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Abstract: Africa has the largest population growth rate in the world and an agricultural system
characterized by the predominance of smallholder farmers. Improving food security in Africa will
require a good understanding of farming systems yields as well as reducing yield gaps (i.e., the
difference between potential yield and actual farmer yield). To this end, crop yield gap practices
in African countries need to be understood to fill this gap while decreasing the environmental
impacts of agricultural systems. For instance, the variability of yields has been demonstrated to
be strongly controlled by soil fertilizer use, irrigation management, soil attribute, and the climate.
Consequently, the quantitative assessment and mapping information of soil attributes such as ni-
trogen (N), phosphorus (P), potassium (K), soil organic carbon (SOC), moisture content (MC), and
soil texture (i.e., clay, sand and silt contents) on the ground are essential to potentially reducing
the yield gap. However, to assess, measure, and monitor these soil yield-related parameters in
the field, there is a need for rapid, accurate, and inexpensive methods. Recent advances in remote
sensing technologies and high computational performances offer a unique opportunity to implement
cost-effective spatiotemporal methods for estimating crop yield with important levels of scalability.
However, researchers and scientists in Africa are not taking advantage of the opportunity of increas-
ingly available geospatial remote sensing technologies and data for yield studies. The objectives of
this report are to (i) conduct a review of scientific literature on the current status of African yield
gap analysis research and their variation in regard to soil properties management by using remote
sensing techniques; (ii) review and describe optimal yield practices in Africa; and (iii) identify gaps
and limitations to higher yields in African smallholder farms and propose possible improvements.
Our literature reviewed 80 publications and covered a period of 22 years (1998-2020) over many se-
lected African countries with a potential yield improvement. Our results found that (i) the number of
agriculture yield-focused remote sensing studies has gradually increased, with the largest proportion
of studies published during the last 15 years; (ii) most studies were conducted exclusively using
multispectral Landsat and Sentinel sensors; and (iii) over the past decade, hyperspectral imagery has
contributed to a better understanding of yield gap analysis compared to multispectral imagery; (iv)
soil nutrients (i.e., NPK) are not the main factor influencing the studied crop productivity in Africa,
whereas clay, SOC, and soil pH were the most examined soil properties in prior papers.

Keywords: actual yield; agriculture; data analysis; hyperspectral; multispectral; potential yield

1. Introduction

Agriculture faces the issue of satisfying growing global food demands by increasing
global food production as the world’s population grows [1]. Increasing productivity in
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existing agricultural areas appears to be a viable strategy for meeting current and future
food security challenges. This is of even greater importance in Africa, where the agricultural
system needs to feed one of the world’s highest increasing rates of population, and which
is characterized by the predominance of smallholder farmers [2,3]. Furthermore, yields in
smallholder cropland systems (i.e., farms covering an area of 1 to 2 ha [4]) are frequently
influenced by a variety of interacting and complex factors such as fertilizer application,
irrigation management, soil attribute, and climate [5], which can have a significant impact
on yield variation. Other factors such as pathogens and weeds can also negatively affect
the agricultural productivity and therefore, the yield [6]. To this end, these smallholder
agricultural systems are known to be dominant in most African countries, where yields fall
short of their potential for ensuring food security.

An important strategy for overcoming the food security challenge is bridging the
yield gap [7], especially in developing countries [8]. The yield gap is the difference (i.e.,
gap) between the actual yield currently being generated by farmers and that which can
be achieved (or potential yield) by using the best agronomy practices [7,9]. This can help
in the prediction of future crop results for various regions, as well as the identification of
factors that contribute to the gap [10]. Overall, there are three levels of yield gap in the
literature commonly referred to as yield gap level zero, yield gap level one, and yield gap
level three, as described in the methodology section. Most of the research on yield gap
analysis has been done on developed countries, whereas yield gap studies on African crops
are relatively limited. In most African countries, where agriculture data are frequently
incorrect or unavailable at acceptable resolutions (i.e., smallholder family farms), yield gap
analyses studies can be inaccurate, particularly where agricultural terrains show a high
variability and complexity in terms of croplands and soil properties. Under such conditions,
more detailed information about yield gaps is necessary to fully inform research prioriti-
zation and investment strategies in Africa countries. Conventional methods available for
assessing yield in the field are expensive, time-consuming, and require intensive sampling
to characterize spatial variability. More importantly, a geospatially explicit assessment of
exploitable gaps is required for the major African food crops.

Given the need for valuable methods to assist with identifying regions with the
greatest potential to increase food supply in Africa through yield gap minimization, remote
sensing techniques have shown to be particularly valuable in monitoring and analyzing
crop yields in recent decades, owing to their ability to process spatial data at large scales
and provide outputs that can be modeled [11]. Remote sensing has great potential for
improving our understanding of agricultural systems at different scales and analyzing
yield gaps. Recent advancements in remote sensing technologies (e.g., hyperspectral,
multispectral sensors on drones, and miniature satellites (e.g., Cubesat) have provided
a unique opportunity to observe African smallholder systems at high spatiotemporal
resolutions [12], allowing for a better assessment of crop yield gaps in those regions.
Moreover, a quantitative assessment and mapping of key soil and crop properties such as
NPK using remote sensing data turns out to be highly important in reducing yield gap [10].
In addition to NPK, other key soil and crop factors that can affect yield gap are properties
related to the soil’s reaction, air–water properties, texture, biological activities, organic
carbon, and salinity, especially in arid and semi-arid areas. Many studies have focused
almost entirely on the assessment of crops’ N uptake using remote sensing, assuming the
major effect it has on crop biomass and yield, through the identification of the sensitivity
of spectral indices [13] or the variation of spectral reflectance to its content in the crop at
specific NIR regions of the spectrum [14]. Other studies investigated similar hypotheses
with respect to P [15] and K [16]. Recent studies [17] have also worked on scaling the digital
soil mapping workflow in Africa using a combination of a legacy regional soil sampling
database and a stack of satellite imagery mosaics (i.e., Landsat, Sentinel 2). These studies
also derived remote sensing products (i.e., digital terrain model (DTM) derivatives, MODIS
climactic products) to make the predictors of a supervised ensemble machine learning (ML)
model that aims to quantify a wide variety of soil properties, including the physical (i.e.,
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SOC, soil moisture content (MC), clay, sand, and silt contents) and chemical properties (i.e.,
NPK) of Africa [18].

During the last 15 years, most yield studies on Africa were conducted exclusively
using multispectral imagery (i.e., Landsat and Sentinel), whereas over the past decade,
hyperspectral imagery has contributed to a better understanding of yield gap analysis
compared to multispectral imagery. To this end, hyperspectral imagery has allowed us to
obtain the image of a scene with several spectral bands. For instance, the Hyperspectral
Precursor of the Application Mission (PRISMA) has a large number of narrow bands
(i.e., 250 bands) that can allow a greater yield gap analysis compared to multispectral
imagery, which has fewer spectral bands [19]. In this paper, we conducted a systematic
review to assess the current status of African yield gap analysis research and their variation
depending on soil properties management using remote sensing techniques between 1998
and 2020.

2. Overview of Yield Gap Analysis Techniques
2.1. Remote Sensing

Remote sensing approaches to estimate crop yield are based on three techniques [20]:
(1) Biomass production and partitioning [21]. In Africa, to our knowledge, there

is no publication that has dealt with this first approach, but several studies have been
conducted in other non-African countries, for instance, in Mexico [22] and in the Sirsa
District of India [23]. (2) Integration of remotely sensed data and crop growth models where
crop simulation models can be coupled with satellite measurements. In Ethiopia, Beyene
et al. [24] found that integrating MODIS-LAI into WOFOST (i.e., World Food Studies; a
simulation model of crop production model [25]) was useful for estimating wheat yields.
(3) Empirical models relating to spectral vegetation indices and yield. For instance, the
Green Chlorophyll Vegetation Index (i.e., GCVI) was used in a recent study [26] to map
corn yield in smallholder farms in Kenya. Other studies employed empirical regression
models to assess wheat yield in Tunisia [27]. The authors of this study [27] found that
red-edge-based vegetation indices extracted from Sentinel 2 bands have the best correlation
with wheat yield data when compared to the widely utilized Normalized Difference
Vegetation Index (i.e., NDVI). Another study conducted in Kenya [26] found that maize
yield predictions made with the MERIS Terrestrial Chlorophyll Index (i.e., MTCI [28]),
which included the red edge band available in RapidEye and Sentinel-2, were superior to
those made with other commonly used vegetation indices such as NDVI [29], Enhanced
Vegetation Index (EVI) [30], and Wide Dynamic Range Vegetation Index (WDRVI, [31]).

2.2. Modeling

Modeling is another widely technique used for crop yield estimate. Modeling can
range from simple climate indices such as Fischer’s photothermal coefficient to intermediate
models such as AquaCrop and the more complex CERES-type models. For instance, a study
was conducted recently in Tanzania [32] that used the Agricultural Production Systems
Simulator (i.e., APSIM) model to estimate the yield gap and investigate its variations in
rice culture in the Kilombero floodplains region. Here, three yield levels were measured: (i)
current yield, (ii) yield with the most recommended management (i.e., attainable yield),
and (iii) potential yield. The authors of [32] found that adapted farm management was
able to close between 25% and 80% of the exploitable yield gap and concluded that farmers
may be unable to close the exploitable yield gap due to variables other than nitrogen
fertilizer management. In another study, Tittonel et al. [33] worked on maize culture,
predicting maize yields from soil chemical indices using a computer model named the
Quantitative Evaluation of the Fertility of Tropical Soils (i.e., QUEFTS). The QUEFTS
model is a simple and reliable method that requires little data and was used to assess
fertilizer requirements in the tropics [34,35]. The QUEFTS has been calibrated to estimate
tropical maize fertilizer requirements and grain output in Kenya [36]. There was no
significant correlation between farmers’ actual yields and the QUEFTS predictions in the
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study, indicating that soil nutrients were not the main factor influencing maize yields in
the research area. Other yield-reducing factors (i.e., climate and management) that were
not taken into consideration by the QUEFTS model could have played a significant role.

2.3. Boundary Functions

Boundary function is another technique that can be used to estimate crop yield.
It was first introduced by Webb [37] to evaluate this limiting effect in biophysical systems.
The boundary function is based on actual yield comparisons, rather than a single yield
benchmark. The attainable yield is stated as a function of one or a few environmental
factors, such as actual evapotranspiration. Crop yields can be limited by one or more
factors (e.g., water and fertilizer availability) which can be responsible for creating the
yield gap. Webb [37] proposed that the boundary indicated the achene number’s limiting
effect on strawberry weight, and that the measurements lying below the boundary were
limited by other factors, such as a water deficit. Since then, the boundary line has become a
widely used model for restricting reactions in biological data, with various applications
in Africa. Fermont et al. [38] benchmarked cassava production in Uganda and western
Kenya in 2009 and found that the discrepancy between actual and attainable yield was
due to management and environmental factors. The impact of abiotic, biotic, and related
crop management restrictions for cassava production in smallholder farms in the region
was assessed using boundary line analysis. When fertilizer was applied, no functional
correlations (i.e., boundary lines) could be deduced; however, boundary lines could be
recognized under unfertilized circumstances that indicated increased yields with increasing
SOC, accessible P, and exchangeable K.

2.4. Studies Combining Remote Sensing-Based Soil Properties Mapping and Advanced Modeling
Approaches for Yield Gap Estimation

Accurate and detailed spatial soil information is essential for conducting yield gap
analysis. In Africa, where land degradation and a loss in soil fertility have been reported
by numerous studies [39,40], such spatial remote sensing-based information is increasingly
required by farmers in order to improve land management and thereby reducing yield
gap. To this end, many remote sensing-based mapping and advanced machine learning
modeling approaches (i.e., multiple linear regression (MLR), random forest regression
(RFR) [41] and support vector machine (SVM) [42]) have been used for yield gap estimation.

3. Methodology

In this study we conducted a systematic review, which entails creating a synthesis
of the findings of existing original studies. To do so, the Scopus database was used to
conduct an online bibliographic search. Papers published between 1998 and 2020 were
screened. This 22-year period was used to better understand the evolution of studies with
the contribution of remote sensing datasets in characterizing soil properties, as well as the
effect of the variation of these soil attributes on yield gap.

The following query strings were used in order to do the search:

i. (TITLE-ABS-KEY (“yield gap”) AND TITLE-ABS-KEY (country) AND TITLE-AB
S-KEY (yield OR field OR scale OR production OR approach)).

ii. (TITLE-ABS-KEY (“yield gap”) AND TITLE-ABS-KEY (“soil properties” OR “soil
attributes” OR calcium OR potassium OR ph OR clay OR silt OR sand OR “soil
organic carbon” OR “ soil texture” OR nutrient* OR cec) AND TITLE-ABS-KEY (yield
OR field OR scale OR production OR approach) AND TITLE-ABS-KEY (Ghana));

iii. (TITLE-ABS-KEY (landsat) AND TITLE-ABS-KEY (Morocco OR Senegal OR Tunisia
OR “Cote d’Ivoire” OR Kenya OR “South Africa” OR Ethiopia OR Cameroon OR
“Burkina Faso” OR Rwanda OR Ghana OR Tanzania) AND TITLE (“soil properties”
OR “soil attributes” OR calcium OR potassium OR ph OR clay OR silt OR sand OR
“soil organic carbon” OR “ soil texture” OR nutrient* OR cec OR production OR
yield) AND NOT TITLE-ABS-KEY (erosion) AND NOT TITLE-ABS-KEY (alteration)
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AND NOT TITLE-ABS-KEY (moisture) AND NOT TITLE-ABS-KEY (degradation)
AND NOT TITLE-ABS-KEY (dune*)).

The first search key was used to find all the documents that relate to yield gap in each
selected African country ([i.e., TITLE-ABS-KEY (country)]). To refine our search, we added
another box that presents other keywords such as field, scale, and production. The second
search key aimed to identify papers that link the yield gap with soil attributes and help
us to better understand how variation in these soil attributes can affect production and
therefore the yield gap. The third search key was remote sensing included in the study to
find the primary craft used for the assessment.

The chosen research was based on the following set of search criteria: (i) they had
to be relevant to the topic of the synthetic review; (ii) the papers had to be published in
peer-reviewed publications; (iii) the papers had to be published during the selected time
period (i.e., 1998–2020) We discarded a large number of studies that did not suit the field of
study, as well as remote sensing publications that did not directly address quantifying and
mapping yield and soil properties. For the purpose of this study, 15 African countries were
selected (Figure 1). These countries included Morocco, Senegal, Tunisia, Ivory Coast, Kenya,
South Africa, Ethiopia, Cameroon, Burkina Faso, Tanzania, Rwanda, and Ghana. These
African countries (Table 1) were chosen because of the availability of studies specifically
designed to answer the study objectives and their potential agricultural yield improvement.
To verify the Scopus search and see whether any relevant publications were missing, we
used the following word combinations in Google Scholar and ScienceDirect: “yield gap,”
“soil attributes,” and “remote sensing.”

Figure 1. Map showing the 13 African countries investigated (dark grey color) in this study.



Remote Sens. 2021, 13, 4602 6 of 19

Table 1. The table shows the climate of 13 African countries, along with the main crop, average yield, and the percentage of
agricultural land related to the country’s total area.

Country Climate * Main Climate
Classification Code ‡ Main Crop ** Average Yield

(t/ha) Agricultural Land % †

Morocco Temperate, Arid,
Cold Csa, BWh, BSh, BWk, Dsb Bread wheat 2.3 67

Senegal Arid, Tropical BWh, BSh, Aw Groundnuts 0.8 23
Tunisia Temperate, Arid Csa, BSk, BSh, BWh Durum wheat 3.9 38

Ivory Coast Tropical AW Yams 6 20.5

South Africa Arid, Temperate BSh, BSk, BWh, BWk,
Cwb Maize 2.5 79

Ethiopia Arid, Tropical BWh, BSh, Aw Maize 4 34
Kenya Arid, Tropical BWh, BSh, Aw Maize 2 8

Burkina Faso Arid, Tropical BWh, BSh, Aw Sorghum 1 16
Tanzania Arid, Tropical BSh, Aw Maize 1.6 39

Ghana Tropical Aw Cassava 19 62
Rwanda Tropical, Arid Aw, BSk Cassava 20 69

Cameroon Arid, Tropical BWh, BSh, Aw, Am Cassava 15 21

* According to the classification in Beck et al. [43]. † Agricultural land % in 2018 according to the world bank. ** Crop scientific
names: Bread wheat = Triticum aestivum L.; Groundnuts: Arachis hypogaea; Durum wheat = Triticum turgidum L. subsp. Durum (Desf.);
Yams = Amorphophallus paeoniifolius; Maize = Zea mays L.; Sorghum = Sorghum bicolor; Cassava = Manihot esculenta. ‡ After Köppen–Geiger’s
classification presented in Beck et al.’s Table 2 [43].

It is important to note that our literature review was based on the definition of yield
gap indicated earlier in the introduction section and which is summarized in Figure 2.
Overall, there are three degrees of yield gap in the literature: Yield Gap 0 (Yg0), Yield
Gap 1 (Yg1), and Yield Gap 2 (Yg2) [10,44], as indicated and described in the methodology.
To understand each level of yield gap, we had to first define the different variables involved
in the definition of these concepts: (i) potential yield (Yp) is the yield of an adapted crop
variety or hybrid when grown under favorable conditions without growth limitations
from water and nutrients. The main factors that can impact factors are Yp, available CO2,
radiation, temperature, and cultivar features; (ii) we refer to potential yield under rain-fed
conditions as water-limited yield potential (Yw); and (iii) attainable yield (Yatt) is limited by
water and nutrients; and unlike the potential yield, it can be influenced by soil conditions
such as texture and topography; and (iv) actual yield (Ya), which refers to the yield that
can be achieved by the farmer under specific management conditions, taking into account
the climate and the sustainable use of water.

Figure 2. Different production levels yield gap as determined by growth defining, limiting, and
reducing factors.
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4. Results

In this study, we used 102 papers that highlighted the importance of estimating and
analyzing the yield gap as well as the importance of remote sensing as a central technique
in monitoring and evaluating crop yields. The number of publications as a function of the
date of their publication and countries are shown in Figure 3 and Tables 2 and 3.

Figure 3. Stacked bar charts show the number of annual publications between 1998 and 2020
in Africa in the Scopus database that have: (A) “Yield gap” in their title, abstract, or keywords;
(B) “Yield gap” and “at least one soil property” in their title, abstract, or keywords. (C) The primary
platform or sensors used for the yield gap assessment.
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Table 2. Summary of papers used in the study for each of the 13 selected countries, sorted by publication year.

Country Studied Crops Publication Year Publication Topic Reference

Burkina Faso Sorghum 1999 Effects of soil surface crust on the
grain yield of Sorghum in the Sahel [45]

Ivory Coast Rice 2001
Cropping intensity effects on upland
rice yield and sustainability in West

Africa
[46]

Senegal Rice 2003 Determinants of irrigated rice yield in
the Senegal River valley [47]

Ethiopia Multiple Crops (MC) 2005
Effects of different methods of land

preparation on runoff, soil and
nutrient losses

[48]

Senegal MC 2006
Evaluation of satellitebased primary

production modelling in the semi-arid
Sahel

[49]

Rwanda MC 2006
Environmental assessment tools for

multi-scale land resources information
systems: A case study of Rwanda

[50]

Kenya Maize 2008

Yield gaps, nutrient use efficiencies
and response to fertilizers by maize
across heterogeneous smallholder

farms of western Kenya

[33]

Kenya Cassava 2009
Closing the cassava yield gap: An
analysis from smallholder farms in

East Africa
[38]

Kenya Banana 2011
Production gradients in smallholder

banana (cv. Giant Cavendish) farms in
Central Kenya

[51]

Morocco Cereal 2012

Representing major soil variability at
regional scale by constrained Latin

Hypercube Sampling of remote
sensing data

[52]

Senegal Vegetables 2012

Sensitivity analysis of the GEMS soil
organic carbon model to land cover
land use classification uncertainties
under different climate scenarios in

Senegal

[53]

Sub-Saharan
Africa MC 2012

Determinants of yield differences in
small-scale food crop farming systems

in Cameroon
[54]

Kenya Maize 2013
Maize productivity and nutrient use

efficiency in Western Kenya as affected
by soil type and crop management

[55]

Kenya Sugarcane 2013
Forecasting regional sugarcane yield

based on time integral and spatial
aggregation of MODIS NDVI

[56]

Rwanda Maize 2014
Resource use and food self-sufficiency

at farm scale within two
agro-ecological zones of Rwanda

[57]

Cameroon MC 2014 Crop yield gaps in Cameroon [58]

Cameroon MC 2014
Explaining low yields and low food
production in Cameroon: A farmers’

perspective
[59]
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Table 2. Cont.

Country Studied Crops Publication Year Publication Topic Reference

Ethiopia Cereal 2015

Evaluating a satellite-based seasonal
evapotranspiration product and

identifying its relationship with other
satellite-derived products and crop

yield: A case study for Ethiopia

[60]

Tanzania Maize 2015

Agronomic survey to assess crop yield,
controlling factors and management

implications: a case-study of Babati in
northern Tanzania

[61]

Tanzania Maize 2015
Modeling potential rain-fed maize
productivity and yield gaps in the
Wami River sub-basin, Tanzania

[62]

Burkina Faso Wheat 2016
Soil variability and crop yield gaps in

two village landscapes of Burkina
Faso

[63]

Sub-Saharan
Africa MC 2016

Closing system-wide yield gaps to
increase food production and mitigate

GHGs among mixed crop-livestock
smallholders in Sub-Saharan Africa

[64]

South Africa Potato 2016

Resource use efficiencies as indicators
of ecological sustainability in potato

production: A South African case
study

[65]

Ethiopia Cereal 2016
Yield gaps and resource use across

farming zones in the central rift valley
of Ethiopia

[66]

Southa Africa Wheat 2017 Soil fertility constraints and yield gaps
of irrigation wheat in South Africa [67]

Kenya Maize 2017

Occurrence of poorly responsive soils
in western Kenya and associated

nutrient imbalances in maize (Zea
mays L.)

[68]

South Africa Wheat 2017
Forecasting winter wheat yields using

MODIS NDVI data for the Central
Free State region

[69]

Tanzania Rice 2017
Importance of basic cultivation

techniques to increase irrigated rice
yields in Tanzania

[70]

Tanzania Maize 2017
Disentangling agronomic and

economic yield gaps: An integrated
framework and application

[71]

Tanzania Rice 2018

Increasing paddy yields and
improving farm management: results
from participatory experiments with
good agricultural practices (GAP) in

Tanzania

[72]

Burkina Faso MC 2018

The economic potential of residue
management and fertilizer use to

address climate change impacts on
mixed smallholder farmers in Burkina

Faso

[73]
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Table 2. Cont.

Country Studied Crops Publication Year Publication Topic Reference

West Africa MC 2018 Assessing cropland area in West
Africa for agricultural yield analysis [74]

East Africa Legume 2018 Prospect for increasing grain legume
crop production in East Africa [75]

East Africa Maize 2019
Soil data importance in guiding maize

intensification and yield gap
estimations in East Africa

[76]

Rwanda Wheat 2019

How to increase the productivity and
profitability of smallholder rainfed

wheat in the Eastern African
highlands? Northern Rwanda as a

case study

[77]

Tunisia Wheat 2019

How far can the uncertainty on a
Digital Soil Map be known? A

numerical experiment using pseudo
values of clay content obtained from

Vis-SWIR hyperspectral imagery

[78]

Tanzania Maize 2019

Is There Such a Thing as Sustainable
Agricultural Intensification in
Smallholder-Based Farming in

Sub-Saharan Africa? Understanding
yield differences in relation to gender

in Malawi, Tanzania and Zambia

[79]

Rwanda Maize 2020 Determining and managing maize
yield gaps in Rwanda [80]

Ghana Cocoa 2020

Variations in yield gaps of smallholder
cocoa systems and the main

determining factors along a climate
gradient in Ghana

[81]

Tanzania Rice 2020
Rice yield gaps in smallholder systems

of the kilombero floodplain in
Tanzania

[32]

Tanzania Maize 2020
Unlocking maize crop productivity

through improved management
practices in northern Tanzania

[82]

Morocco Wheat 2020

Explaining yield and gross margin
gaps for sustainable intensification of

the wheat-based systems in a
Mediterranean climate

[83]

Kenya Maize 2020
Soil and management-related factors
contributing to maize yield gaps in

western Kenya
[84]

South Africa Potato 2020
Exploring Variability in Resource Use

Efficiencies Among Smallholder
Potato Growers in South Africa

[85]

Sub-Saharan
Africa Rice 2020

Decomposing rice yield gaps into
efficiency, resource and technology
yield gaps in sub-Saharan Africa

[86]

E and S Africa Rice 2020 Quantifying rice yield gaps and their
causes in Eastern and Southern Africa [87]

MC: multiple crops refers to two or more crops among the following: i.e., potato, cassava, maize; sweet potato, bean, soybean, rice,
groundnut, sorghum, cowpea, millet, banana, Colocasia, pea, tef, lentil, and chickpea.
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As shown in Figure 3A, Kenya had the largest number of yield gap studies published
between 1998 and 2020, with 27 papers, followed by Cote d’Ivoire with a total of 21 papers,
and then by Burkina Faso and Ghana, both with 10 publications each. Tunisia had the
lowest number of publications, with only 2 in 2017 and 2020. Overall, there has been a
significant increase in the number of papers in the last five years (i.e., 2016 to 2020), with a
total of 62 papers compared to a total of 80 items in a period of 22 years. Figure 3B shows
that the number of papers decreased from 80 to 30 during the same period. This decrease
can be explained by narrowing the topic of study, as we have focused our research on the
physical and chemical properties of soil, which are considered as key determinants in yield
variation. The number of published papers did not remain constant through time, with a
considerable increase in 2020 (i.e., 10 papers published).

In terms of remote sensing imagery, (i) MODIS was the first sensor used for yield gap
(Figure 3C), although it has a limited spatial resolution (i.e., 250 m); and (ii) about 55% of
the conducted research studies during the last 22-year period used multispectral Landsat
and Sentinel datasets (Figure 3C). However, only few studies used hyperspectral, LiDAR,
and RADAR sensors between 2015 and 2020. These multispectral and hyperspectral studies
made it possible to estimate yield of crops in the African continent using remote sensing.
The main investigated crops using remote sensing datasets were corn and wheat. Other
studies aimed to estimate the physicochemical properties of soil affecting yield such SOC
and clay, which are the most studied soil attributes in Africa. To our knowledge, no papers
were published between 1998 and 2005, and the first studies were published in 2006.

In term of the crops investigated with regard to yield gap (Table 2), maize was the
most studied crop, with five publications, followed by other crops, such as banana and
cassava, with one paper each (Figure 4). Overall, between 1998 and 2020, cereals were the
most important crop investigated on a continental scale, with maize as the most important
crop, followed by wheat and rice (Figure 4). The remaining cultures were researched in
relation to the major culture of each country: i.e., cocoa in Ivory Coast, cassava in Kenya,
and palm oil in Ghana.

Figure 4. Histogram showing the number of publications in Africa between 1998 and 2020 with
regards to the used crops with yield gap.

In terms of remote sensing-based soil properties, our review found that the most
used mapping and advanced modeling approaches for yield gap estimation in African
literature are MLR, RFR, SVM [42], imagery classifications techniques (i.e., supervised and
unsupervised), as well as other ML and MLR (Table 3). For instance, Forkuor et al. [42]
used high and moderate spatial resolution multi-temporal imagery (i.e., RapidEye and
Landsat, respectively) to map the spatial distribution of soil properties (i.e., texture, cation
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ex-change capacity, SOC, and nitrogen) using different statistical prediction models (i.e.,
MLR, RFR, SVM, stochastic gradient boosting (SGB)). On the other hand, the application
of other advanced methods, such as deep learning (DL), that has drawn attention within
the developed remote sensing community over the past few years, is still non-existent,
to our knowledge, in yield studies in Africa. For instance, the supervised convolutional
neural network, recurrent neural network, unsupervised Auto-Encoders (AE), deep belief
network, and generative adversarial network are state-of-the-art DL methods and can be
applied for remote sensing imagery yield assessment. However, we think that the large
training dataset requirement makes the application of these methods in African studies
less advantageous. Compared to conventional shallow structured ML tools, such as neural
networks, SVM, and ensemble modelling methods, e.g., RF +LSR+SVP, which have been
successfully used in the remote sensing analysis for soil properties characterization in
recent years (i.e., [88]).

Table 3. Summary of papers related to remote sensing used in the study, sorted by publication year.

Publication
Year

Study
Area/Country

Remote Sensing
(RS) Data

Study Crop/Soil
Properties

RS Data Analysis
Techniques Reference

2012 Senegal Landsat SOC Unsupervised
Classification (USC) [53]

2013 Tunisia Hyperspectral
imagery Soil properties

Supervised
Classification (SC),

Random Forest (RF)
[89]

2015

Morocco,
Madagascar,

Burkina Faso, and
South Africa

Landsat Crops
SVM Decision trees (DT)
Gradient boosted trees

(GBT), RF
[90]

2016 Cameroon Sentinel Maize Principal component
analysis (PCA) [91]

2017 Kenya Sentinel Maize Simple linear regression
model [26]

2017 Burkina Faso Landsat
Soil texture, cation
exchange capacity
(CEC), SOC, and N

MLR, RF, SVM [42]

2018 Ghana Landsat Sugarcane USC [92]

2018 Cameroon Sentinel Soil properties Redundancy analysis
(RDA) [40]

2019 Kenya Landsat Wheat and maize Multivariate Decision
Tree (MDT) [93]

2019 Kenya Landsat Maize Neighborhood’s
function [94]

2019 Morocco MODIS Wheat Stepwise regression
approach [95]

2019 Tunisia ASTER
multispectral data Soil clay content MLR [96]

2020 South
Africa Landsat SOC RF [97]

2020 Burkina Faso Sentinel Tomato, Onion,
Green bean RF [98]

2020 Tunisia Sentinel Durum wheat Maximum likelihood
method [27]

5. Discussion

This study has dealt with an important topic of reviewing the current state of research
regarding analysis of yield gap in Africa as caused mainly by soil attributes and using
remote sensing approaches. It is potentially very important for designation of future
agricultural research in Africa. Our analysis showed that soil attributes can substantially
affect yield variability, and that the need for monitoring and tracking these attributes
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using remote sensing data are essential for reducing yield gap. For instance, the use of
remote sensing was found to be important for the quantification aspects of yield and soil
physicochemical properties. Before 1998, the use of remote sensing for yield gap analysis
was very limited in Africa; it wasn’t until the last two decades that multispectral and
hyperspectral satellites took over for yield gap assessment. These trends are consistent
with a study by Zhu et al. [99], which found the number of publications started to increase
after 1999, when the price of Landsat imagery was reduced from approximately USD 3000
to 600.

Even if the number of publications in recent years has increased, remote sensing
studies on yield gap analysis over Africa remains very limited, despite the increased use of
freely available and open-access remote sensing imagery [99], i.e., Landsat and Sentinel,
compared to other continents. Indeed, Figure 5 shows that the number of publications that
used Landsat imagery between 1998 and 2020 was estimated to be 137 in selected Asian
countries (i.e., China, India, Indonesia, Iran, Vietnam, Thailand, Philippine, Bangladesh,
Myanmar), whereas in the 13 selected African countries, the number of publications does
not exceed 46 papers.

Figure 5. Number of annual publications in the selected Africa and Asian countries from 1998 to
2020 found in the Scopus database with the “Landsat” keyword in their title, abstract, or keywords.

With the recent advances made in the Earth Observation (EO) field, there has been a
growing demand for remote sensing data and imagery for agriculture and soil. The use of
remote sensing information collected by available sensors on satellite and/or platforms
has acquired a very important role across the world in yield estimation, and thereby yield
gap analysis. This has been greatly promoted by past and current remote sensing EO
instruments, which are able to capture data with higher spatial and spectral resolutions,
thus, allowing for the acquisition of a large variety of remotely sensed data and images,
such optical, thermal multispectral hyperspectral images, LiDAR, and radar data with
medium, high, and very high spatial resolutions. Every day, these EO instruments generate
huge amounts of data all over the world and capture a large quantity of images and other
remote sensing products. These large amounts of EO data are expected to provide enhanced
opportunities to the African scientific community for undertaking EO studies through the
use of satellite and other ancillary data. However, researchers and scientists in developed
countries are those who are benefiting from the opportunity of the availability of EO data
compared to developing countries, particularly in the African continent. Some reasons for
the low number of these studies might be explained by several constraints on the uptake
and access of EO sensor data in different African countries [100]. These constraints may
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include insufficient capacity and infrastructure to store and process huge remote sensing
datasets (e.g., at petabyte-scale), poor Internet connectivity and bandwidth to access
remotely sensed data platforms (i.e., USGS Landsat data), and a limited number of highly
trained qualified individuals in remote sensing. Another constraint for most of the African
countries is the lack of computing power, infrastructure, and cloud computing that facilitate
access to the powerful processing facilities of the Google Earth Engine platform [101].
Such central facilities can process large volumes of geospatial and remotely sensed data.
while allowing users to bring algorithms to the large data sets, which minimizes the
duplication of storage and processing efforts [101]. For all these reasons, African researchers
in the poorest African nations do not have the same opportunities to conduct a high number
of yield gap analysis studies as those in more advanced nations. This might also explain
why most of the papers reviewed in this study showed that yield gap analysis was mostly
performed either by boundary function or by using yield simulation models such as
AQUACROP and APSIM.

Besides the free and open multispectral sensors (i.e., Landsat and Sentinnel 2), to our
knowledge, papers that used commercial and/or high resolutions sensors (i.e., Quickbird,
WorldView, Ikonos, RapidEye) for yield analysis purposes in Africa are very rare compared
to developed countries. This absence of studies can be explained by the expensive cost of
imagery and access to the specialized software needed and the skills to processes this data,
and storage capacity. It is expected that in the coming decade, African scientists will take
advantage of the recent advancements in drone multi-sensor remote sensing derived data
(e.g., hyperspectral, multispectral, and miniature satellites, such as Cubesat), and thereby
produce a high number of publications. For instance, a recent study by Wahab et al. [102]
assessed crop yield gaps in Sub-Saharan African smallholder systems using UAV data with
an unprecedented spatiotemporal resolutions.

Finally, this review has found that soil nutrients (i.e., NPK) are not the main factor
influencing the studied crop productivity in Africa, whereas clay, SOC, and soil pH were the
most examined soil properties in prior papers [53,96]. Additional papers that investigated
other soil attributes are scarce or non-existent. However, we believe that the absence of
high-resolution remote sensing-derived digital soil maps (i.e., fertility maps) can partially
explain the misuse of soil properties by African researchers for yield gap analysis studies.

6. Conclusions

In this paper, we conducted a systematic review to assess the status of African yield
gap analysis research and their variation depending on soil properties management using
remote sensing technics between 1998 and 2020. To do so, we first selected 12 African
countries with potential agricultural yield improvement. These countries were Morocco,
Senegal, Tunisia, Ivory Coast, Kenya, South Africa, Ethiopia, Cameroon, Burkina Faso,
Tanzania, Rwanda, and Ghana. We then discussed the question of how remote sensing
studies can help in monitoring soil properties and thus yield gap reduction. At the same
time, we categorized past studies to assess how researchers approached assessments of
fertilizer, water, and physical and chemical properties of soil. We concluded by providing a
set of recommendations to guide future yield gap analysis research.

According to our review, the number of remote sensing studies dealing with yield crop
gap has steadily increased over the last two decades, peaking in 2019. The multispectral
MODIS and Landsat satellite series dominated early studies. The arrival of additional EO
(i.e., Sentinel) and onboard-drone sensors will allow studies to develop more detailed yield
estimation and explain factors. However, remote sensing-based soil attribute management
in Africa is still underrepresented, and future research should focus on establishing the
feasibility of assessing these soil properties as proxy to crop yield. To cope with this
scarcity of information and take full advantage of the available remote sensing EO data,
the African scientific community will need to participate in the development of an EO
African platform which is designed to store and process huge datasets (at petabyte-scale)
that covers African countries for analysis and ultimate decision making. In this context,
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UM6P and the Massachusetts Institute of Technology (MIT) have enabled a new research
initiative to help African countries to have such opportunities, which will allow them to
take advantage of the EO remote sensing and geospatial tools necessary to process large
data sets for African yield applications. We also believe that this project outcome will help
promote development applications of deep learning approaches for a variety of remote
sensing problems related to yield.
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