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Abstract: Extensive efforts have been made to observe the accumulation and melting of seasonal
snow. However, making accurate observations of snow water equivalent (SWE) at global scales is
challenging. Active radar systems show promise, provided the dielectric properties of the snowpack
are accurately constrained. The dielectric constant (k) determines the velocity of a radar wave through
snow, which is a critical component of time-of-flight radar techniques such as ground penetrating
radar and interferometric synthetic aperture radar (InSAR). However, equations used to estimate k
have been validated only for specific conditions with limited in situ validation for seasonal snow
applications. The goal of this work was to further understand the dielectric permittivity of seasonal
snow under both dry and wet conditions. We utilized extensive direct field observations of k, along
with corresponding snow density and liquid water content (LWC) measurements. Data were collected
in the Jemez Mountains, NM; Sandia Mountains, NM; Grand Mesa, CO; and Cameron Pass, CO from
February 2020 to May 2021. We present empirical relationships based on 146 snow pits for dry snow
conditions and 92 independent LWC observations in naturally melting snowpacks. Regression results
had r2 values of 0.57 and 0.37 for dry and wet snow conditions, respectively. Our results in dry snow
showed large differences between our in situ observations and commonly applied equations. We
attribute these differences to assumptions in the shape of the snow grains that may not hold true for
seasonal snow applications. Different assumptions, and thus different equations, may be necessary
for varying snowpack conditions in different climates, suggesting that further testing is necessary.
When considering wet snow, large differences were found between commonly applied equations
and our in situ measurements. Many previous equations assume a background (dry snow) k that we
found to be inaccurate, as previously stated, and is the primary driver of resulting uncertainty. Our
results suggest large errors in SWE (10–15%) or LWC (0.05–0.07 volumetric LWC) estimates based on
current equations. The work presented here could prove useful for making accurate observations of
changes in SWE using future InSAR opportunities such as NISAR and ROSE-L.

Keywords: snow permittivity; liquid water content; radar

1. Introduction

Snowmelt is the dominant freshwater resource for over a billion people globally [1,2]
with recent studies showing its high monetary value [3]. Furthermore, seasonal snow
is one of the fastest changing hydrologic states under current climate trends [4–6]. Due
to the importance of snow and the rate it is changing, extensive efforts are being made
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to observe the accumulation and melting of seasonal snow (e.g., [7]). Snow observation
methods range from manual ground measurements to remote sensing techniques such as
light detection and ranging (LiDAR) or active radar systems that rely on understanding
the dielectric properties of the snowpack. However, making accurate observations of snow
water equivalent (SWE) at the global scale is challenging.

Recent technological advancements have allowed limited mapping of SWE from
remote sensing techniques. Passive microwave instruments such as the Multichannel
Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), and the
Advanced Microwave Scanning Radiometer-EOS instrument (AMSR-E) have been used,
though the poor spatial resolution of these datasets, sensitivity to varying snow properties,
and inability to measure deep snow make these techniques less feasible for watershed-scale
scientific applications [8–11], especially in complex mountainous terrain. One of the most
successful methods in recent years has been the use of airborne LiDAR to obtain distributed
snow depth maps and SWE estimates when density estimates are available [7,12,13]. Pho-
togrammetry techniques using stereo satellite image pairs have also shown promise to
produce snow depth maps [13,14]. However, LiDAR and photogrammetry techniques
are generally limited to regional applications, require accurate and co-registered snow-off
products, and are not viable during days of cloud-cover. Active microwave radar can
overcome these limitations and has recently been used to provide estimates for changes
in snow depth and SWE through differential interferometric synthetic aperture radar (In-
SAR) [15–17]. Lower frequency InSAR techniques offer the potential to make observations
of changes in SWE at high resolutions and are not hindered by cloud cover. However,
InSAR techniques to observe SWE changes require a priori estimates of the dielectric
properties of a snowpack. In particular, these low frequency active radar techniques are
dependent on accurate estimates of the real part of the dielectric permittivity (ε′).

The ε′ determines the velocity of a radar wave through snow and has been used to in-
vestigate multiple regions of the cryosphere at spatial scales that range from the laboratory
to multiple kilometers (e.g., [18–20]). Historically, ε′ has been used extensively in ground-
penetrating radar (GPR) studies to estimate ice thickness [21], SWE [22], density [23], and
snow liquid water content (LWC); [24]. Values of ε′ have primarily been validated for
specific conditions such as polar firn and ice (e.g., [25]), with limited validation in seasonal
snow. Additionally, ε′ for wet snow has been validated predominantly under idealized
laboratory conditions due to the difficulty of making accurate in situ measurements of snow
LWC. The studies that have made in situ observations of snow LWC have been limited to
low values of liquid water (generally below 0.08 by volume) and the applied methods often
sample different volumes of snow than those being measured for ε′ (e.g., [26–28]). Thus,
there is a need for further evaluation of existing equations that quantify ε′ for seasonal
snow under both dry and wet conditions, particularly with the forthcoming NASA-ISRO
SAR Mission (NISAR) and Radar Observing System for Europe L-Band (ROSE-L) that have
the potential to make global change in SWE products to make them feasible.

The goal of this work is to develop further understandings of the dielectric permittivity
of seasonal snow under dry and wet conditions. We utilize extensive in situ observations
of dielectric permittivity coincident with independent snow density (ρs) and LWC obser-
vations to complete the following objectives: (1) compare current permittivity equations
for dry snow conditions against in situ observations, (2) compare current permittivity
equations for wet snow conditions against in situ observations, and (3) determine if any
improvements to current permittivity equations are necessary, and if so, recommend
these improvements.

Theoretical Background

Many ε′ equations applied to snow are derived from the Polder and van Santeen [29]
equation that assumes particles in mixed media are in the form of ellipsoids. The shape
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of these ellipsoids may be described by the summation of their semi-axial ratios of the
depolarization factors (Ni):

N1 + N2 + N3 = 1, (1)

where the subscripts signify the Ni value for each respective semi-axis of the ellipsoid
in three-dimensional space. When all Ni values are equal (i.e., N1 = N2 = N3 = 0.33), the
particles are spherical (Figure 1a). Other Ni value extremes describe discs (i.e., Ni values
of 0, 0.5, 0.5) and needles (i.e., Ni values of 1, 0, 0; Figure 1a). When these ellipsoids have
a known permittivity (εk) and are randomly oriented and distributed with a volumetric
fraction (θ) within a background material of a different permittivity (ε0), the Polder and
van Santeen [29] mixing formula for ε′ may be written as:

ε′ = ε0 +
θ

3
(εk − ε0)

3

∑
i=1

ε′

ε′ + Ni(εk − ε′)
, (2)

In general, for dry snow, the shape of the snow crystals has a minimal impact on
Equation (2) due to the relative similarities in permittivity between air and ice, with ice
having a permittivity ~3 times that of air (Figure 1b). However, liquid water has a per-
mittivity ~29 times that of ice resulting in a significant change in ε′ in the presence of
even minimal amounts of liquid water (Figure 1c). The Polder and van Santeen [29] for-
mula (Equation (2)) describes the theoretical basis for multiple equations predicting the
dielectric behavior of snow and soil [30–32] that are regularly applied to seasonal snow-
packs [13,33–35]. These equations are derived by assuming the shape of snow crystals for
dry snow and liquid water inclusions for wet snow. Other equations used for commercially
available sensors have also been developed empirically using laboratory techniques and
a regression analysis (e.g., [36,37]). However, as previously mentioned, there has been
limited testing of these equations for in situ snow samples, particularly for wet snow
conditions. Because of this, estimates of LWC for wet snow conditions are often more
sensitive to the equation chosen rather than intrinsic snowpack properties (Figure 1d).
For further details on the permittivity models for mixed materials, Sihvola and Kong [38]
and Di Paolo et al. [39] provide thorough reviews for dry snow conditions. For wet snow
conditions, we provide a summary in terms of relative permittivity (k) as a function of
snow density (ρs) and snow volumetric LWC (θw) in Table 1. It is important to note that the
equations shown in Table 1 are applicable at frequencies between 0.01 and 1.5 GHz where
ε′ will not change significantly with frequency [18]. Equations used by instruments that
are often utilized in the field are also included in Table 1. These instruments include the
Snow Fork that uses Sihvola and Tiuri [31], a Denoth meter [30], an A2 Photonics WISe
sensor [36], and the FPGA Company SLF Sensor [37]. Instruments often quantify ε′ of the
observed media as k, defined as the ratio of ε′ for the observed media to the ε′ of a vacuum.
Thus, we utilize k for the purpose of consistency with our observations (described later in
the Methods section).
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Figure 1. Examples of the Polder and van Santeen [29] formula for various shaped materials. (a) Diagrams of the three-
dimensional ellipsoids defined by the depolarization factors (Ni). For the example plots, N1 is noted in the legend and
N2 = N3. (b) The Polder and van Santeen [29] model for the relative permittivity as a function of dry snow based on different
Ni assumptions and the Sihvola and Tiuri [31] equation (S and T) shown for comparison. (c) The Polder and van Santeen [29]
model for relative permittivity as a function of volumetric liquid water content for snow with a density of 300 kg m−3 based
on different Ni assumptions and the Sihvola and Tiuri [31] equation shown for comparison. (d) Comparison of Sihvola
and Tiuri [31], Denoth et al. [26], and Roth et al. [32] equations for volumetric liquid water content of snow with a density
of 300 kg m−3.

Table 1. Common equations that relate snow density (ρs, kg m−3) and volumetric liquid water content (θw, cm cm−3) to the
relative permittivity (k) at low frequencies (0.01–1.5 GHz).

Reference θw Range (cm
cm−1) Equation for Relative Permittivity, k (Unless Otherwise Specified)

Sihvola and Tiuri [31] 0.005–0.10 1 + 1.7
( ρs

1000 − θw
)
+ 0.7

( ρs
1000 − θw

)2
+ 8.7θw + 0.007(100·θw)

2

Denoth [30] 0.0–0.09 1 + 1.92
( ρs

1000
)
+ 0.44

( ρs
1000

)2
+ 18.7θw + 45·θ2

w

Roth [32] -

[
9.38·θw + 1.78· (

ρs
1000−θw)

0.917 +

(
1− ( ρs

1000−θw)
0.917 − 100·θw

)]2

Kendra et al. [40] 0.0–0.1
1 + 1.7(ρs − θw) + 0.7(ρs − θw)

2 + ∆

∆ = 0.02(100·θw)
1.015 +

0.073(100·θw)
1.31

1.0122

Lundberg and Thunehed [41] - (1 + 0.851ρs + 7.093·θw)
2

A2 Photonics [36] 0.0–0.2 1 + 1.202
( ρs

1000 − θw
)
+ 0.983

( ρs
1000 − θw

)2
+ 21.3·θw

FPGA [37] 0.0–0.2
θw =

0.271(k−kdry)
3−2.688(k−kdry)

2
+10.337(k−kdry)

100

kdry = −0.0083
(
3.44× 105 − 239.8(ρs − 100·θw)

)0.5
+ 4.893

2. Materials and Methods

During the winter of 2020 and the springs of 2020 and 2021, robust data collection
efforts were conducted as part of NASA SnowEx campaigns, designed to address the
primary gaps in snow remote sensing, which included testing various radar remote sensing
strategies. As part of these efforts, multiple snow pit observations included profiles of ρs, k,
and θw. The presented analyses are based on data from four sites (Figure 2). One site is
Grand Mesa, CO where data from 146 snow pits that include ρs and k profiles collected
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during a two-week observation period from 28 January 2020 to 12 February 2020 [42].
Further observations of ρs and k profiles were collected weekly in the Jemez Mountains,
NM from 22 January 2020 to 4 March 2020 [43]. A third and fourth site for observations
added measurements with a melt calorimeter for θw estimates in the Sandia Mountains,
NM on a weekly basis from 25 February 2020 to 28 April 2020 [44] and Cameron Pass,
CO from 9 March 2021 to 20 May 2021 [43]. For this study, Grand Mesa, CO and Jemez
Mountains, NM data were used for dry snow conditions and the other two sites focused
on data collection during wet snow conditions.
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Figure 2. Site locations for Cameron Pass, CO (CP); Grand Mesa, CO (GM); Jemez Mountains, NM (JM); and Sandia
Mountains, NM (SM) displaying (a) the relative location in the western U.S. and (b) a hillshade terrain map of Colorado
and New Mexico.

Snow pit observations for all sites measured ρs, k, and snow temperature in 10 cm
increments for the entire snowpack profile. Additionally, grain size, grain type, and manual
hand wetness estimates were collected for each identified layer in the snowpack. Two
profiles of ρs were collected using a 1000 cm3 wedge cutter and an electronic scale with
1 g precision to obtain observations in kg m−3. Observations of k were made using an
A2Photonics WISe sensor that has a well-constrained measurement volume of 325 cm3

(Figure 3a) and observations output as k with precision to three decimal places. These k
values were independently verified using ground-penetrating radar estimates of k, using a
combination of radar travel-time and manual depth measurements, for coincident snow
pits (Appendix A). This independent verification resulted in mean absolute error (MAE)
values of 0.106 in k. The error was found to be higher for wet snow conditions relative to
dry snow with MAEs of 0.217 and 0.034, respectively (Figure A1). When melt calorimeter
observations were made (described in further detail below), a ~25 g snow sample was taken
directly from the WISe sensor. Snow temperature profiles were made using a dial stem
thermometer with an accuracy of 1 ◦C. Grain size and type were made with a crystal card
and hand lens. Hand wetness observations were made in accordance with the International
Classification of Seasonal Snow on the Ground [45] that is commonly applied (e.g., [46]).

For the analyses in this study, we considered the snowpack to be dry when temper-
atures were below 0 ◦C and the hand wetness observations confirmed a “dry” estimate
throughout the profile. When comparing dry ρs to k, we used the mean ρs and mean k for
each snow pit to account for random errors that may have occurred from the natural vari-
ability of ρs and the differences in measurement volumes for each method described above;
therefore, these estimates represent averages of more than 10 independent observations of
dry ρs and k. To compare the k of wet snow to melt calorimeter estimates, we made direct
comparisons since the calorimeter samples were taken directly from the measurement
volume of the WISe sensor.
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Figure 3. Image of (a) the A2 Photonics WISe Sensor and (b) the field calorimeter and thermometer
used for this study.

The melt calorimeter is a double-walled insulated container with a 250 mL capacity
(Figure 3b). Calorimeter measurements were made using a digital scale with 1 g precision
and a thermometer with 0.01◦ precision and factory calibrated accuracy of 0.1 ◦C. Approx-
imately 60–80 g of water with a temperature of 30–40 ◦C was added to the calorimeter
and shaken to mix. The mass and temperature of the water in the calorimeter were then
recorded. A snow sample (targeting 20–30 g) was quickly taken from the WISe sensor
immediately after the k measurement and placed in the calorimeter as quickly as possible.
The calorimeter was then shaken to mix the water and sample for one minute to completely
melt the snow sample. After mixing, the total mass of the water and melted snow sam-
ple was recorded along with the final temperature. The gravimetric LWC (W) was then
calculated in a similar fashion to Kawashima et al. [27]:

W = 1− C
L

[
Mw(Tw − TF)

Ms
− TF

]
, (3)

where C is the specific heat of water (4.2 × 103 J kg−1K−1), L is the latent heat of fusion for
ice (3.34 × 105 J kg−1), Mw is the mass of the warm water prior to the snow sample being
added, Ms is the mass of the snow sample, Tw is the starting temperature of the warm
water, and TF is the final temperature of the mixture. The W values were then converted
to θw by multiplying W by the associated ρs/1000. Melt calorimeter observations were
collected in the Sandia Mountains and Cameron Pass sites, including snow pits in open and
forested conditions, after the snowpack became isothermal for a total of 92 independent
wet snow observations.

3. Results
3.1. Dry Snow Observations

Snow pit observations [42,43] during the 2020 data collection resulted in a total of 149
snow pits for measurements of dry ρs and associated k. These snow pits were from the
Grand Mesa and Jemez sites. Snow pit depths ranged from 0.5 to 1.5 m. Mean dry ρs ranged
from 210 to 360 kg m−3 and mean k measurements ranged from 1.25 to 1.55 (Figure 4a). A
regression analysis of k as a function of dry ρs resulted in an r2 value of 0.57 and a root
mean squared error (RMSE) of 0.03 with a standard deviation of 0.039 (Figure 4a). The
equation for this regression of k as a function of dry ρs is:

k = 1.0 + 0.0014ρs + 2× 10−7ρ2
s , (4)

when compared with other equations such as the commonly used Sihvola and Tiuri [31],
our in situ observations resulted in lower k values and more similar to a less commonly
applied Stein et al. [47] (Figure 4a).
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Figure 4. Results of in situ data comparisons for (a) dry snow with Sihvola and Tiuri [31] (S and T)
and Stein et al. [47] shown for comparison to our regression line; and (b) for calorimeter-based liquid
water content observations.

3.2. Wet Snow Observations

The Snow pit observations at the Sandia Mountains and Cameron Pass sites resulted
in 92 observations with LWC present and isothermal conditions (necessary for appropriate
application of Equation (3)). The values of ρs ranged from 147–498 kg m−3, observations
of θw ranged from approximately 0.01 to 0.16, and k measurements from 1.15 to 2.83. A
regression analysis of k as a function of ρs and θw resulted in a r2 value of 0.37 with a RMSE
of 0.22 and a standard deviation of 0.21. In terms of deviations from θw, this regression
resulted in an RMSE of 0.030 and a standard deviation of 0.032 (Figure 4b). This regression
equation for k as a function of ρs and θw is

k =
[
1.0 + 0.0014(ρs − 1000θw) + 2× 10−7(ρs − 1000θw)

2
]
+
(

0.01θw + 0.4θ2
w

)
kw, (5)

where kw is the relative permittivity of liquid water at 0 ◦C (~87.9) and the bracketed
portion of the equation is the background effect of dry snow permittivity, described using
Equation (4).

When compared to existing equations, Equation (5) aligns most closely with the
SLF sensor equation for observations of θw greater than ~0.07 (Figure 5). However, for
lower θw values Equation (5) aligns well with Sihvola and Tiuri [31]. For the snowpack
conditions present at our sites, many of the equations, including four data points when
our presented regression is used, resulted in a negative calculated θw that is physically
unrealistic (Figure 5). These negative values were due to the actual background k being
lower than the assumed value in the θw equation (bracketed part of Equation (5)) and the
effect of liquid water not being large enough to overcome this.
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Figure 5. Comparisons of the calorimeter observed liquid water content and the calculated liquid
water content based on the observed relative permittivity and density observations for common
equations and the regression presented in this study.

4. Discussion

To our knowledge, this is the most robust in situ testing of permittivity equations for
snow that has collected more datapoints than previous validation studies, particularly those
investigating wet snow conditions. While sensors and equations have been compared in
the past for in situ snow sampling, errors occurred as a result of differing sample volumes
(e.g., [26,46]). In fact, Denoth et al. [26] mention that data were discarded due to the high
variability during the comparison attempts. Furthermore, it is important to note that
equations may result in different estimates of ρs and θw for the same snowpack conditions
as we have shown (Figures 4 and 5). This is likely a result of differing assumptions for Ni
in Equation (2) to theoretically derive some of the equations and/or variable conditions for
laboratory tests used to empirically derive other equations.

For our dry snow tests, we showed reasonable agreement in the shape of the per-
mittivity curve as a function of ρs. However, differences occurred between our in situ
observations and previous equations (Figure 4a), particularly with one of the more com-
monly applied equations [31]. The revised equation presented here is most similar to Stein
et al. [47], that takes a simple linear form. We explored a similar linear fit, but Equation
(4) resulted in a slightly higher r2 value (0.57 for Equation (4) and 0.55 for a linear fit).
Additionally, it is important to note that our regression and data points were outside of
the uncertainty bounds recently suggested by Di Paolo et al. [39]. Our analysis shows
that different assumptions may hold more/less valid for varying snowpack conditions in
different climates, though further testing is necessary. However, the relative similarities
in ε′ between air and ice resulted in small differences between equations for dry snow
conditions, particularly when compared to differences between equations in wet snow
conditions (Figure 5). Our analysis highlights that care should be taken when applying
an equation developed under conditions that differ from conditions for a site of inter-
est. For example, for dry snow conditions common equations could underestimate snow
density by ~50 kg m−3 and the resulting SWE by 10–15% (Figure 4a) and estimates of
θw could be underestimated by 0.05–0.07 (Figure 5). Common assumptions to consider
when transferring equations from one condition to another may include factors such as
snow climate that results in differing snow crystal size, form, and/or orientation, which
influence the dielectric properties (Figure 1). It is important to note that the random ori-
entation assumption in Equation (2) may not hold true in many continental snowpack
conditions where metamorphism, and the resulting orientation, will predominantly occur
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in the direction of the temperature gradient (i.e., vertically) resulting in a more organized
crystal orientation [48], though further testing is necessary. These factors will also change
the water retention properties of the snowpack and the resulting shape of water inclusions.

The shape of snow crystals and water inclusions is a likely reason for the differences in
θw estimates between our in situ observations and previous equations. Previous equations
and assumptions have shown to hold relatively true for lower values of θw within the pen-
dular regime (i.e., liquid water is held in disconnected inclusions). However, as θw increases
towards and into the funicular regime (i.e., liquid water is held within connected pathways)
these shape assumptions break down. This is likely the result of preferential flowpaths that
water follows in multiple directions as it percolates through the snowpack [49,50]. This
is supported by our regression for wet snow conditions crossing over multiple Ni shape
curves using the Polder and Van Santeen [29] theoretical model (Figure 6). While it may be
possible to solve for Ni values that match Equation (5), it is unclear how physically repre-
sentative of crystal shape and water inclusion this would be since snow metamorphism
occurs quickly in the presence of liquid water and the shape of the water inclusion may
change drastically from the pendular to funicular regimes. Furthermore, laboratory testing
often involves sieving snow crystals to create ideal uniform conditions that do not occur in
situ. However, these laboratory tests appear to compare reasonably well in the pendular
regime with low liquid water contents (Figure 6a). With this comparison we can see that
our in situ based regression followed a similar curve shape as previous equations, but with
a shallower slope of the curve at low values of LWC. Analysis of the relative change in k
as a function of θw further supports our interpretation that the water inclusions change
shape as they become more connected throughout the snowpack with increasing θw. As
θw increases towards 0.3 and above Equation (5), it approaches the curve of a sphere for
Equation (2), though further testing is necessary for values of θw above 0.2.
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Figure 6. Comparison of relative permittivity equations based on the volumetric liquid water content of snow with a dry
density of 300 kg m−3. Equations shown are the Polder and van Santeen [29] formula for various shaped materials, Sihvola
and Tiuri [31] (S and T), and the current study (This Study). Panel (a) shows the direct comparison of equations whereas
panel (b) displays the relative change in permittivity for each equation as a function of the volumetric liquid water content.

Uncertainty and Future Work

When analyzing these θw data, it is also important to consider the uncertainty in our
melt calorimeter observations. When using Equation (3), the precision and accuracy of our
instrumentation resulted in a θw uncertainty estimate of approximately 0.017 [27]. However,
due to the added potential error from transferring the snow sample from the WISe sensor
to the calorimeter, we estimated an uncertainty of 0.02 θw. We additionally conducted
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multiple tests to determine energy losses by the calorimeter itself and found an average
temperature change of ~0.2 ◦C per minute when a temperature gradient of ~15 ◦C was
present between the warm water inside the calorimeter and the outside air temperature.
This energy loss is easily accounted for and had minimal impacts on calculations using
Equation (3). This total uncertainty is similar to other calorimeter studies (e.g., [27]) and
may be reduced in the future by using a higher precision scale and improved insulation
of the calorimeters. For the purposes of the present study, we consider this uncertainty
reasonable due to the similarity with other studies and the regression RMSE of Equation (5)
being of similar magnitude [18,24,30,31,37].

Though the r2 value for our wet snow equation (Equation (5)) was relatively low
at 0.37, it is worth noting that the uncertainty in the background k from the dry snow
equation, which has an r2 of 0.57, factors into the spread. Thus, the change in permittivity
as a result of liquid water increased the uncertainty by ~20%, whereas the dry snow
portion of the equation (bracketed term of Equation (5)) had ~45% uncertainty. A more
accurate understanding of the background permittivity could replace the bracketed term
of Equation (5) to improve applications of this equation, though this may be difficult to
acquire in the field as seasonal snowpacks often retain liquid water overnight once melt
has begun [51,52]. Further investigations are necessary to reduce this uncertainty.

Future investigations may also consider expanding the range of ρs and θw values
for analysis. In this study, over 80% of samples of dry snow ρs were between 240 and
300 kg m−3 and, similarly, over 80% of samples for θw calculations were between 0.05 and
0.15 with ρs over 300 kg m−3. Future data collection efforts could target ρs and θw values
that were outside the sampling range of the current study. Additionally, these data were
collected in continental snowpacks with snow depths less than 2.0 m and future data
collection could further our understanding of the influence from varying snow climates
and conditions to determine if different equations are necessary for differing snowpack
regimes. Additionally, we recommend that future studies include additional parameters
such as crystal structure and/or specific surface area in an attempt to reduce the uncertainty
in empirical analyses.

However, our current results show that previous equations do not account for the
changes in shape in relation to water held in snow pore spaces as increases in θw occur.
This suggests that previous studies investigating the LWC of snow may have had errors in
estimates as high as 0.1 θw depending on the choice of equation and the conditions present
for the study (Figure 5). For conditions in the pendular regime, this error is the lowest
whereas the funicular regime introduces the largest amount of error (Figures 5 and 6).
For both dry and wet snow conditions, care should be taken when applying equations
developed under different conditions. Future work that investigates the influence of
varying snowpack conditions on the dielectric properties will assist in developing methods
to utilize the forthcoming NISAR and ROSE-L satellite missions in producing accurate
global changes in SWE products using low frequency microwave InSAR.

5. Conclusions

Our robust data collection effort and analysis showed that large differences exist
between common equations and our field observations. These differences were found
for both dry and wet snow conditions, illustrating that site-specific conditions strongly
influence the corresponding empirical relations. For the snow conditions observed in this
study, continental snowpacks with depths less than 2 m and densities less than 500 kg m−3,
we recommend Equations (4) and (5). Future work that utilizes the dielectric properties of
snow should consider the snow climate when choosing an equation to apply.
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Appendix A. Validation of the A2 Photonics WISe Sensor

In order to independently validate the permittivity values observed using the A2
Photonics WISe sensor, we utilized permittivity estimates from coincident ground pene-
trating radar (GPR) surveys. A GPR pulse is an electromagnetic wave that travels through
the snowpack and is reflected off changes in material properties such as density, with the
strongest reflection often from the snow–soil interface. The GPR data were processed to
estimate the two-way traveltime (TWT) of the radar wave through the snowpack. The
velocity of the radar wave (v) was then calculated as:

v =
ds(

TWT
2

) , (A1)

where ds is the depth of snow. The relative permittivity (k) of snow can then be calculated
from:

k =
( c

v

)2
, (A2)

where c is the speed of light in a vacuum (~0.3 m/ns).
We estimated the bulk k value for snow pits using GPR TWT and observed ds that

were compared to the mean snow pit k values recorded using the A2 Photonics WISe sensor.
In total, we had coincident observations for 28 snow pits, 17 in dry snow conditions and
11 in wet snow conditions. For all data points, a mean absolute error (MAE) in k values
of 0.106 was found (0.034 for dry snow and 0.217 for wet snow; Figure A1). We attribute
the higher deviation under wet snow conditions to the high spatial variability of liquid
water in snow that is known to occur and the difference in volumes of influence between
the GPR and WISe sensor profiles.
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