectives of tLiDAR
scanning positions, it is impossible to obtain the ideal point cloud in reality.

Initially, we had assumed that applying a QSM method on an ideal point cloud could
result an ideal tree model. In an ideal tree model, each cylinder has a perfect fitting on
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each part of tree. However, as shown in Table 2, a QSM modeling process is controlled
by dozen parameters. Due to the diversity of tree structure and the modeling mechanism
of QSM, we believed that it would not be possible to generate all cylinders in the right
position. There is a simple standard to judge whether it is or not: each point in point cloud
crosses with the surface of tree model. It would be hard to make an ideal QSM model on
its corresponding ideal point cloud, in practical terms. As a summary, Figure 3 shows the
overall workflow for preparing artificial ground truths.
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3. Virtual Water Displacement Method
3.1. Analysis of Physical Basis

VWD was the virtual version of water displacement (WD) method (in Appendix A.1).
First of all, it should have a virtual space, i.e., the virtual geographic environment (VGE) [33,34].
It contained the simulation of common physical laws [35–37]. Afterward, we analyzed
the physical behavior of WD [38–41] and prepared to duplicate its physical scenario in
virtual space.

3.2. VWD Method Description
3.2.1. Primary Mechanism

The virtual water displacement (VWD) method is a simulated physical process to
measure point clouds using a virtual measuring instrument (VMI). This VMI consists of a
series of computer algorithms, including physical simulation functions from PhysX, to sim-
ulate the laboratory process of water displacement method for stem volume measurement
in VGE. Instead of collecting the increment data from a graduated cylinder or weighing
the mass of water, the quantity of displaced virtual water molecules is counted one by one
to calculate the mass of water, subsequently, the volume of stem will be determined. This
procedure can be described as the following equations, where V is the stem volume; k is
the coefficient of volume calibration; N is the predicted number of VWMs for a vast vessel;
n is the actually filled number of VWMs in a vessel with a tree point cloud inside; and vs is
the sphere volume of a VWM.

V = k(N − n)vs (1)

3.2.2. The Establishment of the VGE

The establishment of VGE is the first step (in Figure 4). A vast 3D Euclidean space
was created using the default setting in Unity Scene [42]. The position of each object in
this space was determined by three coordinates (x, y, z). The original point was (0, 0, 0).
According to the human acts of cognition, a flat (z = 0) was used to separate this space
into the aboveground and the underground visually. Then, a cube which represented a
graduated cylinder in reality (Figure 4) was set on this flat. There were two reasons for
choosing a cube as a vessel for water displacement. First, the circular packing problem
(in Section 3.3) is the primary consideration, as the rectangle (2D) and cube (3D) exhibited
well-discussed solutions [43]. The secondary consideration was that the shape of cube
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has a simple 1-1 relationship with the Array data structure in C# [44]. Finally, a tree point
cloud, which is a virtual representative for a tree in reality, was imported into the center
area of the vessel.
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3.2.3. Virtual Water Molecule

Visualization is a major research focus in computer graphics, but not quantitatively [45–47].
One liter of water contains ~55.56 mol of water molecules which equals ~55.56 × 6.02 × 1023.
The simulation on this order of magnitude is impossible and meaningless using a desktop
computer. Thus, we have to use a limited number of VWMs by enlarging their diameter
dramatically. In this case, a VWM is no longer representative of a water molecule (cluster)
on a molecular scale. A VWM is a collection of certain quantity of water with a fixed shape
on normal scale, which can be observed by human eyes.

VWMs are of vital importance, with a particular regard to two aspects: static and dynamic.
Static: A VWM plays as a volume placeholder. Visually, a VWM is a sphere made up

of a mesh; in the physics simulation process, it is a sphere with dynamic coordinates and
a fixed user-determined radius. The exclusivity is its key feature. No matter where it is,
it is not allowed for other objects to overlap with it. In this way, a VWM can exclusively
occupy an area in Euclidean space in a VGE, which is equivalent to the behavior of a water
molecule (cluster) in reality. As a volume placeholder, the volume of the VWM consists of
two parts: one is its own sphere volume, which is a determined value related to radius;
the other one is the gap volume shared with other neighboring VWMs, which is related to
the quantity and distribution all of VWMs (in Section 3.3). For a particular VWD process,
we use a certain coefficient for volume calibration. How to determine this coefficient
is discussed in Section 3.3. The volume of VWM can be described as in the following
equations, where vs is the sphere volume of a VWM; r is the radius of a VWM; V is the
volume of VWM; vg is the gap volume shared with other VWM; and k is the coefficient of
volume calibration from VWM sphere volume to VWM volume (as a volume placeholder).

vs =
4
3

πr3 (2)

V = vS + vg (3)

V = kvs (4)

Dynamic: Physics research regards water molecules (clusters) as rigid bodies which
are solid bodies with no deformation or with such small deformation that it can be ne-
glected [48]. The simulation of rigid body dynamics is supported by the PhysX engine in
Unity [49–53]. The technical detail of VWM is in Appendix A.2. A demonstration for a
VWD taking on different roles is in Figure 5.
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Figure 5. The Key mechanism of VMI of VWD in this study, static and dynamic roles of virtual water
molecules (VWMs): (a) a VWM acts as a placeholder that can occupy an exclusive space in the vessel;
(b) the dynamic motion of the VWM. The VWMs are attracted by virtual gravity. At the same time,
VWMs have physical interactions with each other.

3.2.4. Point Cloud as Object

In VWD, each single point in the point cloud is not data to be processed. We recognized
each point as a living being in VGE, that holds its own position and rejects VWMs during
the whole simulation process. All points together in VGE are equal to a tree in reality. Both
the role of VWMs and real water are to measure the objects. They do not predict. Thus, a
VWD stem volume is a directly measured variable. LiDAR sampling for trees is the first
occurrence of scanning in reality, and VWD is virtual scanning in VGE for the second time.

3.2.5. Diminishing the Modeling Complexity by Making Models No Longer

Comparing to computational modeling methods, the key feature of VWD is dimin-
ishing the modeling complexity by do not make tree models anymore. In Section 2.3, we
assumed the concepts of ideal point cloud and ideal tree model. Theoretically, each ideal
point cloud has a corresponding ideal tree model.

Now, we create two VGEs. An ideal point cloud is installed in a VGE, and its corre-
sponding ideal tree model is installed in another one. Then, we applied a sphere collider
to each point in the ideal point cloud and a mesh collider to the corresponding ideal tree
model. Both colliders have the same function, which prevents the penetration of a VWM to
move from one side to another side [54].

As shown in Figure 6, if we use VWMs to collide with the point cloud and tree model
at same time, colliders on points or the tree model will hold an exclusive space, which
is a wooden part of a tree. Thus, for the purpose of stem volume estimation only, the
computational modeling procedure is no longer necessary. That is why the VWD method
is a “modeling free” method.

Furthermore, it is impossible to build a perfect computational tree model from an
ideal point cloud. On the contrary, VWMs can detect all of the surface area on an ideal
point cloud, which is equivalent to the surface of an ideal tree model. The only require-
ment is that the diameter of VWM is larger than the gaps for adjacent points. The VWD
estimations of volume should be equivalent no matter if the input is an ideal point cloud
or its corresponding ideal tree model. Thus, for the estimation of stem volume, VWD is
simpler than computational tree models by making no models. This simplification occurs
in algorithm logic.
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3.3. Sphere Packing Problem

The coefficient k in Equations (1) and (4) is a key parameter for VWD. The sphere
packing problem [43] was used to determine how many spheres (n) can fill a certain vessel.
After that, k can be determined by the following equation, where k is the coefficient of
volume calibration from VWM sphere volume to VWM volume (as a volume placeholder);
Vvessel is the volume of vessel; n is the number of theoretical maximal filling of VWMs; and
vs is the sphere volume of a VWM.

k =
Vvessel

nνs
(5)

For the determination of n, we used the basic quasi physical (BQP) method described
by Huang et al. [55]. BQP regards each sphere as a non-rigid body. Each sphere has its
own elastic potential energy. By releasing the elastic potential energy in the whole system
step by step, the energy of each sphere would be equal in the end. However, the motion
of VWMs is driven by virtual gravity in VGE. It is not possible to distribute to the form
of mathematical maximal. Thus, we also used an imperial method to determine k with
the following equation, where k is the coefficient of volume calibration from VWM sphere
volume to VWM volume (as a volume placeholder); Vvessel is the volume of vessel; n′ is the
actually filling number of VWMs; and vs is the sphere volume of a VWM.

k =
Vvessel
n′νs

(6)

In Equation (6), we performed the actual filling experiment for each diameter, repeated
five times, to determine the value of n′.

3.4. Workflow Using VWD Application

Finally, we could take a VWD simulation, which measured the point cloud in VGE, as
the WD method measures the stem disk in reality. They share the same principle, which is
the volume displacement by an alternative material, water. VWD uses colliders attached
on point cloud to simulate the water resistance in nature. In an ideal point cloud, VWD can
provide a volume estimation on a true volume in VGE theoretically. We summarize the
workflow of VWD in Figure 7.



Remote Sens. 2021, 13, 4627 10 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 22 
 

 

3.4. Workflow Using VWD Application 
Finally, we could take a VWD simulation, which measured the point cloud in VGE, 

as the WD method measures the stem disk in reality. They share the same principle, which 
is the volume displacement by an alternative material, water. VWD uses colliders attached 
on point cloud to simulate the water resistance in nature. In an ideal point cloud, VWD 
can provide a volume estimation on a true volume in VGE theoretically. We summarize 
the workflow of VWD in Figure 7. 

 
Figure 7. Theoretical (yellow) and full workflow for virtual water displacement (VWD) simulation. 

3.5. Virtual Experiments Using VWD Application 
At each stage of VWD application development, we used virtual experiments to test 

the reliability of our concepts in VWD. There were three stages in the virtual experiments. 
The first stage was to test VWD mechanism in the empty vessel to verify the designed 
physical scenario. The next stage was to apply VWD on the three regular-shaped objects 
to test the sensitivity of VWM. In the final stage, VWD process could be applied on point 
clouds from artificial stems. 

4. Results 
4.1. Theoretical and Actual Filling of VWMs 

Figure 8 shows a comparison between a theoretical filling and an actual filling of 
VWMs in the standard vessel. The standard vessel was a cube, and its side length was 400 
cm. The spatial distribution for VWMs varied in each time of actual fillings. However, as 
the collection of all VWMs, we hope that the distribution of VWMs would not affect the 
quantity of VWMs. 

 
Figure 8. The spatial distribution of theoretical and actual filling of VWMs. The vessel is a cube with 
a side length of 400 cm; VWM diameter is 30.72 cm; (Left): the theoretical maximal filling (2916); 
(Right): the actual filling driven by PhysX (2431). 

For the standard vessel, we calculated the theoretical filling using the BQP method 
for VWM in 17 different diameters from 21.416 to 43.245 cm. The result varied from 8788 
to 1000. The corresponding actual filling results were from 7227 to 891, each actual filling 
was repeated 10 times. Figure 9 shows the quantity difference between the theoretical and 

Figure 7. Theoretical (yellow) and full workflow for virtual water displacement (VWD) simulation.

3.5. Virtual Experiments Using VWD Application

At each stage of VWD application development, we used virtual experiments to test
the reliability of our concepts in VWD. There were three stages in the virtual experiments.
The first stage was to test VWD mechanism in the empty vessel to verify the designed
physical scenario. The next stage was to apply VWD on the three regular-shaped objects
to test the sensitivity of VWM. In the final stage, VWD process could be applied on point
clouds from artificial stems.

4. Results
4.1. Theoretical and Actual Filling of VWMs

Figure 8 shows a comparison between a theoretical filling and an actual filling of
VWMs in the standard vessel. The standard vessel was a cube, and its side length was
400 cm. The spatial distribution for VWMs varied in each time of actual fillings. However,
as the collection of all VWMs, we hope that the distribution of VWMs would not affect the
quantity of VWMs.
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Figure 8. The spatial distribution of theoretical and actual filling of VWMs. The vessel is a cube with
a side length of 400 cm; VWM diameter is 30.72 cm; (Left): the theoretical maximal filling (2916);
(Right): the actual filling driven by PhysX (2431).

For the standard vessel, we calculated the theoretical filling using the BQP method for
VWM in 17 different diameters from 21.416 to 43.245 cm. The result varied from 8788 to
1000. The corresponding actual filling results were from 7227 to 891, each actual filling
was repeated 10 times. Figure 9 shows the quantity difference between the theoretical
and the actual. There is a clear trend that the relative difference between two numbers
increases with the shrink of VWM diameter. From the perspective of a whole system,
introducing more VWMs amplified the disorder of the system as well. On the contrary,
the relative standard deviation (RSD) for filling test decreases with the VWM diameter
at the same time. The largest diameter of VWM is 43.245 cm and the RSD is 1.375%; the
smallest is 21.416 cm, and the RSD is 0.465%. This indicates that the VWD method has high
interobserver reliability in VGE.
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Based on this result, we had a further discussion on the relationship between the theo-
retical and actual filling. Figure 10 shows a there is strong linear relationship (r2 = 0.999)
between them. First, it proves the accurate performance of rigid body physical motion
by PhysX. However, it is possible to regress the actual filling number form the theoreti-
cal, which indicates that skipping one filling step in the workflow (Figure 7) is possible.
Subsequently, k can be calculated using Equations (5) and (6) as well.
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4.2. Regular Shape Objects

Figure 11 shows a VWD process for a cube object in the standard vessel. We can see
that no VWMs could penetrate into the object inside. Compared to the computational
modeling method, VWD does not require human visual inspection, which reduces human
error from the source. Meanwhile, it is free of validation only if the diameter of VWM is
larger than the maximal gap of adjacent points.

The cube, cylinder, and sphere were selected to be tested in the standard vessel.
Figure 12 shows that the VWMs filling had a similar response comparing to filling into the
vast vessel. Due to the performance restriction on our computer. VWMs with six different
diameters were selected and the VWM with a diameter less than 29.136 did not have a
smooth simulation (frames per second (FPS) > 1) in this study. Therefore, we were unable
to perform VWD process using VWMs where the diameter was smaller than 29.136.
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At first glance, the performed data appeared incredible to us. Figure 13 shows the
huge difference between VWD estimation and the true volume, which indicated that many
more VWMs were evacuated by the point cloud inside compared to the theoretical number.
With the shrink of VWM diameter, this difference decreases dramatically as well. Based
on Equations (7) and (8), we had to apply a new additional coefficient, j, to calibrate the
VWD volume to true volume by the following equations, where Vture is the true volume of
object; VVWD is the object volume derived by VWD process; j is an additional coefficient
for calibration by force; k is the coefficient of volume calibration from VWM sphere volume
to VWM volume (as a volume placeholder); Vvessel is the volume of vessel; n′ is the actually
filling number of VWMs; and vs is the sphere volume of a VWM.

j =
Vtrue

VVWD
(7)

k = j
Vvessel
n′νs

(8)

From another aspect, j is an indictor to evaluate the accuracy of VWD estimation.
On the condition of j = 1, the evacuated VWMs precisely represented the volume of the
detected object. Figure 13 (right) indicates an obvious negative correlation between VWM
diameter and j. Therefore, we could assume that, when the VWMs diameter reaches small
enough, would lead to j so close to 1 as to be neglected. In Figure 13 (left), responses
of VWM show the consistent trend to different shapes when the diameters of VWMs
were reduced.
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Figure 13. The VWD volume estimation for three regular shape objects with six different diameter VWMs. (Left): The
quantitative difference between VWD volume and true volume. (Right): An additional coefficient using true volume
dividing VWD volume.

4.3. Artificial Stems

With the previous knowledge from Sections 4.1 and 4.2, we tested the VWD process us-
ing point clouds, which we resampled from artificial stems. As shown in Figures 14 and 15,
the standard vessel was not good for a VWD process because the diameter of the tree
is close to the VWD diameter, according to the experience from regular shape objects.
According to the scale effect (in Section 5.3), relatively smaller VWD diameter would be
helpful in estimation accuracy. Therefore, due to computer performance (in Section 5.2), we
assigned VWD diameter to 10, and meanwhile shrank the outliner of the vessel. Figure 15
shows comparison of two settings. The point clouds are the same in two VGEs.

For artificial stems, we applied the full VWD workflow. We calculated additional
coefficient j in Equations (7) and (8) with a “stem” point cloud, and then j was used to
calibrate VWD estimation for the “stem with branches” point cloud.
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VWMs (diameter = 10 cm).



Remote Sens. 2021, 13, 4627 14 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 14. The VWD process for the artificial stem. (Left): The artificial point cloud in the standard 
cube vessel (side length = 400 cm) and VWMs (diameter = 29.136 cm); (Right): The artificial point 
cloud in a special cuboid (bottom length = 120 cm, bottom width = 60 cm, height = 300 cm) and 
VWMs (diameter = 10 cm). 

 
Figure 15. Scale effect of VWMs. (Left): VWMs (diameter = 29.136 cm) collide with the artificial point 
cloud (bottom view); (Right): VWMs (diameter = 10 cm) collide with the same point cloud (front 
view). 

Table 3 is the experiment record. The standard deviation maintained a similar per-
formance for VWMs filling compared to fillings Sections 4.1 and 4.2. From the “stem” 
point cloud, we determined the empirical 𝑗 value, 0.573. Then, we used this coefficient to 
calibrate the volume for the “stem with branches” point cloud. The VWD volume was 
determined as 29,636 cm3 (overestimation at 6.0%), where the true volume is 27,946 cm3 
and the QSM derived volume is 26,155 cm3 (Table 2, mean value, repeated 11 times, un-
derestimation at 6.9%). It was found that the stem volume obtained by the VWD method 
was greater than the true value. Meanwhile, the stem volume obtained by the QSM 
method was always smaller than the true value. This was not a coincidence and was not 
related to a specific data set. It reflected the difference between the two methods at the 
algorithmic level. A mathematically based method, e.g., QSM, usually calculated the av-
erage value for some reason. In this case, the position of a cylinder surface was used to 
generate in the middle layer of the point cloud by QSM. As a result, there was a high 
chance that the volume between the contour of the point cloud and the intermediate layers 
would be lost. Therefore, the QSM intended to make an underestimation compared to the 
true volume. On the contrary, the VWD used external detection for point clouds. Due to 
the limitations of computers, it was likely that there were always undetected gaps. There-
fore, the VWD intended to include the additional volume where the gaps belonged. 

Figure 15. Scale effect of VWMs. (Left): VWMs (diameter = 29.136 cm) collide with the artificial
point cloud (bottom view); (Right): VWMs (diameter = 10 cm) collide with the same point cloud
(front view).

Table 3 is the experiment record. The standard deviation maintained a similar perfor-
mance for VWMs filling compared to fillings Sections 4.1 and 4.2. From the “stem” point
cloud, we determined the empirical j value, 0.573. Then, we used this coefficient to calibrate
the volume for the “stem with branches” point cloud. The VWD volume was determined
as 29,636 cm3 (overestimation at 6.0%), where the true volume is 27,946 cm3 and the QSM
derived volume is 26,155 cm3 (Table 2, mean value, repeated 11 times, underestimation
at 6.9%). It was found that the stem volume obtained by the VWD method was greater
than the true value. Meanwhile, the stem volume obtained by the QSM method was
always smaller than the true value. This was not a coincidence and was not related to a
specific data set. It reflected the difference between the two methods at the algorithmic
level. A mathematically based method, e.g., QSM, usually calculated the average value
for some reason. In this case, the position of a cylinder surface was used to generate in
the middle layer of the point cloud by QSM. As a result, there was a high chance that the
volume between the contour of the point cloud and the intermediate layers would be lost.
Therefore, the QSM intended to make an underestimation compared to the true volume.
On the contrary, the VWD used external detection for point clouds. Due to the limitations
of computers, it was likely that there were always undetected gaps. Therefore, the VWD
intended to include the additional volume where the gaps belonged.

Table 3. VWD estimation for artificial stems. Vessel refers to the vast vessel (bottom length = 120, bottom width = 60,
height = 300) in Figure 8 (right). Stem refers to the resampled point cloud in Figure 2 (left). Branch refers to the resampled
point cloud in Figure 2 (right). R.1 to R.5 refers to the five repeated VWD processes. STDEV refers to the standard deviation;
AVG refers to the average value of R.1 to R.5; DIFF refers to the replacement number of VWMs comparing with the actual
filing number of vast vessel; true V refers to the mesh volume of tree models; VWD V refers to the V derived from VWD
process; adjusted V refers to the final result of VWD measuring.

R.1 R.2 R.3 R.4 R.5 STDEV AVG DIFF VWD V
(cm3)

True V
(cm3)

Adjusted
V (cm3)

Vessel 2294 2305 2294 2298 2295 4.66 2297

Stem 2259 2256 2247 2250 2252 4.76 2253 44 41,376 23,709

Stem with Branches 2244 2237 2247 2241 2243 3.71 2242 55 51,720 27,946 29,636

5. Discussion
5.1. Computational Virtual Measurement

Human beings have been learning the law and experience from nature since ancient
times and have known how to utilize physical rules to measure objects. The phenomenon
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of water displacement was discovered independently as Archimedes in Greek and in the
story of Cao Chong weighing the elephant in China. Measuring methods connect certain
features of the measuring target clearly with certain physical parameters. In a measuring
method, no mathematical processes are employed to make predictions. Learning from
the water displacement method in reality, we successfully developed the virtual water
displacement method, which was aiming to directly measure the LiDAR point cloud for
stem volume.

The key feature of VWD is to replace the mathematical processes on data with the
simulating of physical principles on measuring instrument and measuring procedure. We
further concluded this feature as a general and conceptional method, i.e., computational
virtual measurement (CVM). The primary mechanism of CVM was described as follows:

To measure the data in a virtual space by simulating the physical mechanism of
measuring instruments in reality.

CVM is a measuring method in a virtual space. No predictive mathematical processes
are applied to the measuring target. Consequently, at the algorithmic level, no validation
and calibration are required. The core process in a CVM method is simulating the physical
mechanism of measuring instruments. Methods from a third-party physical simulation
engine can be included to simplify the difficulty in method developing. CVM shifts and
conceals the data processes in the physical simulation. For an end-user of CVM, they do
not need to care about how to simulate the measuring instrument. The simulation process
is a BlackBox for users, where the user can start the virtual measurement and wait for the
measuring result.

5.2. Computer Performance and the VWD Feasibility in the Future

As shown in this study, compared to processing data directly, the simulating of
measuring instruments was complicated. The quantity of points for a real tree may vary
from 100,000 to 10,000,000, which far exceeds current computer performance, both in
software and hardware. In a VWD process, both VWMs and tree points consume the
resources of the rigid body. However, the quantity of the rigid body is limited by the
physical engine, PhysX SDK 3.4. The maximum support of rigid bodies is 65,535 [52].
Compared to the regular quantity of points in a large tree point cloud. We did not have
enough rigid bodies to replace the original points in a virtual space. Furthermore, compared
to points in point clouds, VWMs consume much more rigid bodies in order to fill the vessel.
Thus, the current physical engine cannot support a VWD process at a large tree level.

In addition to the limitation in software, physical simulation depends on computer
hardware as well. It was useful to know how many rigid bodies could be supported by
the desktop computer in this study. The quantity of VWMs had a negative relationship
with the VWM diameter. For the consideration of computer performance, we intend to use
fewer VWMs. However, the VWM diameter was proved to relate to the accuracy positively.
Therefore, we had to perform VDM processes using small VWMs.

In order to find a favorable compromise with this contradiction, we used frames per
second (FPS) as the criterion to evaluate the smallest VWMs we could use. We filled VWMs
with different diameters. During those tests, if the FPS < 1 in the current VWD process, we
stopped further tests to seek a potential smaller diameter of VWMs. For the vast vessel
(no tree points), the smallest VWM diameter was 21.416 cm; for the vessel with tree points,
the smallest VWM diameter was 29.136 cm. The graphics card we used was Nvidia GeForce
GT 640 (2012), with a FP32 (float) performance of 693 GFLOPS. Comparing to this, the
current high-end graphics card, NVIDIA GeForce RTX 2080Ti (2019), has a 13,450 GFLOPS
in FP32 (float) and is ~19 times faster. The maximal VWMs that simultaneously existed in
our VGE was 7227. We assumed that there is a simple linear relationship with FP32 and
the number of rigid body support. Then, we could have ~130,000 (65,535) rigid bodies
to be allocated if we used the NVIDIA GeForce RTX 2080Ti. Compared with the date of
manufacture of those two graphics cards, which are 2012 and 2020. We could roughly
foresee that the hardware would like to support VWMs and tree points at the quantity at
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10,000,000 within the next ten years. Meanwhile, we are expecting the improvement of the
PhysX SDK as well.

5.3. Scale Effect for VWMs

The scale effect is a phenomenon we discovered in the VWD processes when we
tested the VWD measuring with regular shape objects. This phenomenon can help us to
choose the optimal diameter of the VWM when the spatial scale of the measuring target is
determined. The choice is simple. It is best to choose the smallest diameter VWM that the
computer performance can support.

Figure 16a shows a VWD measurement using a small and a large VWM for the same
measurement target. The ratio between the diameter of the external sphere of measurement
target and the VWM diameter could be regarded as a quantitative indicator, if needed.
Figure 16b shows one source of error caused by wrong ejections of VWM. The wrong
ejection usually occurs at the top layers of the vessel. From a single VWM perspective,
the VWM diameter has no influence on the likelihood of wrong ejections, if we count the
quantity of VWM. Apparently, one wrong ejection of a small VWM has a less negative
impact on the measuring process.
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In addition to the phenomenon occurring at the top level, the motion of a single
VWM in its adjacent area is also considered to be a factor affecting the measuring process.
As shown in Figure 16c, each VWM has a randomly accessed region around its center,
similar to the motion of real molecules. It is likely that there is a constant ratio between
the volume (diameter) of the VWM and the size of this region. This is because all VWMs
are driven by an identical physical scenario, regardless of the diameter. However, through
virtual experiments, it was found that VWMs with smaller diameters had better perfor-
mance than VWMs with larger diameters. The possible reason determined by us is shown
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in Figure 16d. In a space of the same size, the large VWM is affected by the forces from
fewer (four) sources. Meanwhile, the small VWM is affected by the force from much more
(twenty-four) sources. The more sources of force there are, the more likely it is that the
direction and velocity of the combined force will converge to zero. Accordingly, as shown
in Figure 16e, the small VWM may have a relatively much smaller randomly accessed
region compared to the large VWM.

5.4. Objectivity, Current Limitations and Further Development

The VWD developed in this work served as a theoretical proof of the CVM. As a
generic method, CVM was considered to have a high degree of objectivity. This objectivity
was rooted in the design of the algorithm itself. The key to the high degree of objectivity
was that CVM used simulated physical processes without predictive mathematical proce-
dures. This workflow was also used by real measurement instruments. Accordingly, the
justification of a CVM process was provided by repeated measurement instead of proce-
dures including validation and calibration. Meanwhile, CVM brought us a side benefit,
i.e., minimizing the demand of the skill of data processing. This character was expected
to contribute to industrial utilization, e.g., the sample plot survey in NFI. Namely, VMI
would be considered as the same kind of equipment as RMI.

By developing VWD, we found the implementation of CVM on desktop computers
challenging due to limitations. It was possible to duplicate this work using supercomput-
ers. However, it is envisioned that VWD (including other CVM implementations) will
eventually be distributed with no special requirements or costs. A simple strategy is to
keep waiting for the further development of computers and related hardware, e.g., lidar
scanner. Meanwhile, it is worth to further develop the theory of CVM and to extend the
deployment platform for CVM. For example, we could try to deploy VWD application
on the embodied computer in lidar scanner and hope for a real-time VWD measurement
in forests.

Another way is to employ conventional mathematical processing in CVM. As shown
in the VWD, those processes were used to compensate the insufficient computer power.
Although, this combination would reduce the objectivity of VWD (and CVM). However,
we foresaw that the versatility (for trees) and convenience (for users) of VWD (and CVM)
could be preserved. For example, the adjustment process in Equations (7) and (8) can be
accomplished by the manufacturer of the VMI. Then, for the user, this VWD application
would still working with a parameter free state. We recommend that manufacturers of RMI
could be attentive to VMI also.

6. Conclusions

In this study, the initial assumption of a method that did not require human inter-
vention or involvement had evolved into a generic approach, the CVM. Although, there
were some limitations from the desktop computer hardware and software during the
development of VWD, the feasibility of the overall mechanism of CVM was successfully
proved. In addition to stem volume, VWD was capable to measure point clouds volume
regardless of shapes. It inspired us to keep working toward the further development of
CVM implementations. We believed that CVM was a method with a higher degree of
objectivity on the algorithmic level. It avoided the mathematical interconversion from
natural trees to model trees. We expect that CVM research and industrial implementation
of CVM would thrive in the near future.
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Appendix A

Appendix A.1. Water Displacement Method

The physical characteristics of water determine water displacement, which is a perfect
method for the volume measurement of irregular objects. Any shape can be encased by the
water completely if the vessel is large enough. For some small objects, such as the human
body, tLiDAR showed potential to provide an equivalent accurate estimation of volume,
comparing with water displacement. However, the complexity of tree structures prevents
the delicate surface reconstruction using tLiDAR data.

As shown in Figure A1, water displacement is used primarily in stem density mea-
surement currently. In this measurement, both volume and weight are directly measured
variables. Then, wooden density and stem volume of the tree can be determined with the
following equations, where ρ is wooden density; m is the weight of stem disk; v is the
volume of stem disk; M is the weight of whole tree (all stem disks); V is the volume of
whole tree.

ρ =
m
v

(A1)

V =
M
ρ

(A2)
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Appendix A.2. Technical Detail of the VWM Physics

The motion simulation of single VWM is the first step. Four key features in rigid
body dynamics were applied, in order to move a VWM similar to a water molecule
(cluster) in VGE. (i) Velocity: The simulation for velocity is the fundamental function for
the physical engine. The motion of a VWM is separated into linear and angular velocity
components. By calling the corresponding interfaces, <PxRigidBody::setLinearVelocity> and
<PxRigidBody::setAngularVelocity>, we simulated this motion of six degrees of freedom.
(ii) Mass properties: According to a real water molecule (cluster), a VWM needs a mass
as well. With a mass, it can fall from the generation point down to the bottom of a vessel.
By calling the interface <PxRigidBodyExt::updateMassAndInertia>, we could set a mass to
a VWM and all VWMs share the same value of mass. (iii) Applying forces and torques:

A force could be applied to a VWM if it has a mass by the following equation, where
→
F is a

force on a VWM; m is the mass of a VWM; and
→
a is an acceleration parameter.

→
F = m

→
a (A3)

In addition to adding a force for the movement in Euclidean space, a torque could
be applied to a VWM using Equation (A3) as well. (iv) Gravity: If we replace

→
a with

⇀
g

(gravity) in Equation (A3), we could simulate a VWM motion that was attracted by gravity

with the following equation, where
→
F is a force on a VWM; m is the mass of a VWM; and

⇀
g is the gravity.

→
F = m

⇀
g (A4)

Gravity is a common force supported by PhysX in scene-wide (VGE-wide). The
magnitude of the gravity value does not affect the VWD result; it only affects the running
speed of the program. These four key features together with other auxiliary simulations
supported a VWM in behavior as a water molecule (cluster) in reality.

The interaction simulation between VWMs is the second step. As discussed within
this section, the exclusivity is its key feature for VWM. Rigid body collision is used to
ensure a VWM cannot penetrate with other VWMs as well as the boundary of vessel in
the motion simulation. There are two key steps to set up the collision detection. (1) A
sphere collider was added to a VWM with exactly the same centroid and radius. This
collider is not drawn in VGE using mesh in the user interface (UI) visually, the surface of a
collider is perfect sphere by real-time mathematical calculation. Any object colliding with
the surface of the collider can trigger the movement on both objects. (2) The selection of
collision detection algorithms, sweep-and-prune (SAP), and multibox pruning (MBP) are
supported by PhysX. MBP is a newer method that uses box shape as collider surface and is
more efficient than SAP. However, we use SAP because it can handle the original shape of
the VWM collider. Once the collision was detected, objects will be granted a new direction
of movement and velocity following the physical law in Equation (A3).

Appendix A.3. Development Environment

Hardware: CPU: Intel i5-3570K at 3.4 Ghz; RAM: 32 GB DDR3 1600; Graphics card:
NVIDIA GeForce GTX 640 with RAM 2 GB.

Software: Unity 5.7.0, PhysX SDK 3.4, Point Cloud Library 1.2.0.
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