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Abstract: The accurate prediction and mitigation of wildfire behaviour relies on accurate estimations
of forest canopy fuels. New techniques to collect LiDAR point clouds from remotely piloted aerial
systems (RPAS) allow for the prediction of forest fuels at extremely fine scales. This study uses a
new method to examine the ability of such point clouds to characterize the vertical arrangement
and volume of crown fuels from within individual trees. This method uses the density and vertical
arrangement of LiDAR points to automatically extract and measure the dimensions of each cluster
of vertical fuel. The amount and dimensions of these extracted clusters were compared against
manually measured clusters that were collected through the manual measurement of over 100 trees.
This validation dataset was composed of manual point cloud measurements for all portions of living
crown fuel for each tree. The point clouds used for this were ground-based LiDAR point clouds that
were ~80 times denser than the RPAS LiDAR point clouds. Over 96% of the extracted clusters were
successfully matched to a manually measured cluster, representing ~97% of the extracted volume. A
smaller percentage of the manually measured clusters (~79%) were matched to an extracted cluster,
although these represented ~99% of the total measured volume. The vertical arrangement and
dimensions of the matched clusters corresponded strongly to one another, although the automated
method generally overpredicted each cluster’s lower boundary. Tree-level volumes and crown width
were, respectively, predicted with R-squared values of 0.9111 and 0.7984 and RMSE values of 44.36 m2

and 0.53 m. Weaker relationships were observed for tree-level metrics that relied on the extraction of
lower crown features (live crown length, live crown base height, lowest live branch height). These
metrics were predicted with R-squared values of 0.5568, 0.3120, and 0.2011 and RMSE values of
3.53 m, 3.55 m, and 3.66 m. Overall, this study highlights strengths and weaknesses of the developed
method and the utility of RPAS LiDAR point clouds relative to ground-based point clouds.
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1. Introduction

While wildfires are critical disturbances that can help to maintain the health and
diversity of a variety of ecosystems [1], changes in global fire regimes are projected to have
severe and long-lasting ecological repercussions. Depending on the particular geographic
area, these changes include increases in fire frequency, size, and intensity and can be
attributed to climate change, fire suppression, and changes in vegetation composition [2].
Departures from historic fire regimes are projected to cause many forested ecosystems to
have reductions in ecosystem resilience, a reduced capacity to provide ecosystem services,
and to experience shifts in forest structure and composition [3]. These changing fire
regimes have already had substantial, multi-faceted socio-economic impacts, such as active
suppression costs, damage to infrastructure, as well as short- and long-term impacts to
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human health [4]. A recent literature review estimated the total economic burden of wildfire
in the United States alone to be more than $71.1 billion per year [4].

To evaluate and mitigate the risks associated with wildfires, land managers make use
of an array of wildfire behaviour models. These models predict potential fire behaviour
using site-specific information about weather, topography, and fuels [5]. Of the required
fuel information, significant attention has been given to forest canopy fuels. Accurate
measurements of canopy fuels are critical, as they are the primary fuel layer that supports
the initiation and spread of crown fire [6]. These measurements are typically derived from
field-collected forest inventory data using allometric equations that produce stand-level
fuel metrics [5,7]. The derivation of these critical metrics begins at the individual tree-level
with an estimation of the amount and vertical arrangement of combustible fuels within
individual tree crowns. This is typically calculated by deriving the total weight of crown
foliage and fine fuels and distributing them from the base of the crown to the treetop [5,7].

While this approach is widely used in a variety of wildfire behaviour and fuel models,
there are well-known limitations. First, the allometric equations assume that crown fuels
are uniformly distributed within individual trees and do not typically incorporate any
measure of crown width [8]. This is an oversimplification that has been shown to impact
fire behaviour [9]. Additionally, due to the high cost of developing local allometries, generic
equations are commonly applied, potentially resulting in unreliable predictions [10,11].
The second limitation revolves around the critical measure of live crown base height. This
metric is used as the starting height to vertically distribute crown fuel, as well as to estimate
the likelihood of fire propagating from the surface into tree crowns [12]. Due to vague
and differing definitions, this metric can be difficult to consistently measure in the field.
Variation in this definition relates to how different authors define lower crown layers, the
primary crown, and the vertical continuity between them. Early research did not always
specify continuity and often defined live crown base height as the height of the lowest live
branch [13]. Others offer more detail and necessitate that these branches must provide a
vertically continuous path into the primary crown [14]. Even more detailed definitions
followed, refining continuity by specifying that vertical gaps of up to ~1.5 m can exist
within a “continuous” crown [15].

Improving the estimation of crown fuels is an active area of research, although much
of this research relies solely on field-based methods. While these studies are valuable, their
applications are typically limited to relatively fine spatial scales. Alternatively, high density
three-dimensional light detection and ranging (LiDAR) point clouds have been used to
estimate tree- and stand-level fuel metrics. For over a decade, LiDAR point clouds acquired
from conventional aircraft have been successfully used to estimate broad scale, stand-level
canopy fuel metrics [16–18]. Recently, more detailed and comprehensive characterizations
of tree-level crown fuel have been undertaken using terrestrial or mobile laser scanning
(TLS or MLS, respectively) [19–22]. The past five years has seen the acquisition of high-
density LiDAR point clouds from remotely piloted aerial systems (RPAS). These types
of point clouds can capture greater levels of detail than conventional aircraft-acquired
LiDAR. These point clouds are not as dense as TLS or MLS point clouds but offer much
greater spatial coverage. These characteristics result in RPAS LiDAR point clouds having
the potential to characterize crown fuels at comparable detail to TLS but across broader
spatial scales.

In this study, we examine the capability of high-density RPAS point clouds to charac-
terize the vertical arrangement and volume of live crown fuels within individual trees. To
accomplish this, we develop an automated method that detects and quantifies all branch
structures that contain live foliage, hereafter “live branch clusters”. We apply our new
method to over 100 individual trees with varying crown fuel loads from a dry, interior
British Columbia forest system. Comparisons were made against manual measurements
taken from MLS point clouds. The vertical arrangement of crown fuel is then summarized
at the tree-level to describe crown fuel metrics in a comprehensive and systematic way.
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Using this approach, the amount and distribution of crown fuel can be accurately mapped
across large numbers of trees, providing key fuel inputs for fire behaviour models.

2. Materials and Methods
2.1. Study Area

The study area is located approximately 20 km south-east of Williams Lake, British
Columbia, in the Knife Creek portion of the Alex Fraser Research Forest (AFRF) (Figure 1). This
portion of the AFRF is part of the Interior Douglas-fir biogeoclimatic zone and is almost
entirely composed of interior Douglas-fir (Pseudotsuga menziesii var. glauca). While not
present within our sampled plots, hybrid white spruce (Picea engelmannii X Picea glauca)
and trembling aspen (Populus tremuloides) can also be found in the area [23]. In recent
decades, the forest has been affected by western spruce budworm (Choristoneura occidentalis
Freeman) and Douglas-fir bark beetle (Dendroctonus pseudotsugae Hopkins) but has not
burned [24]. As part of a long-term experiment, three forest stands were partially harvested
in 1984 and 2014. This harvesting was performed to promote a diverse forest structure of
uneven-aged clumps of trees interspersed with small canopy openings. Throughout the
experiment, permanent sample plots are distributed at 100 m intervals forming a uniform
grid. In each of the three forest stands, five to seven plots were selected to represent a range
of treatments, topography, and forest structures. In total, we collected plot- and stand-level
remotely sensed data across 17 plots.
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2.2. Remote Sensing Data Acquisition

The RPAS and ground-based LiDAR point clouds were collected over three days in July
and September of 2019. The RPAS LiDAR point clouds were acquired using a GreenValley
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LiAir S200 LiDAR system with a relative system accuracy of ±5 cm. The ground-based
LiDAR point clouds, hereafter referred to as mobile laser scanning (MLS) point clouds,
were collected for validation purposes using a handheld GeoSLAM HORIZON system.
This system has a relative accuracy of ± 3 cm and collects extremely dense LiDAR point
clouds from beneath the canopy using the simultaneous localization and mapping (SLAM)
algorithm. This method allows the system to collect data while in motion, reducing errors
of occlusion that are common with most tripod-mounted TLS systems [25].

The RPAS LiDAR was acquired using a DJI Matrice 600 equipped with a real-time
kinematic (RTK) GPS system. The RPAS was flown at a consistent 80 m above ground level
across the three stands. The hardware and flight parameters allowed the point clouds to be
produced at ~535 points/m2 and georeferenced at an absolute accuracy of ±2 cm. The MLS
data was collected for each of the 17 plots by having an operator activate the GeoSLAM
Horizon at plot center and walk in an outwardly expanding spiral. This was performed in
a way that ensured each spiral was spaced ~3 m apart, with the final spiral being ~15 m
away from plot center. This process resulted in the entire 11.28 m radius plot having LiDAR
points taken from all sides with an average point density of ~42,000 points/m2. Examples
of each type of point clouds can be seen in Figure 2.
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Figure 2. Examples of the two types of point clouds from (A) mobile laser scanning (MLS) and (B) remotely piloted aerial
systems (RPAS) LiDAR.

2.3. Methods

Our method consists of four steps: initial point cloud processing and individual tree
segmentation, live branch cluster extraction and analysis, validation, and accuracy assessment.

2.3.1. Point Cloud Processing and Individual Tree Segmentation

The GeoSLAM point clouds were aligned to the RPAS LiDAR point clouds, as the
initial clouds were not georeferenced to a datum. This alignment was carried out using the
iterative closest point (ICP) algorithm [26], as follows. The ICP algorithm requires both
point clouds to be approximately aligned before applying. To carry this out, the RPAS
LiDAR point clouds were clipped to 30 m radius circles, with each representing a buffered
plot. The clipped RPAS LiDAR point clouds were then used as a guide to manually shift
the MLS point clouds so that both point clouds overlapped one another. The RPAS LiDAR
point clouds were then used as a reference to precisely align and spatially register the
MLS point clouds. Points that were duplicated or considered outliers were removed. All
remaining points were classified as either ground or non-ground and normalized relative
to ground height.
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Non-ground RPAS LiDAR point clouds were segmented into individual trees using a
point-based segmentation algorithm [27]. This algorithm uses a top-down approach that
takes the highest point as the seed point for the first tree. Additional points are then added
according to a series of point addition rules. The first segmentation is considered complete
when all candidate points have been considered, after which the segmented points are
assigned a tree ID. The process is then repeated for the rest of the point cloud [27]. This
algorithm is generally considered to be among the most accurate routines, but segmentation
accuracy is variable depending on tree density, topography, and crown classes [27–29]. To
ensure the developed method was not influenced by poorly or incorrectly segmented tree
crowns, the following steps were carried out. Each segmented tree was visually assessed,
and any tree that was not completely segmented or included points from neighboring trees
was removed. The boundaries of the suitable segmentations were then used to segment
the MLS point clouds, which were then solely used for the accuracy assessment.

2.3.2. Live Branch Cluster Extraction and Analysis

Once individual trees had been extracted, the locations and dimensions of live branch
clusters were estimated using a new approach developed for this study (Figure 3). This
approach was applied separately to each tree through three key steps. First, the segmented
point cloud was simplified using an alpha shape-based point cloud thinning method. In
the context of point clouds, an alpha shape refers to a three-dimensional polygon that is
draped over a set of points. This polygon is then used to classify each point depending on
where it falls relative to the polygon. This characterization can be performed at a variable
level of detail depending on a user specified alpha parameter, with low alpha parameter
values being used to construct extremely detailed shapes and infinite alpha parameter
values being used to construct three-dimensional convex hulls [30]. A very fine alpha
parameter was used to calculate a detailed alpha shape for each tree segment. Any points
that did not fall on the outside of this three-dimensional shape were then removed. The
removal of these points reduced the size of each point cloud while maintaining points that
are likely to represent living and fine fuels on outer portions of branches.
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The second step of this approach used the remaining points to estimate the lower and
upper boundaries of all live branch clusters. This was accomplished by characterizing the
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vertical distribution of points. The characterization involved the calculation of histograms
and the extraction of inflection points, partially following methods laid out in [31]. These
histograms were created based on the number of points within each 10 cm vertical portion
of the tree. A smoothed spline was then calculated that followed a relatively detailed shape
of the histogram. The first two derivatives of the spline were then derived and used to
calculate inflection points, defined as the heights that the second derivative values were
equal to zero. To ensure that the highest portion of live crown was included, an additional
upper cluster boundary was added to each tree’s maximum point height. Through this
process, the boundaries of live branch clusters were initially defined. These initial clusters
included some portions of the tree devoid of living fuel, which were eliminated by removing
clusters that had average point counts and first derivative values below a threshold. The
same threshold was applied to all initial clusters across the analyzed trees.

The final step of this approach involved the calculation of the following metrics for
each live branch cluster: total vertical length, diameter, and three-dimensional volume.
The total vertical length of each cluster was calculated by subtracting the upper and lower
boundaries. The diameter and volume of each cluster was calculated from the segmented
point cloud, using the following method. The lower and upper boundary of each cluster
was used to extract the portion of the relevant point cloud. This extracted portion was
then used to calculate diameter values across four equally spaced, intersecting axes. These
values were then averaged to derive the cluster diameter. This diameter was then used
with the cluster vertical length value to calculate cylindrical volumes of each cluster.

Branch-level metrics were then accumulated for each individual tree to describe the
amount and arrangement of living branch clusters for each tree (Figure 4). These metrics
included: the height of the lowest live branch cluster, defined as the lower boundary of
the lowest extracted cluster; the total crown length, calculated using the sum of all vertical
cluster lengths; the crown width, defined as the maximum cluster diameter; and the total
live branch volume, calculated by taking the sum of all individual cluster volumes. In
addition to these metrics, live crown base height was calculated by merging all extracted
clusters that had upper and lower boundaries within 25 cm of each other. The lower
boundary of the highest merged cluster was then used as the live crown base height.
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2.3.3. Validation Data Collection

All vertically continuous branch clusters that visibly contained live foliage were
manually measured by a trained interpreter using the MLS point clouds. To do so, the
interpreter was provided with the segmented point clouds and instructed to measure all
living branch clusters using a heads-up display. The following measurements were made
for each cluster: lower height, upper height, and maximum diameter. These manually
measured branch clusters were then accumulated for each individual tree using the same
method as was used for the automated approach.

2.3.4. Accuracy Assessment

The accuracy assessment consisted of three steps: cluster matching, cluster-level
validation, and tree-level validation. Clusters were characterized as either true positive
(TP) matches, false positive (FP) misses, or false negative (FN) misses. Extracted clusters
were considered TP if their midpoint was between the lower and upper boundary of a
manually measured cluster and FP if their midpoint was not. Measured clusters were
considered FN if there was no extracted cluster midpoint between their lower and upper
boundaries. The cluster matching accuracy was evaluated using a standard error matrix,
with overall accuracy, commission errors, and omission errors calculated according to the
equations found below. A suite of statistics for each TP, FP, and FN cluster were calculated
to compare the locations, sizes, and total volumes of each extracted and measured cluster.

Overall accuracy = (TP)/(TP + FP + FN) (1)

Commission error = (FP)/(TP + FP + FN) (2)

Omission error = (FN)/(TP + FP + FN) (3)

Portions of vertically continuous fuel were commonly extracted as multiple, smaller
clusters, instead of a single large cluster, as was typical of the validation data. This differ-
ence was a result of each dataset being collected with different goals in mind. The validation
data were collected in a way that allowed a manual interpreter to efficiently measure all
vertically continuous portions of live foliage. The automated method was designed to
extract and quantify live branch clusters at finer levels of detail. These differences resulted
in cases where multiple extracted clusters were matched with the same measured cluster.
All these extracted clusters were still considered to be TP, as they successfully extracted
portions of the tree that the trained interpreter found to contain live fuel. This differs
from the definition of TP commonly used to describe tree-level segmentation accuracy
used in most individual tree-detection studies [27]. In order to evaluate multiple extracted
clusters against the one manually measured cluster, the extracted clusters were aggregated
(Figure 5) in the following fashion. The lower and upper boundaries were, respectively,
set to the lowest and highest cluster boundaries, which were used to recalculate vertical
cluster length. The new cluster diameter was set equal to the maximum cluster diameter,
which was used along with the new vertical cluster length to recalculate cluster volume.
This aggregation simplified the extracted clusters by replicating the rules that the trained
interpreter followed when collecting the validation data. By aggregating in this way, the
strengths and weaknesses of the cluster metrics were able to be reliably assessed.

The cluster-level validation was carried out by building linear relationships between
the metrics calculated from all the successfully matched extracted and measured clus-
ters. The tree-level validation was carried out using the same method but using all the
automatically extracted and manually measured tree-level metrics.
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2.4. Software

The software used in this study is as follows. The RPAS LiDAR and MLS point clouds
were, respectively, converted to laz file format using LiDAR360 (https://greenvalleyintl.
com/?LiDAR360/, accessed on 15 November 2021) and GeoSLAM Hub software (https:
//geoslam.com/hub/, accessed on 15 November 2021). The ICP alignment and collection
of validation data were completed using the open-source CloudCompare software [32].
All point cloud classification and cleaning were completed using LAStools [33]. The live
branch cluster extractions were completed with the R statistical software (4.0.4) and the
following packages: lidR [34,35], rLiDAR [36], and alphashape3d [37].

3. Results

Below, we present the following results: cluster matching, cluster-level validation,
and tree-level validation. The cluster matching results show the degree to which the
automatically extracted and manually measured clusters aligned with one another. The
cluster-level results show the level of agreement between the dimensions and vertical
arrangements of the successfully matched clusters, while the tree-level results show the
level of agreement between the extracted and measured accumulated metrics for each tree.

3.1. Cluster Matching

Table 1 summarizes statistics for all extracted and measured clusters, as well as the
overall accuracy and commission and omission errors. In general, the automated method

https://greenvalleyintl.com/?LiDAR360/
https://greenvalleyintl.com/?LiDAR360/
https://geoslam.com/hub/
https://geoslam.com/hub/
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extracted many more clusters than the validation method. The extracted and measured
clusters had similar mean diameters, but the extracted clusters tended to have much lower
vertical length and volume values. The majority of automatically extracted clusters were
successfully matched to a manually measured cluster (797 of 825 clusters). This resulted in
a high overall accuracy (91.72%) with a low commission error (3.2%). Only 44 measured
clusters did not correspond to an extracted cluster, resulting in an omission error of 5.06%.
The lower mean heights of the FN clusters relative to all measured clusters indicate that
these erroneous clusters tended to be located lower in the tree. The low mean and total
volumes additionally indicate that these cluster were smaller in size than other manually
measured clusters.

Table 1. Differences between the amount of extracted, measured, true positive, false positive, and false negative clusters.
Statistics related to the heights and dimensions of each type of cluster and cluster matching results are also shown.

Type of Cluster Count (#) Mean Height (m) Mean Diameter (m) Mean Vertical
Length (m) Mean Volume (m2) Total Volume (m2)

Extracted 825 16.11 3.97 1.46 21.84 18,020.53
Measured 210 12.61 3.71 7.87 147.13 30,897.07

True Positive 797 16.34 3.98 1.46 21.77 17,429.73
False Positive 28 9.64 3.05 1.33 21.10 590.80

False Negative 44 7.49 2.00 1.71 7.95 349.57

Overall accuracy—91.72% Commission error—3.22% Omission error—5.06%

3.2. Cluster-Level Validation

The vertical arrangement of the extracted and measured clusters was in relatively
close agreement (Figure 6). The extracted upper boundaries corresponded well to the
measured upper boundaries. This correspondence is exhibited by an R-squared value
of 0.9926, low variance (0.6153 m), and a line of best fit that closely matches the 1:1 line.
The extracted lower boundaries did not predict the measured values as well, with a lower
R-squared value (0.6998) and higher variance (2.347 m). In many cases, the automated
method substantially overpredicted the lower boundary of matched clusters, resulting in
many points below the 1:1 line.
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Figure 7 shows relatively strong agreement between the extracted and measured
branch cluster dimensions. The extracted cluster diameters and volumes relate well to their
manually measured counterparts, with respective R-squared values of 0.8725 and 0.9060.
While still exhibiting a relatively strong relationship, the extracted vertical length of each
cluster did not predict the measured values as well as the other two metrics. This deviation
mirrors the relationship exhibited between the lower boundary of extracted and measured
clusters shown in Figure 6. In this instance, the automated method often underpredicts the
vertical length of each cluster.
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3.3. Tree-Level Validation

The focal point of Figure 8 illustrates three pairs of MLS and RPAS LiDAR point
clouds. Each pair represents a different tree (i, ii, iii) that was used within this study.
The histograms, splines, second derivative lines, and extracted clusters shown here were
calculated from the distribution of the RPAS LiDAR point height. Comparing these features
with the MLS point clouds and the manually measured clusters highlights the level of
detail provided by these two types of point clouds. The subpanels show relationships
between the extracted and measured values for the tree-level metrics, highlighting the
values for each of the three example trees.

The agreement between measured and extracted attributes were more variable at the
tree-level than at the cluster-level. Most extracted metrics either under- or overpredict their
respective validation metrics. The strongest match was observed for crown width, which
had a line of best fit that closely matched the 1:1 line. The extracted and measured total
live branch volumes corresponded strongly (R-squared of 0.9111), although a consistent
underprediction can be observed. The remaining three metrics had moderate to weak
relationships. Of these, the live crown length exhibited the strongest relationship. This
metric had an R-squared value of 0.5568, although it tended to underpredict the measured
values, especially for the smaller trees. Neither the height of the lowest live branch nor
the live crown base height was accurately predicted using the automated method. For
both these metrics, the automated method consistently assumed a higher height than was
manually measured.

Among the three examples of the MLS and RPAS LiDAR point clouds, differences
were greatest in lower portions of the crown, especially for tree iii. Tracing the extracted and
measured values for tree iii across each of the five scatter plots shows how differences in
lower crown point counts and densities impacted the results of this study. The automated
method overpredicted the height of the lowest live branch and the live crown base height.
This was primarily due to the relative absence of these lower crown points from the RPAS
LiDAR point cloud. These overpredictions also corresponded to an underprediction for the
vertical crown length. Tree ii had nearly all the same features present in both point clouds,
but the automated method did not detect the lowest manually measured live branch. This
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resulted in a slight overprediction of the lowest live branch height. This cluster was present
in the RPAS LiDAR point cloud, but not in great enough detail to be extracted by the
automated method. Tree i also had nearly all the same branch clusters present in both point
clouds, but the automated method was unable to detect the same gaps as the validation
dataset. This resulted in a large underprediction of live crown base height, something that
was not indicative of the general trend associated with live crown base height relationship.
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3.4. Summary of Extracted Tree-Level Data

Figure 9 shows box and whisker plots for four tree-level metrics extracted from
104 trees using the automated method developed for this study. The values for live crown
length had the largest range, followed by live crown base height and the height of the
lowest live branch. Crown width values were most consistent, showing relatively little
deviation from the median value of ~4.5 m. The overall and interquartile ranges of these
four metrics were indicative of the variability observed in the sampled trees. This same
variability was observed in the three example trees shown in Figure 8. Each tree shown
had variable amounts and arrangement of living fuel, while having relatively similar
crown widths.
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4. Discussion

This study evaluated the ability of RPAS LiDAR point clouds to characterize the
vertical arrangement and volume of crown fuels within individual trees. The new method
extracted and quantified branch structures that contained live fuel and compared cluster
and tree-level measurements to manual measurements collected from MLS point clouds.
The differences between the extracted and measured metrics revealed important strengths
and weaknesses of both the method and the utility of both types of point clouds.

4.1. Cluster-Level Fuels

The cluster-level analysis supports the utility of RPAS LiDAR to characterize fine-
scale, within-tree geometry at a level of detail similar to TLS or MLS point clouds. This
is particularly true for the more dominant portions of the tree crowns. Over 96% of
all automatically extracted live branch clusters were successfully matched to manually
measured branch clusters, which represented a similarly large proportion of all extracted
volume. While a smaller proportion of manually measured branch clusters were matched
to extracted clusters (~79%), the unmatched clusters represented less than 2% of the
measured volume.

Comparing the vertical arrangement and dimensions of matched clusters revealed
strong correspondences between the two datasets. The vertical arrangement of each
cluster can be described by the lower and upper boundaries, both of which were predicted
well, albeit not as strongly for the lower boundaries. The overprediction of these lower
boundaries was mirrored by a general underprediction of the measured vertical length of
each cluster. The measured diameter of each cluster was also predicted quite well by the
automated method and did so without an under or overprediction. The vertical length and
diameter of each cluster were used to calculate a simple cylindrical volume for each cluster.
Comparing the measured and extracted volumes revealed a strong correspondence. While
these results only considered matched clusters, the favorable trends support the use of this
method and data for the evaluation of within-tree geometry.

4.2. Tree-Level Fuels

The aggregation of cluster-level information at the tree-level revealed more nuanced
information about how RPAS LiDAR and MLS point clouds compare. This aggregation
also shows the degree to which this method can extract tree-level information. While the
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automated method presented here is not infallible, many of the shortcomings presented
in the tree-level results can be attributed to inherent differences between MLS and RPAS
LiDAR point clouds. The overall differences in the quality of each point cloud were evident
at the onset of this study by the much higher density of MLS point clouds. There were
additional differences related to where each point cloud was collected. Due to the ground-
based system, the majority of the MLS points were located beneath the base of the live
crown, whereas the majority of the RPAS LiDAR points were located above this level.
These differences resulted in overpredictions of live crown base height and the height of
the lowest live branches. These inaccuracies are also mirrored by an underprediction of
crown length. The reduced level of detail in the lower crown can also be observed in nearly
every point cloud shown above.

Of the tree-level metrics evaluated in this study, the strongest relationships were
observed for crown width and total live branch volume. Both these values can be reliably
extracted from dominant portions of the crown that tend to be readily visible from airborne
platforms. While extracted total live branch volume exhibited a very strong relationship
with the measured values, it did so with a strong overprediction. This overprediction is
partially due to undetected live fuels in the lower crown, but more so due to instances
where multiple extracted clusters were contained within a single measured cluster. The
measured clusters would have only been represented by a single cylinder with a constant
diameter. The extracted method would instead represent these same clusters with multiple
smaller cylinders, only one of which would have the same diameter as the manually
measured cluster. This difference in volumetric calculations resulted in large differences
between the extracted and measured values.

Live crown base height was calculated in a way that is similar to existing field-based
methods [8]. While frequently applied, these methods can ignore fuel beneath the base of
the primary crown, depending on the amount of vertical separation between fuel layers.
In theory, accurate measures of live crown base height could be used in conjunction with
crown width to calculate a simplistic crown volume. However, these types of methods
would likely underrepresent the amount of fuel in lower portions of trees. Nearly 40% of
the manually measured trees had living fuel between the ground and the base of the live
crown. Of these trees, the average volume of fuel in this zone represented almost 12% of
the total tree volume, and in some cases, over half the total volume.

This method was able to accurately characterize the locations and dimensions of the
majority of live branch clusters, but not as reliably for lower clusters. This shortcoming is
primarily a result of differences in the analyzed and reference data. Ground-based LiDAR
is able to capture small features beneath the primary crown much more reliably than
airborne LiDAR. Furthermore, the extremely low commission errors speak to the ability of
the method to detect features that are present within a given point cloud. Therefore, the
accurate extraction of these lower crown features is dependent on the quality and density
of the provided point cloud. Overall, this work demonstrates a method that can reliably
predict the amount and locations of large proportions of the total crown fuel present within
a given tree.

4.3. Links to Past Research

The results of this study support and refine earlier work regarding the strengths and
weaknesses of remotely derived airborne and ground-based point clouds. It has been
shown that low density LiDAR point clouds collected from conventional aircraft can be
used to successfully characterize stand-level overstory fuels [16–18]. Although depending
on point density and canopy cover, fuels below the primary crown are unable to be charac-
terized to the same degree as ground-based point clouds [38]. The results demonstrated
here potentially extend this relationship to RPAS LiDAR point clouds, regardless of their
high point density compared to conventional LiDAR point clouds. While not quantitatively
evaluated in this study, tree segmented from RPAS LiDAR point clouds had more com-
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plete reconstructions in instances where the surrounding canopy cover was low. Similar
observations were made for trees that had simpler crown structures.

The definition of crown base height that was used in this study allowed gaps of up to
25 cm to exist within a “continuous” crown. Similar methods as were presented here can be
used to extract a flexible measurement of live crown base height with variable levels of gaps
between live branches. This kind of measurement could represent a potentially significant
outcome of this research. Crown base height definitions that rely on fixed gap thresholds
assume that fire can only spread between crown layers separated by vertical gaps lower
than the threshold. In this way, these definitions assume a fixed flame length, something
that has long been understood to be variable depending on fuel and weather conditions [39].
This research also supports earlier work [9] by providing tools that can be used to model
crown volume using non-uniform distributions of crown fuel. While contributing to this
type of research, it is important to note that this work does not incorporate any information
on the weights of available fuel, instead focusing on quantifying the three-dimensional
volumes of portions of trees that contain available fuel.

4.4. Limitations and Future Work

The greatest limitation of this new method is the inability to extract lower crown
fuels such as live crown base height and the height of the lowest live branches. While
these missed branches were likely small in volume, their absence would likely result in
an underprediction of true fire behaviour. This is especially true in cases where they are
in close vertical proximity to other live crown fuels, thereby representing ladder fuels.
Applying these methods directly to point clouds that have higher point densities beneath
the primary crown would likely improve the characterization of these lower crown fuels.
Typically, these types of point clouds are collected at the plot-level, thereby limiting their
spatial scale. Recent advancements in RPAS and MLS systems have allowed the two to be
combined for beneath canopy flights [40], allowing MLS data to be collected across larger
spatial scales.

The method developed in this study was only applied to trees that were well seg-
mented, which were primarily composed of the more dominant, overstory trees. These
segmentation results are supported by previous research, which has shown that perfectly
segmenting non-dominant, subcanopy trees can be exceedingly difficult, if not impossi-
ble [27–29]. The removal of poorly segmented trees was necessary to ensure the quality of
the extracted trees, but drastically reduced the number of analyzed trees. This type of man-
ual removal of trees results in the methods presented here being unable to be applied across
most forest stands. Therefore, improvements in the quality and reliability of automatic
tree segmentation algorithms should be seen as a prerequisite to the broader applications
of individual-tree-based work. A collaborative approach between multi-disciplinary re-
searchers is likely required. The authors support the creation of an open dataset of point
clouds that could be used to further develop of these algorithms. Ideally, such a dataset
would include various types of segmented and non-segmented point clouds collected from
a range of forest types.

It is important to note that the volumes reported in this study do not necessarily repre-
sent the true volume of each live branch cluster or individual tree. This work instead relied
on automated methods and manual measurements that assumed a tree was composed of a
series of cylinders of various vertical lengths and diameters. This was done primarily to
allow for manual measurements to be used for validation without having to destructively
sample trees. While these methods are an improvement to existing field-based method,
they likely overestimate the true volume of each live branch cluster and therefore the total
volume. In reality, these volumes vary depending on how detailed the shapes are that
are used to measure them, with finer detailed shapes providing more accurate volume
estimates. Therefore, we suggest future research follow similar methods but use an ap-
proach that calculates the three-dimensional volume of each cluster using detailed alpha
shapes. This type of work could then be used to improve conventional fire behaviour and
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fuel models by pairing these methods with destructive sampling-based techniques. Such
methods could be used to develop novel, fine-scale allometric models that could predict the
weight of the fuel within each cluster. This could be used along with the cluster volumes to
extract inner-tree crown bulk density measurements. These fine-scale measurements could
then be used to provide more accurate stand-level canopy bulk density measurements.
Additionally, the fine-scale of the metrics extracted by these methods suggest that they
could be used to build and further develop next-generation fire behaviour models, such as
those described in [41].

5. Conclusions

This research demonstrates a new method that can be used to automatically detect
and measure the arrangement and amount of live crown fuels within individual trees.
This work shows that RPAS LiDAR point clouds can be used to characterize the majority
of within-tree crown fuels at similar accuracies as MLS point clouds. Nearly 80% of all
measured crown fuel clusters were matched to an extracted cluster. Metrics extracted from
these matched clusters were in close agreement. Vertical arrangements and dimensions
had R-squared values ranging from ~0.70 to ~0.99. The agreement between measured and
extracted tree-level metrics were much more variable. The strongest relationships were
observed for total volume and crown width, each of which had R-squared values over ~0.80.
Metrics that included lower crown features had much lower levels of agreement, with R-
squared values ranging from ~0.56 to ~0.20. Overall, this work supports the value that these
types of methods and data can have for fuel and wildfire management. However, important
limitations of the developed methodology and RPAS LiDAR point clouds, specifically, an
inability to extract the lowest portions of crown fuels, should be considered. Future work
should continue to improve the quality of individual tree segmentations, which would
allow these types of studies to be implemented over larger scales. These methods also
have potential to be paired with destructive sampling-based methodologies. Such a pairing
could better parametrize the cluster and total crown volumes and potentially incorporate
the weights of combustible fuels.
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