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Abstract: Urban green spaces have many vital ecosystem services such as air cleaning, noise reduc-
tion, and carbon sequestration. Amid these great benefits from urban green spaces, the cooling effects
via shading and evapotranspiration can mitigate the urban heat island effect. The impact of urban
green spaces (UGSs) on the urban thermal environment in Beijing was quantified as a case study
of metacities using four metrics: Land surface temperature (LST), cooling intensity, cooling extent,
and cooling lapse. Three hundred and sixteen urban green spaces were extracted within the 4th ring
road of Beijing from SPOT 6 satellite imagery and retrieved LST from Landsat 8 remote sensing data.
The results showed that the cooling intensity of green spaces was generally more prominent in the
areas with denser human activities and higher LST in this metacity. Vegetation density is always the
dominant driver for the cooling effect indicated by all of the metrics. Furthermore, the results showed
that those dispersive green spaces smaller than 9 ha, which are closely linked to the health and
well-being of citizens, can possess about 6 ◦C of cooling effect variability, suggesting a great potential
of managing the layout of small UGSs. In addition, the water nearby could be introduced to couple
with the green and blue space for the promotion of cooling and enhancement of thermal comfort
for tourists and residents. As the severe urban heating threatens human health and well-being in
metacities, our findings may provide solutions for the mitigation of both the urban heat island and
global climate warming of the UGS area customized cooling service.

Keywords: urban greening; urban thermal environment; mitigation strategies; land surface tempera-
ture; landscape configuration

1. Introduction

Urban green spaces (UGSs) provide various environmental, ecological, and social
benefits to urban communities [1] such as beautifying landscape, freshening air [2], improv-
ing urban climate [3], mitigating urban carbon emissions [4], harboring biodiversity [5],
boosting social and cultural cohesion [6], etc. Amid these great benefits from UGSs, the
cooling effects have received increasing attention in an increasingly warming urban envi-
ronment, especially in cities with highly-dense residents [7–9]. Metacities (with more than
20 million inhabitants) are notable for their size and concentration of economic activity,
and consequent enormous challenges [10]. To support the mass residents, metacities have
consumed a huge amount of materials and energy consumption and created compound
environmental and social problems, such as the strong urban heat island phenomenon and
health risks from extreme heat events [11]. It is urgent to find efficient UGSs solutions to
urban heat mitigation, heat exposure reduction, and sustainable development of metacities.

Known as cooling islands in urban settings, the UGSs cool urban temperature via
shading and evapotranspiration [12]. The cooling effect of UGSs on air temperature
has been proven by field measurements [13–16]. In addition, remote sensing data have
confirmed the existence of the cooling effect on land surface temperature (LST) on a larger
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scale [17–19]. Air temperature sites are often limited to their number and spatial range of
measurement, whereas remote sensing techniques provide a large spatial coverage, and
thus, are widely employed. Many cooling indicators have been developed to quantify
the cooling effect of UGSs, including the LST difference with the surroundings, cooling
intensity [20], cooling extent [21], cooling efficiency [22], cooling lapse [21], etc. Of note,
different cooling indicators can draw very different conclusions. Moreover, previous
studies show that the disparities of UGSs’ cooling effect are related to both the internal and
external factors. The UGSs’ area and shape complexity have been suggested as important
factors of the cooling effect [23–25]. Meanwhile, landscape composition and configuration
inside and outside UGSs are considered as crucial factors [26]. However, few studies
focused on the analysis of UGSs’ cooling effect in metacities. In addition, most of the
previous studies selected a very limited number of UGSs. For example, Peng et al. [22] only
selected 24 UGSs to quantify the cooling effect of urban parks in Shenzhen, China, that host
less residents than metacities. It is critical to find practical strategies for the maximization
of UGSs’ cooling service in metacities with severe heating urban climate.

Beijing, China’s capital, is home to 21.5 million urban dwellers (permanent population)
in 2019 [27]. With a dense population and prosperous economic activities, Beijing is
facing a severe urban heating problem [28]. It is an urgent need for us to seek vivid
UGS examples with the best cooling performance and background driving mechanism
in Beijing. Therefore, this paper aims: (1) To quantify the cooling effect of UGSs using
various indicators in Beijing; (2) identify the driving factors of UGSs’ cooling effect; and
(3) maximize the cooling performance of UGSs for urban heating mitigation. This paper
would be helpful for the urban planning practice.

2. Materials and Methods

This study consists of several steps, which are shown in a flow chart (Figure 1). The
details of the materials and methods are illustrated in the following sections.
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2.1. Study Area

The study area (39◦50′–39◦59′ N, 116◦16′–116◦29′ E) is located at the core urbanized
area of China’s capital—Beijing, encircling 304.7 km2. It is delineated by the 4th ring



Remote Sens. 2021, 13, 4601 3 of 16

road (Figure 2a), facing metacities’ “diseases” such as traffic congestion, air pollution, and
extreme heat events. The study area is flat with elevation <70 m, dominated by a temperate
continental monsoon climate, with 542.7 mm mean annual precipitation (MAP) and 13.1 ◦C
mean annual temperature (MAT). The land cover classification process was conducted based
on a cloud-free SPOT 6 image (Product ID: L1_SPOT6_20141015_00000332_074_58_2118),
which was acquired at 10:47 a.m. (local time) on 15 October 2014. With a fine spatial resolu-
tion of 6 m and a near infrared band that can help recognize vegetation, SPOT 6 images
are therefore an ideal choice for urban land cover classification. Radiometric calibration
and geometric correction were conducted before land classification. The land cover of the
study area was classified into four categories: Impervious surface, vegetation, water body,
and bare soil, under an object-based interpretation method via the eCognition Developer
8.7. The impervious surface consisted of urban land surface made by impervious materials,
including buildings, roads, and other construction land. Vegetation represented urban
vegetation with its canopy covering the land, such as trees, shrub, and grass, including
vegetation in parks, between buildings or upon roads. Water body included rivers and
lakes inside the study area. Bare soil was defined as unconstructed land with a bare soil,
without vegetation covering. The land cover classification process was object-based with
the help of the normalized difference vegetation index (NDVI):

NDVI =
NIR− R
NIR + R

(1)

where NIR and R refer to the surface reflectance of near infrared and red bands. The scale
factor of segmentation was set to 15 and a threshold of 0.3 in NDVI was applied to extract
vegetation. A careful manual visual interpretation was conducted after the preliminary
object-based segmentation and classification on the image, in order to guarantee the
accuracy. One hundred and fifty random points were created and used for land cover
validation, with Google Earth images in the nearby time period as a reference. The Kappa
coefficient of the classification is 0.816, suggesting a good classification quality. The study
area is covered by 205.2 km2 (67.4%) of impervious surface, 94.5 km2 (31.0%) of vegetation,
4.7 km2 (1.5%) of water body, and 0.3 km2 (0.1%) of bare soil, indicating the potential role
of UGSs in mitigating urban heat (Figure 2c).

UGSs in this study are defined as vegetation patches (adjacent vegetated pixels) greater
than 5.0 ha [29]. In total, 316 UGSs were extracted in the study area (Figure 2b), which
averaged at 15.4 ha, maximized at 228.1 ha, and minimized at 5.0 ha. Among these UGSs,
50 green spaces were located within the 2nd ring road, 107 green spaces were distributed
between the 2nd and 3rd ring road, and 159 green spaces between the 3rd and 4th ring road.
Although there is no significant difference for the UGSs area among the different rings, the
UGSs within the 2nd ring are the largest averaged area among the three rings and the largest
UGS, which is the Temple of Heaven located within the 2nd ring. These 316 UGSs were
qualitatively distinguished by compositions into three categories: 287 tree-based UGSs,
three shrub/grass-based UGSs, and 26 tree/grass/shrub mixture-based UGSs through
visual interpretation, using Google Earth images for further analysis.
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Figure 2. (a) Location of the study area depicted by the 4th ring road of Beijing, (b) green spaces’ distribution, and (c) the
land cover. The ring road from inner to outside is the 2nd, 3rd, and 4th ring road.

2.2. Quantification of UGSs’ Cooling Effect

UGSs’ cooling effect was quantified based on LST at 10:53 a.m. local time on 19 August
2014, retrieved from the Landsat 8 Operational Land Imager (OLI) and Thermal InfraRed
Sensor (TIRS) Level-1 datasets (https://earthexplorer.usgs.gov/ accessed on 11 November
2021, Path 123, Row 32, Product ID: LC08_L1TP_123032_20140819_20170420_01_T1, with
2.5% cloud cover for the tile and zero cloud cover for study area). On this day, the
maximum air temperature was 32.4 ◦C, the minimum air temperature was 21.3 ◦C, the
mean air temperature was 26.6 ◦C, the average humidity degree was 62%, the rainfall
was 0 mm, and the maximum wind speed was 4.4 m/s, suggesting that the breeze had
little impact on the spatial distribution of LST (climate station ID-54511, 39◦48′, 116◦28′,
Beijing, http://data.cma.cn/ accessed on 11 November 2021). Landsat 8 OLI bands are
with a 30 m spatial resolution and the two TIRS thermal infrared bands are with a 100 m
spatial resolution, which were resampled to match the resolution of OLI bands before the

https://earthexplorer.usgs.gov/
http://data.cma.cn/
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release of Landsat Level-1 data. Atmospheric correction was conducted via the Second
Simulation of the Satellite Signal in the Solar Spectrum (6S) [30] for the acquisition of the
surface reflectance of red and near infrared bands. Due to the meteorological conditions on
that day (mean air temperature of 26.6 ◦C, cloud-free day with no rainfall), the atmospheric
model of mid-latitude summer was adopted. The aerosol optical depth (AOD) was derived
based on the dark-object method, with the help of blue, red, and short-wave infrared
(2.1 µm) bands of Landsat data [31,32], serving as input of atmospheric correction. LST was
retrieved via a practical split-window algorithm, with an accuracy better than 1.0 ◦C [33,34].
To be specific, LST was retrieved as:

LST = c0 +

(
c1 + c2

1− ε

ε
+ c3

∆ε

ε2

)
T1 + T2

2
+

(
c4 + c5

1− ε

ε
+ c6

∆ε

ε2

)
T1 − T2

2
+ c7(T1 − T2)

2 (2)

where T1 and T2 are the top of atmosphere (TOA) brightness temperatures in thermal
band 1 (band 10 of Landsat 8) and in thermal band 2 (band 11 of Landsat 8), respectively;
c0, c1, . . . , c7 refer to the coefficients derived from water vapor (wv) and the simulated
dataset [33]; and ε and ∆ε are the mean value and the difference value (∆ε = ε1 − ε2) of the
emissivity in the two thermal bands. Moreover, wv was estimated as [34]:

wv = −9.674
(

τ2

τ1

)2
+ 0.653

τ2

τ1
+ 9.087 (3)

τ2

τ1
≈ ∑N

k=1
(
T1,k − T1

)(
T2,k − T2

)
∑N

k=1
(
T2,k − T2

)2 (4)

where τ1 and τ2 are the upward atmospheric transmittances of the two thermal bands;
N is the total number of pixels in the applied moving window (N = n ∗ n and n = 10
in this algorithm); T1,k and T2,k are the TOA brightness temperatures of the two thermal
bands for the kth pixel; and T1 and T2 are the average TOA brightness temperatures of
the two thermal bands in the given moving window. In addition, the emissivity ε was
calculated as:

ε = εv f + εg(1− f ) + 4〈dε〉 f (1− f ) (5)

f =


1, NDVI ≥ NDVIv(

NDVI−NDVIs

NDVIv −NDVIs

)2
, NDVIs < NDVI < NDVIv

0, NDVI ≤ NDVIs

(6)

where εv and εg are the emissivity of vegetation and background, respectively, derived
from the spectrum dataset; 〈dε〉 refers to the parameters of cavity effect; f is the vegetation
fraction; NDVI is the normalized difference vegetation index derived from Landsat OLI
bands; NDVIv and NDVIs are NDVI of bare soil and dense vegetation, set as 0.86 and 0.2,
separately. The retrieval of LST was conducted in a software integrating the algorithms
above [33].

The cooling effect of UGSs was quantified by three metrics (Figure 3): Green spaces’ cooling
intensity (CI), cooling extent (CE), and cooling lapse (CL) [35]. CE (unit: m) is expressed
as the maximum distance between the edge of UGS and the first turning point of the
temperature curve. CI (unit: ◦C) is the LST difference between the green space and the
first turning point. CL (unit: ◦C/km) is the LST drop with unit distance. These metrics
have been widely used in previous relevant studies and have been proven as effective to
quantify the cooling effect of green spaces [21,36,37].
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2.3. Potential Factor Analysis

Both the internal and external factors were considered for each green space (Table 1).
The internal factors are (1) the area, (2) the shape index characterized by the landscape
shape index (LSI), and (3) the quality of vegetation indicated by the normalized difference
vegetation index (NDVI) based on SPOT 6 images.

The external factors are mainly from two sources: One is from the external green
patches, the other is from the adjacent water. The first kind of external factor includes:
(1) Distance to the external green patches, indicated by the area-weighted mean Euclidean
nearest-neighbor distance (ENN_AM), (2) quantity of external vegetation patches within
CE, indicated by the percentage of vegetation area (PLAND), and (3) distribution pattern
for the external green patches within CE, indicated by the mean fractal dimension index
(FRAC_MN) [38]. The second kind of external factor originated from the adjacent water,
including (4) distance to the nearest water patch (W_DIST) and (5) adjacent water quantity
indicated by the water proximity index (W_PROX). W_PROX was calculated as: The
sum of water body area within a certain distance divided by the nearest edge-to-edge
distance squared between each water body and the specific green space. Earlier research
suggested that the water body’s cooling extent was within 600 m in Beijing [39]. Therefore,
for each green space, whether there was water within 600 m of the space was examined
and W_PROX within 600 m was calculated.

The analysis of variance (ANOVA) is used to test the significant difference of UGSs
among different groups such as locations within the 2nd, 3rd, and 4th ring or with a
different dominant vegetation. Moreover, multivariable stepwise regressions were used to
analyze the driving factors of green spaces’ thermal characteristics, with LST, CI, CE, and
CL as dependent variables and the internal and external factors as independent variables.
All of the variables were standardized before the regression. Furthermore, the correlation
analyses were conducted between the thermal characteristics of UGS (LST, CI, CE, and CL)
and the potential factors among UGSs in different area groups.
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Table 1. Potential factors included in this study.

Factors Abbreviations Formula Descriptions

Area of green space Area - The area of each green space.

Landscape shape
index LSI P

2
√

πA
[40]

A standardized measure of edge density adjusting for
the size of green space and a circle standard. P and A

refer to the perimeter and area of UGS, separately.

Normalized difference
vegetation index NDVI NIR−R

NIR+R [41]
A normalized measure of vegetation growth or its

density. NIR and R refer to the UGS surface reflectance
of near-infrared and red bands, separately.

Area-weighted mean
Euclidean

Nearest-Neighbor
distance

ENN_AM ∑n
i=1 di

ai
∑n

j=1 aj
[38]

The area-weighted mean distance of every vegetation
patch to its nearest vegetation patch neighbor within the
cooling extent of UGS. In the formula, a and d refer to
the area of vegetation patch and distance to its nearest

vegetated neighbor patch, and n refers to the number of
vegetation patches.

Percentage of
landscape (vegetation)

area
PLAND ∑n

i=1 ai
A [38]

The area proportion of vegetation within the UGS
cooling extent, with a referring to the area of single

vegetation patch of n patches within the cooling extent
that has an area of A.

Mean fractal
dimension index FRAC_MN

∑n
i=1 2 ln(0.25pi)/ ln ai

n
[38]

The average fractal dimension of vegetation patches
within the cooling extent of UGS, which reflects shape
complexity. For vegetation patches with a number of n,

patch i has a perimeter of pi and an area of ai.

Distance to the nearest
water patch W_DIST - The distance between the UGS and its nearest

water patch.

Water proximity W_PROX ∑n
i=1

ai
d2

i
[38]

Adjacent water quantity indicated by a proximity index.
The area a of a water body divided by the square of

distance d between the UGS and water body is a single
part of water proximity. The final water proximity is the
sum of every single water proximity of n water bodies

within a 600-m range from a given UGS.

3. Results
3.1. UGSs’ Cooling Effect Using Various Indicators in Beijing

The average LST of 316 UGSs was 36.2 ± 1.4 ◦C (Figure 4a), a 2.0 ◦C cooler difference
than the average thermal condition of impervious surface (i.e., 38.2 ◦C). The minimum
and maximum UGSs’ LST were 32.9 and 40.0 ◦C, respectively. Overall, 294 (93.0%) UGSs
were with a lower LST than 38.2 ◦C. Three metrics of UGSs’ cooling effect were shown in
Figure 3b–d: UGSs’ CE averaged at 100.0 ± 74.4 m, with a maximum value of 474.0 m; CI
averaged at 1.7 ± 1.1 ◦C, maximized at 5.1 ◦C; and CL was 20.0 ± 12.9 ◦C/km, maximized
at 96.3 ◦C/km. Ten UGSs lacked the cooling effect with zero CE, CI, and CL, whereas 306
(96.8%) UGSs were with a significant cooling island effect. ANOVA showed that the CE
of UGSs within the 2nd ring (averaged at 132.0 m) was significantly larger than the 3rd
ring (averaged at 87.3 m) and 4th ring (averaged at 98.3 m, p < 0.05). Moreover, the CI is
significantly larger for UGSs within the 2nd ring (averaged at 1.97 ◦C) than UGSs within
the 3rd ring (averaged at 1.53 ◦C). This indicates that UGSs closer to the city center have
a better cooling effect. The urban core area with less vegetation cover and more active
human activities has a higher LST, where the cooling effect of UGSs is more prominent.
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Figure 4. Spatial distribution of UGS’ four cooling metrics: (a) LST, (b) cooling intensity, (c) cooling extent, and (d) cooling
lapse for Beijing’s core urbanized area on 19 August 2014.

With respect to dominant vegetation, ANOVA also showed that there was no signifi-
cant difference among UGSs with different types of dominant vegetation (the tree-based,
grass-based, and mixture green spaces) for the four cooling metrics. In this study, however,
only few UGSs are not dominated by trees. This characteristic of our samples could not
draw conclusions of the effect of vegetation type on the cooling effect of UGSs.

3.2. Identify the Driving Factors of UGSs’ Cooling Effect

The statistics analysis proved that the area of green spaces is negatively correlated
with LST (Figure 5a, p < 0.01), positively correlated with CI (Figure 5b, p < 0.01), and CL
(Figure 5d, p < 0.01). Although larger green spaces were with a lower LST, higher CI, and
larger CL, the area is not a determining factor of UGSs’ cooling effect. Green spaces with a
large area (>50 ha) generally have a good performance on cooling. Small area green spaces
(<50 ha) have a larger range of the four cooling indicators, suggesting the large potential
for urban warming mitigation.

The result of multiple regression shows that the four cooling indicators are all highly
significantly correlated with NDVI (p < 0.001), and NDVI is the primary driver for all of
the four indicators (Table 2). NDVI and W_DIST are the first two primary drivers for LST
variation (Adj-R2 = 0.40). The increase in the water body nearby could lead to a lower LST
inside the green space. The CI is negatively correlated with PLAND and LSI (p < 0.001),
which indicates that the less complicated shape of the green spaces and lower PLAND
of the external vegetation patches lead to a greater CI. NDVI, PLAND, and LSI explain
35% of the variation of CI. In addition to NDVI, CE is highly significantly correlated with
FRAC_MN and LSI at the 0.001 level, showing that a less complicated shape of the green
spaces or outside the green spaces leads to a greater CE. NDVI, FRAC_MN, and LSI explain
the little variation (7%) of CE. In addition to NDVI, the area-weighted mean Euclidean
nearest-neighbor distance to external vegetation patches (ENN_AM) is the primary driver
for CL, showing a positive correlation with CL (p < 0.001).
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Table 2. Standardized regression coefficient in the multiple linear regression results with LST, CI, CE, and CL as dependent
variables and the internal and external factors as independent variables (Note: NDVI and LSI are internal factors; ENN_AM
(area-weighted mean Euclidean nearest-neighbor distance to external vegetation patches), PLAND (percentage of landscape
occupied by external vegetation patches), FRAC_MN (mean fractal dimension index), and W_DIST (distance to the nearest
water patch)). The internal and external factors that are not significant among all of the four dependent variables are not
shown in this table.

Cooling Effect
Internal Factors External Factors

Adj-R2

NDVI LSI ENN_AM PLAND FRAC_MN W_DIST

LST −0.561 0.208 0.40
Cooling intensity 0.470 −0.206 −0.408 0.35

Cooling extent 0.138 −0.150 −0.191 0.07
Cooling lapse 0.369 0.202 0.17

3.3. Maximize the Cooling Performance of UGSs within the Limited Green Space Area

UGSs were grouped into 11 levels according to their area bins (5–6, 6–7, 7–8, 8–9, 9–10,
10–12, 12–15, 15–20, 20–30, 30–50, and >50, in unit of ha, Figure 6). Despite the difference in
the UGS area, no significant difference is shown among the different area bins except for
UGS, which is larger than 50 ha. UGSs in the same area bins could own a LST variability
of ~6 ◦C. UGSs’ cooling effect shows a large variance for each area bin, which indicates
the potential (the optimization for each bin) of the cooling effect when the area of UGS
is restricted.
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The variation of UGSs’ cooling effect is strongly correlated with NDVI, LSI, and
landscape structure. However, the significance of the relationship changed greatly with the
area bins and the specific indicators (Figure 7). Generally, LSI and NDVI are significantly
correlated with LST. In addition, the three cooling effect metrics reached the greatest
correlation at area 8–9 ha. As for the external factors, PLAND and FRAC_MN are negatively
correlated with LST at area 8–9 ha, indicating that the increasing quantity and fragmented
distribution of vegetation around the green space promote cooler green spaces. Moreover,
LST is positively correlated with W_DIST and negatively correlated with W_PROX, in
particular, at area bins ranging from 6–20 ha. In these area bins, UGSs with the cooler LST
are often near water, whereas the hottest UGSs are far from water and with a lower water
proximity. CI and CL are positively correlated with ENN_AM and negatively correlated
with PLAND, in particular, at area 5–7 ha and 12–20 ha, which indicate that the increasing
quantity and closer external vegetation would hide UGSs’ cooling intensity and lapse.
Meanwhile, FRAC_MN is positively correlated with CL at area 12–30 ha, suggesting that
the fragmented external vegetation would increase CL more than the aggregated ones. CE
is positively correlated with ENN_AM in specific bins of 5–6 ha and 20–30 ha, indicating
that the distance to the nearest-neighboring patch of green space would influence the
turning point of temperature curve.
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4. Discussion
4.1. The Cooling Effect of UGSs in the Metacity Beijing

Of the 316 UGSs (96.8%), 306 have a significant cooling island effect. The average LST
of 316 green spaces is 36.2 ± 1.4 ◦C, with a cooling extent of 100.0 ± 74.4 m, 1.7 ± 1.1 ◦C
cooling intensity, and a resultant 20.0 ± 12.9 ◦C/km cooling lapse. Lin et al. [42] reported
that CI ranges from 2.3 to 4.8 ◦C and CE ranges from 85–284 m in Beijing. Naeem et al. [26]
found an average cooling intensity of 2.98 ◦C among 22 green space samples in Beijing.
The slight difference in magnitude might be due to the difference in the selected UGSs.
Generally, UGSs in metacities have shown a stronger cooling effect. As for the other
metacity (Shanghai) in China, Du et al. [21] found CI of 3.0 ◦C and CE of 570 m on average
in UGSs of Shanghai. Comparably, UGSs in cities with a population less than 20 million
have CI less than 2 ◦C, such as 1.78 ◦C in Fuzhou, China [23], 1.6 ◦C in Milan, Italy [43],
and 1.3 ◦C in Nagoya, Japan [44]. On the other hand, the maximum CI in metacities is not
necessarily greater than in the smaller cities. UGSs in Beijing have a maximum CI of 5.1 ◦C,
whereas those in Nagoya have a maximum CI of 6.8 ◦C [44]. Denser human activities and
a higher LST result in a greater average CI in metacities in general, while the maximum CI,
which is more dependent on the block-scale condition, can reach a higher level regardless
of the city scale.

Most of the earlier studies selected a very limited number of UGSs with a relatively
large area. For example, Peng et al. [22] only selected 24 UGSs larger than 600 ha in
Shenzhen, China, whereas this study chose 316 UGSs with a variety of areas in Beijing. The
UGSs in this study included many small and irregular-shaped ones, which would lower
the average CI and CE in Beijing. The UGSs area and rank fit the Pareto distribution (with
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0.71 Pareto coefficient and R2 = 0.98), indicating that mass UGSs are small, whereas large
UGSs are rare. Green spaces with a larger area usually have a better ability to mitigate that
heat effect, as there is more vegetation inside the green space and NDVI is larger. However,
as urbanization is nearly an irreversible progress around our globe, the vegetated area in
the urban environment is limited and cannot be enlarged easily. It is impractical to mitigate
the urban heat problem and heat wave effect by only enlarging the green space. Small and
dispersive green spaces are rarely discussed. However, they spread all over the metacities,
many of whom are distributed inside or between blocks, and are therefore, more accessible
for urban residents and closely linked to the well-being of numerous citizens. Regardless
of the area, green spaces can maintain a ~6 ◦C LST difference and a ~5 ◦C CI difference
between the best and the worst situations (Figure 6a,b). Green spaces with small sizes have
a great potential to reach the best cooling situation.

4.2. Landscape Structure Drivers of UGSs’ Cooling Effect

For the four cooling indicators of UGSs, LST indicates thermal condition under certain
green space context, whereas the other three particularly emphasize the cooling effect of
the surroundings. For the internal factors, NDVI has significant coefficients with LST and
the other cooling effect indicators. The higher NDVI corresponding to a denser vegetation,
leads to a lower LST in UGSs, due to the evapotranspiration process of vegetation, and
consequently, the stronger cooling effect (CI, CE, and CL). Vegetation density plays a
significant role in both cooling the UGS itself and cooling the surroundings. As for LSI,
which suggests the edge complexity of vegetation patch, the UGS with a higher LSI
has a more complex edge. This promotes the heat exchange between the UGS and the
surrounding environment and results in a higher LST, and thus, lower CI. Du et al. [21]
found that a high LSI will improve the cooling intensity of green spaces, but the selected
green spaces were limited by numbers, leading to a result that all of the LSI values are
lower than 4. In this study, there are more than 200 green spaces with an LSI value higher
than 4. Different LSI ranges may lead to different conclusions. There might be a trade-off
between keeping the cooler temperature inside the green space and cooling down the
surroundings through the heat exchange.

In addition, the surrounding vegetation and water influence UGSs’ cooling effect.
The water body (W_DIST and W_PROX) shows a strong effect only on LST (Figure 7a),
suggesting that the water body nearby is helpful for the reduction of LST for UGSs. This
is due to the fact that the water body has a higher heat capacity and a stronger effect of
evaporation than vegetation or impervious surface, which results in a great heat storage in
the daytime and causes considerable cooling effects. Moreover, it can be found that the
water body has a more significant effect on LST than on the three cooling effect metrics.
On the one hand, this may be due to the fact that the water body cools itself and the
surroundings. On the other hand, it weakens part of the independence of the cooling
effects of the adjacent green space.

As for the metrics reflecting the surrounding vegetation, PLAND mainly shows a
negative correlation with CI, CE, and CL, indicating that more surrounding vegetation
might veil the cooling effect of UGS to the surroundings. The positive correlation between
ENN_AM and CI indicates that more vegetation in a close spatial range weakens CI
by decreasing the temperature difference between UGSs and the surroundings. The
correlation between CL and FRAC_MN is significantly negative for 6–7 ha UGSs, but
it turns positive for 12–30 ha UGSs. FRAC_MN reveals the average shape complexity of
the surrounding vegetation, which is similar to LSI in that it has a positive correlation with
LST. The correlation between CL and FRAC_MN may suggest that when the shape of the
surrounding vegetation is more regular, which indicates a lower LST in the surrounding
vegetation, a UGS with at least 12 ha can integrate the cooling effect of itself and the
surrounding vegetation to make a much gentle cooling lapse with a longer cooling extent
(considering the negative correlation between CE and FRAC_MN for UGSs of 12–30 ha).
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Generally, it can be found that the internal factors (NDVI and LSI) have stronger effects
on UGSs’ cooling effect than the external factors, which suggest that the quality of the green
space may be more important than the surrounding landscape configuration with regards
to UGSs’ cooling effect. Moreover, it is shown that CE is less likely to be influenced by the
potential factors and remained relatively stable among the area groups (Figures 6 and 7).
Furthermore, previous studies found cooling extents of ~100 m, with a maximum CE of no
more than 300 m [23,42,45]. This may be due to the fact that the complicated 3D structure
in the urban area blocks the flow of heat and disturbs the detection of LST.

4.3. Implications for Urban Planning and Climate Mitigation

This study may provide practical strategies for the maximization of the cooling perfor-
mance of UGSs for different purposes in urban heating mitigation. Generally, vegetation
density, represented by NDVI, is a key factor for UGSs’ cooling effects. Green spaces with
a denser vegetation have a greater cooling effect, which is consistent with the previous
studies [45,46]. A denser vegetation not only prevents the land surface from being heated
directly, but also increases the amount of evapotranspiration cooling. A larger size of green
space would benefit from a better cooling effect, i.e., lower LST, higher CI, and larger CL.
However, when the size is limited, which is a usual scene in metacities, a regular and
compact shape would lead to lower LST and higher CI efficiently, which provide a cooling
service for the UGSs users directly. Moreover, similar results are found in other cities, e.g.,
Nagoya in Japan, Nanjing and Fuzhou in China [44,47,48]. Our study suggests that an UGS,
which is more compact in shape and vegetation indicating a less complicated boundary
and denser vegetation, has a better cooling effect. Many earlier researches have quantified
the threshold size for the best size of blue-green space to achieve the best cooling effect [24].
Using 316 UGSs in Beijing, China, this study found that UGSs with the same area bin
varied in providing the cooling service. This indicates that the present UGSs have a large
cooling potential without enlarging their area, which is essential for actionable planning to
alleviate the urban heating climate.

Moreover, this study explored the external factors of UGSs, which have their influences
on the cooling effects under certain conditions. Specifically, when designing a green space
with a lower LST, it is best to introduce the water nearby to couple the green and blue space
together for tourists and residents. Furthermore, it is shown that small UGSs (<8 ha) could
be influenced easily by the external vegetation PLAND. In order to release the potential of
CI and CL, UGSs with an area smaller than 8 ha should be first placed in areas with little
vegetation cover. The farther distance to the external vegetation helps in the enlargement
of CE and acceleration of CL. For UGSs with an area of 12~30 ha, UGSs can create a
more effective CL, considering FRAC_MN with irregular vegetation patches around. Our
findings may be helpful for urban planners of different area customized cooling services of
UGSs, in order to mitigate both the urban heat island and global climate warming.

4.4. Limitations and Suggestions

This study has several limitations. There is no universal standard to define the urban
green space. While some earlier studies define green spaces artificially using regular
and large patches with water or pavements, this study defines green spaces as all of the
vegetated patches greater than 5 ha. Of note, much smaller UGSs (<5 ha) such as street
trees and pocket parks also have an important cooling effect. Therefore, more attention
should be paid to urban small UGSs in further studies. Meanwhile, SPOT 6 data provide
finer spatial details than Landsat data with a 30 m resolution. The finer resolution remote
sensing data allow us to discover more details of the UGSs inside the blocks. Compared
to the method of selecting relatively large green spaces [21,22], which ensure green space
completeness in the human-defined area, the method of this study pays more attention
to the spatial location and distribution of vegetated pixels that are adjacent or nearby,
regardless of whether they correspond to human-defined boundaries. Other possible
factors that may affect the green spaces’ cooling effect, such as vegetation species, UGSs’



Remote Sens. 2021, 13, 4601 14 of 16

irrigation, urban morphology, and 3D structure of buildings, are worth studying in future
studies [13,49]. As for LST, the derived LST has a rough spatial resolution, which is sourced
from the TIR sensor. In addition, the LST derived through remote sensing still has large
disparities with the air temperature. Air temperature not only reflects the heat exchange
between UGSs and the surroundings directly, but also influences the residents’ outdoor
thermal comfort [50]. Future researches combining both the surface and air temperature
are needed to elucidate the mechanisms of UGSs’ cooling effect. Additionally, the elevation
factor was not taken into consideration, since the urban core area of Beijing enjoys a flat
terrain. Nonetheless, it should be included in the analysis when evaluating the cooling
effect of the green spaces in other metacities with a hilly topography, since elevation is an
important factor that influences LST.

5. Conclusions

One of the greatest benefits from UGSs is the cooling effect, which helps mitigate
the urban heating climate. The impact of 316 UGSs on the urban thermal environment
in Beijing is quantified as four metrics: LST, CI, CE, and CL with SPOT 6 and Landsat
images. The average LST of 316 green spaces, which is larger than 5 ha, is 36.2 ± 1.4 ◦C,
with a cooling extent of 100.0 ± 74.4 m, 1.7 ± 1.1 ◦C cooling intensity, and a resultant
20.0 ± 12.9 ◦C/km cooling lapse. UGSs surrounded by areas with denser human activities
and a higher LST are with a higher CI. The multiple regression result shows that LST, CI,
CE, and CL are significantly correlated to NDVI. In addition, CI and CE are negatively
significantly correlated to LSI, while external landscape factors have various influences on
LST and the cooling effects. Furthermore, UGSs smaller than 9 ha own a LST variability of
~6 ◦C, suggesting the great potential of cooling effects from these UGSs. The correlation
analysis among the same area bins of UGSs confirms the key role of NDVI and LSI, while
external factors have a significant correlation with the cooling effects in specific area bins.
CE is less likely to be affected by the landscape structure. To provide advice on urban
planning, it is clear that UGSs that are compact in shape or with a denser vegetation, have a
better cooling effect. As for the external factors, the water body nearby could be introduced
to couple the green and blue space for better cooling and thermal comfort. As human
health and well-being are threatened by severe urban heating, our finding may provide
solutions for the mitigation of both the urban heat island and global climate warming of
the UGS area customized cooling service.
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