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Abstract: To reduce the 3D systematic error of the RGB-D camera and improve the measurement
accuracy, this paper is the first to propose a new 3D compensation method for the systematic error of
a Kinect V2 in a 3D calibration field. The processing of the method is as follows. First, the coordinate
system between the RGB-D camera and 3D calibration field is transformed using 3D corresponding
points. Second, the inliers are obtained using the Bayes SAmple Consensus (BaySAC) algorithm
to eliminate gross errors (i.e., outliers). Third, the parameters of the 3D registration model are
calculated by the iteration method with variable weights that can further control the error. Fourth,
three systematic error compensation models are established and solved by the stepwise regression
method. Finally, the optimal model is selected to calibrate the RGB-D camera. The experimental
results show the following: (1) the BaySAC algorithm can effectively eliminate gross errors; (2) the
iteration method with variable weights could better control slightly larger accidental errors; and
(3) the 3D compensation method can compensate 91.19% and 61.58% of the systematic error of the
RGB-D camera in the depth and 3D directions, respectively, in the 3D control field, which is superior
to the 2D compensation method. The proposed method can control three types of errors (i.e., gross
errors, accidental errors and systematic errors) and model errors and can effectively improve the
accuracy of depth data.

Keywords: Kinect V2; RGB-D camera; systematic error; 3D compensation; 3D calibration field

1. Introduction

The second version of the Microsoft Kinect (i.e., Kinect V2) is an RGB-D camera
based on time of flight (TOF) technology for depth measurement that can capture color
and depth images simultaneously. Compared with Kinect V1, Kinect V2 can obtain more
accurate depth data and better-quality point cloud data [1]. With its advantages of being
portable, low cost [2], highly efficient [3] and robust [4], this device has been widely
applied in computer vision [5,6], medicine [7,8], target and posture recognition [9,10],
robot localization and navigation [11,12], 3D reconstruction [13-15], etc. Recently, with the
continuous upgrading of sensors, camera devices have evolved from RGB cameras to RGB-
D cameras that can acquire 3D information. Thus, the detectable range has been extended
from the 2D plane to 3D space. The calibration of RGB-D cameras and their application in
3D indoor scene reconstruction have gradually attracted attention [16]. However, the depth
camera data include some random errors and systematic errors that lead to problems such
as the deviation and distortion of RGB-D cameras [17], which makes the data accuracy
unfit for meeting the needs of research and application in high accuracy 3D reconstruction.
Therefore, it is of great significance to study the calibration and error compensation of
RGB-D cameras.

The purpose of camera calibration is to acquire the parameters of the camera imaging
model, including the intrinsic parameters that characterize the intrinsic structure of the
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camera and the optical characteristics of the lens and the external parameters that describe
the spatial pose of the camera [18]. Moreover, camera calibration methods can be roughly
divided into four categories: laboratory calibration [19], optical calibration [20], on-the-job
calibration [21], and self-calibration [22]. The calibration field in laboratory calibration is
generally composed of some control points with known spatial coordinates, and it can also
be subdivided into a 2D calibration field and a 3D calibration field.

Because of its simplicity and portability, the 2D calibration field has been widely used
in studies about close range camera calibration [23]. For instance, Zhang [24] used regular
checkerboard photos taken at different angles obtained from the 2D calibration field, then
extracted feature points and obtained the intrinsic and external parameters and distortion
coefficient of the RGB camera based on specific geometric relations. Sturm [25] proposed
an algorithm that can calibrate different views from a camera with variable intrinsic param-
eters simultaneously, and it is easy to incorporate known values of intrinsic parameters in
the algorithm. Boehm and Pattinson [26] proposed calibrating the intrinsic and external
parameters of a ToF camera based on a checkerboard. Liu et al. [27] applied two different
algorithms to calibrate a Kinect color camera and depth camera, respectively, and then
developed a model that could calibrate two cameras concurrently. Song et al. [28] utilized
a checkerboard with a hollow block to measure the deviation and camera parameters,
and the method produced significantly better accuracy, even if there was noise within the
depth data.

The layout conditions of the 3D calibration field are more complex and difficult than
those of the 2D calibration field, so there are few studies on the calibration of depth cameras
based on it. However, the 3D calibration field contains rich 3D information, especially
depth information, which could preferably suit the needs of depth camera calibration
in 3D coordinate space. Therefore, the 3D calibration field has great potential to further
improve the depth camera calibration accuracy in theory and practice. Some scholars
explored the following issues. Gui et al. [29] obtained accurate intrinsic parameters and the
relative attitude of two cameras using a simple 3D calibration field, and the iterative closest
point (ICP) method was used to solve the polynomial model for correcting the depth error.
Zhang [30] established the calibration model of a Kinect V2 depth camera in a 3D control
field based on collinearity equations and spatial resection to correct the depth and calibrate
the relative pose, which provided an idea for further improving the calibration accuracy of
an RGB-D camera.

In conclusion, the 3D (i.e., XOY plane and Z depth) error compensation method for
Kinect V2 could be further developed and improved in the following aspects:

(1) Multiple types of error control: some studies are only concerned with one type or two
types of error in depth camera data while the other errors are ignored. For example,
some of the aforementioned compensation models ignore processing the potential
model errors, resulting in inaccurate systematic error compensation.

(2) Model error control: research based on the 3D calibration field needs to be supple-
mented, and a higher accuracy 3D error compensation model for an RGB-D camera
needs to be explored.

In order to solve the above two problems, based on an indoor 3D calibration field, we
propose a new 3D error compensation method for the systematic error of a Kinect V2 depth
camera for the first time. This paper has the following innovations and contributions:

(1) A new method to simultaneously handle three types of errors in RGB-D cameras is the
first to be proposed. First, the Bayes SAmple Consensus (BaySAC) is used to eliminate
the gross errors generated in RGB-D camera processing. Then, the potential slightly
larger accidental errors are further controlled by the iteration method with variable
weights. Finally, a new optimal model is established to compensate for the systematic
error. Therefore, the proposed method can simultaneously control the gross error,
accidental error, and systematic error in RGB-D camera (i.e., Kinect V2) calibration.

(2) 3D systematic error compensation models of a Kinect V2 depth camera based on a
strict 3D calibration field are established and optimized for the first time. A stepwise
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regression is used to optimize the parameters of these models. Then, the optimal
model is selected to compensate the depth camera, which reduces the error caused by
improper model selection, i.e., the model error or overparameterization problem of
the model.

2. Materials and Methods
2.1. Algorithm Processing Flow

The algorithm is divided into four modules. In module 1, the initial RGB-D camera

calibration is pre-processed to obtain depth error data. Module 2 acquires the inliers and
eliminates the gross errors (i.e., outliers). Module 3 controls slightly larger accidental
errors for the parameters of the 3D transformation model. Module 4 selects the optimal
model to compensate for the systematic error of the RGB-D camera. The specific algorithm
processing is as follows (Figure 1).
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Figure 1. The algorithm flowchart of 3D systematic error compensation for RGB-D cameras.
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Acquire the raw image data. Color images and depth images are taken from an indoor
3D calibration field, and then corresponding points are extracted separately.
Preprocess RGB-D data. The subpixel-accurate 2D coordinates of the marker points [31]
on the color image and the corresponding depth image are extracted and transformed
to acquire 3D points in the RGB-D camera coordinate system.

Match the 3D point pairs. The marker points from the 3D calibration field and RGB-D
camera are matched to acquire 3D corresponding point pairs, which are used to
calculate the depth error.

Obtain inliers. The inliers are determined by BaySAC, thus, gross errors are eliminated.
Compute the parameters of the 3D transformation model based on inliers. The
iteration method with variable weights is used to compute the model parameters,
and residuals with slightly larger accidental errors are controlled.
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(6) Establish 3D compensation models of the systematic error. Three types of error com-
pensation models are established, and the parameters of these models are calculated
by the stepwise regression method to avoid overparameterization.

(7)  Select the optimal model to compensate for the systematic error. The accuracy of
the models is evaluated, and then the optimal model is selected to calibrate the
RGB-D camera.

2.2. Data Acquisition and Preprocessing of an RGB-D Camera

The high accuracy indoor 3D camera calibration field in Figure 2a was established
by the School of Remote Sensing and Information Engineering, Wuhan University. It
contains many control points with known coordinates. The coordinates of these points
were measured by a high accuracy electronic total station, the measurement accuracy of
which could reach 0.2 mm.

A Kinect V2 depth camera was used to collect data; and the software development
kit (SDK) driver of Kinect 2.0 was used to take 11 sets of images from different angles,
including the color images in Figure 2b and the depth images in Figure 2c. Some effective
measures are taken to reduce the random errors that exist in the depth data and improve
the quality of the raw error data. For example, when we shoot an RGB-D image in a 3D
calibration field, the influence of ambient light could be reduced by keeping the intensity
of the ambient light in an appropriate range. In addition, to decrease the influence of
temperature on the depth measurement accuracy, the camera is turned off at regular
intervals and then continues to shoot after the depth sensor cools down. Moreover, the
Kinect V2 is kept relatively motionless during the measurement to reduce motion blur.

o .
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o e — — G — —

2=

£
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(b) (c)

Figure 2. Images collected from the 3D calibration field. (a) 3D calibration field; (b) RGB image within known calibration
points; and (c) depth image.

Then, the marker point pairs in two types of images were extracted in MATLAB [31],
and the coordinates of the points in the color images were 2D coordinates. Then, the method
need to combine the depth values in the depth image with the 2D coordinates in the RGB
image of the corresponding points to acquire the 3D coordinates of the observation points.

The observation points of the RGB-D camera in Figure 3a were matched with the
corresponding control points in the 3D calibration field in Figure 3b. Then, the coordinates
of the more accurate control points were taken as true values to be compared with the
observation points from the RGB-D camera so as to compute the initial camera residual.
However, the coordinate system of the 3D calibration field is inconsistent with that of the
depth camera. Hence, before 3D point pairs are applied to calculate the 3D systematic error,
it is necessary to achieve the 3D coordinate transformation.



Remote Sens. 2021, 13, 4583 50f 15

5
a2
@
s
550127 . & W
464 ‘Aa
15
5 s w6
63 o 501 44
s %
‘2 50
45, 938 b up o am e o i [ Il “w
o 5 485 495 i) o /8% 5 - « o
4 e 8 o S 82 a% I° 'i a67 O st gy
8248 39 443 46 94 ug 493 824 335 s 06 Taw [~ 1500
a2 o3 368 4774, o 4% o 610 /
35 % w2 Y8 dep® =S 2 o 2 o ™ g;i ~
& ot 61 gt ;;m 61" gt 2000 g(;-;o b 3%2 a8 e [ 7000
853 a1 o 8% ¢
3 o 1Bu ww 0 ED g0 U0 g 201 4 Vop B o o /
501 e gy 7T 460 ~
a2 502 1000 — on 4% M 1o 467 sn | o%0
25, g5 6% off g o0 1% X T4 e /
3 jo il 2% an T oms 1% gl /
211 % 0 i o b 1 ~
213 Y 158 a0 s 143 5 64 / 6000
2 e 147 57 468 b aw ! 63 /
P A 5 1000 ~ W 162 ~
1 o 454 164 461 /" ss00
% o s 163 2000 /
0 4 452 8 #\—7,,,,;77 /
431 aa a5 61 0 -~ e [ 500
1 2000 2000 [ /
4000 7
? 1 1 | | | 1 | 500 oo T~ 4500
3 4 7000
4 3 2 1 0 1 2

Figure 3. Coordinates of

the control points in two coordinate systems. (a) In the depth camera; and (b) in the 3D
calibration field.

2.3. 3D Coordinate Transformation Relationship

Camera calibration finds the transformation model between the camera space and
the object space [32] and calculates the parameters of the camera imaging model [24]. We
suppose P.= (Xe,Ye,Ze,1)T is the homogeneous coordinates of a 3D point in the RGB-D
camera coordinate system, and its corresponding homogeneous coordinate in the world
coordinate system is Py,= (Xw,Yw,Zw,1)T. There are rotations, translations, and scale varia-

tions between them. According to the pinhole model [32], the coordinate transformation
can be achieved by the following formulas:

X Ri1 Rz Riz Tx Xuw
Yo | _ | R R Ry Ty Yo )
Ze R31 Rz Rsz T Zy
1 0 0 0 1/s 1
Ri1 Rz Ry
R=| Ry Rx Ry ()
R31 Rz Rss
T=[Tx Ty Tz ]T 3)

where R is a rotation matrix; T is a translation vector; and s is the scaling factor in the depth
image. R and T are the matrix and vector of the external parameters of the camera, respec-
tively.

Under the condition that the camera is not shifted or rotated, the camera coordinates
and image coordinates could be transformed to each other. This is realized by Formula (4).
The error compensation model proposed in this paper is based on image coordinates (x, )

and depth value d.
X fx /Z; 0 0 cx X
v|_ 0 fy/Zc 0 ¢y Y. @)
d 0 0 s 0 Z:
1 0 0 0 1 1

where f, and fy represent the focal lengths of the camera; (cy, cy) is the aperture center; and
s is the scaling factor in the depth image.
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2.4. Inlier Determination Based on BaySAC

The gross errors in the depth data required by the Kinect V2 has an impact on the

effects of 3D coordinate transformation; thus, we adopt the optimized BaySAC as pro-
posed by Kang [33] to eliminate them. BaySAC is an improved random sample consensus
(RANSAC) algorithm [34]. The Bayesian prior probability is used to reduce the number
of iterations by half in some cases and improve the performance of the algorithm effec-
tively to eliminate outliers, which makes BaySAC significantly superior to other sampling
algorithms [35]. The procedure of the algorithm is as follows:

@

@)

®)

4)

)

(6)

Calculate the maximum number of iterations K using Formula (5):

_ log(1—p)
 log(1 —w") ©)

where w is the assumed percentage of inliers with respect to the total number of
points in the dataset; and the significance level p represents the probability that n
(the model proposed in this paper needs at least 4 point pairs, so n is greater than or
equal to 4) points selected from the dataset to solve the model parameters in multiple
iterations are all inliers. In general, the value of w is uncertain, so it can be estimated
as a relatively small number to acquire the expected set of inliers with a moderate
number of iterations. Therefore, we initially estimate that w is approximately 80% in
this experiment. The significance level p should be less than 0.05 to ensure that the
selected points are inliers in the iteration.

Determine the Bayesian prior probability Px, v, z,) of any 3D control point using
Formula (6) as follows:

V (AX) + (AY)? + (aZ)?
T xaavo iz ©

P(X Y Z0)

where Pxy, yu,zw) is a probability; and (AX,AY,AZ) represents the deviation between
the 3D point and its transformed correspondence. If the sum of squares AX, AY and
AZ is smaller, it means that the above deviation is smaller and it is more reliable; and
if the sum of squares Xy, Y and Z;, is larger, it means that the point is closer to the
borders of the 3D points set, so these points are better for 3D similarity transformation.
Compute the parameters of the hypothesis model. From the measurement point
set, n points with the highest inlier probabilities are selected as the hypothesis set to
calculate the parameters of the hypothesis model.

Eliminate outliers. The remaining points in the dataset are input into Formula (1),
and the differences are obtained by subtracting two sides of the equation. After the
inliers and outliers are distinguished by the value, outliers whose distance exceeds
the threshold are removed.

Update the inlier probability of each point. The inlier probability is updated by the
following formula [35] and then enters the next cycle:

P e DP(H ¢ Iliel) .
Piel) = P(H; 7 1) , LEH
Ptfl(l‘EI), i ¢ Hy

@)

where [ is the set of all inliers. H; denotes the set of hypothesis points extracted from
iteration t of the hypothesis test. P;_1(i€l) and P; (i€l) are the inlier probabilities for
data point i for iterations t — 1 and ¢, respectively. P(H; ZI) represents the probability
of the existence of outliers in hypothesis set H;. P(H;ZI1i€I) is the probability of the
existence of outliers in hypothesis set H; when point i is an inlier.

Repeat the iterations. Steps 3-5 are repeated until the maximum number of iterations
Kis reached.
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(7)  Acquire the optimized inliers. The model parameters with the largest number of
inliers are used to judge the inliers and outliers again to acquire the optimized inliers.

2.5. Parameter Calculation of 3D Registration Model

After the gross errors have been eliminated, the parameters of the 3D registration
model are calculated by the iteration method with variable weights. In this way, the slightly
larger accidental errors in the data are controlled. Each point is set with a weight by
Formula (8) [36]:

k+1 _ k
Pt =1/(|v;

+ c) (c—0) 8

where P; is a weight value of 3D point i; k represents the kth iteration (k=1,2, ... ); iis the
observed ith 3D point; c is set to make the denominator of the formula not equal to 0; and
V; is the ith residual in vector V of Formula (9), which is the matrix form of Formula (1).

V—s{lg HPW—PC )

The meaning of Formula (8) is that a point with large residuals is regarded as unreli-
able, so it is assigned a low weight.

After the residual of each control point is calculated and updated by Formula (8), the
iterations continue until the corrections are no longer reduced.

2.6. 3D Compensation Method for Systematic Errors

By analyzing the errors of the Kinect V2 depth camera and referring to the systematic
error equation of an ordinary optical camera, we can infer that the systematic errors of the
RGB-D camera depend on both the image coordinates (x, y) and the corresponding depth
value d. Therefore, based on this, a new 3D compensation method for the systematic errors
of a Kinect V2 is established in this paper.

2.6.1. Error Compensation Model in the XOY Plane

In the XOY plane, the distortion of the camera lens briefly includes radial distortion
and decentering distortion, so it can be compensated as follows [37]:

x' = x(1+ kyr? + kor* + kar®) + 2p1xy + pa (r? + x2)

v =y(1+kir® + kor* + kar®) + p1 (2 + y?) + 2poxy 10)

where (x,y) represents the 2D image coordinates of the original image; (x",y’) represents
the corrected image coordinates; k1, ky and k3 are the coefficients of the radial distortion;
r=4/x? 4 y? is the distance from the point to the principal point or image center; and p;
and p; are the coefficients of the decentering distortion. The distortion parameters were
calculated using Zhang’s method [24].

2.6.2. Error Compensation Model in Depth

Regarding the systematic errors in the depth direction, three error models (i.e., linear
model, quadratic model, and cubic model) are established to fit the systematic errors of
an RGB-D camera. Then, a stepwise regression method is applied to screen and retain the
main parameters of the compensation model and avoid the overparameterization issue.
Finally, three models for error compensation including all parameter items before being
optimized are as follows:

Linear model:

Ad = ag + a1x" + ayy’ + azd + agr’ (11)

Quadratic model:

Ad = ag + a1x" + ary’ + azd + ayr’ + asx’? + a6y’2 + ayd® + agr’*+

12
+ agx'y' + ayox'd + ap X't + appy'd + arsy'r’ + aadr’ (12)
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Cubic model:

Ad = ag+a1xX + axy' + azd + agr’ + asx’? + a6y’2 + a7d? + agr’® + agx'y" + ajpx’d

3 3 3 2
+apx'r’ + Lllzy,d + ﬂ13y/1’/ + aygdr’ + asx’” + ﬂ16y, + ﬂ17d3 + a1gt’” + ajex’ yl
2 2 2 2 2
+agx'“d + ao X1 + any’ X' + ansy’“d + aogy’ 1 + axsd®x’ + ased?y’ + azyd?r’
2 2 2
+aygr" x + axor’ y’ +azor'd + ag,lx’y’d + 6132x/y’7" + azzx'dr’ + a34y’d1”

(13)

where (x”,y") represents the corrected image coordinates in a depth image; d is the corre-
sponding depth value; Ad is the residual in the depth direction; ag is a constant term; a5, a5,
..., a34 are the compensation coefficients in the depth direction; and r” is the distance from

the point to the principal point or image center, and its value is /x/* + y'* + d2.

2.7. Accuracy Evaluation

This paper has three experiments for verifying the accuracy and proving the general-
ization ability of the compensation model as follows:

(1) Three-dimensional calibration field experiment: Here, 80% of the inliers are used as
control points to train the models for error compensation, and the remaining 20%
points are used as check points to evaluate the accuracy using cross validation and
the root mean square error (RMSE). The dataset was randomly split 20 times in order
to reduce the impact of the randomness of dataset splitting on model accuracy. Then,
the average accuracy of 20 splits for the compensation of each model was calculated
and compared to acquire the optimal model. The smaller the RMSE is, the better the
model effect.

(2) Checkerboard verification experiment: The checkerboard images were taken by the
Kinect V2 camera every 500 mm from 500 to 5000 mm. Then, the coordinates of
checkerboard corner points were extracted and compensated through the optimal
compensation model separately. Finally, the RMSE of the checkerboard before and
after RGB-D calibration was calculated and compared to verify the effect of the 3D
compensation model.

(3) Sphere fitting experiment: The optimal model is applied to compensate for the
spherical point cloud data captured by the Kinect V2 depth camera. Then, the
original and compensated point cloud data are respectively substituted into the
sphere fitting equation in Formula (14) to obtain the sphere parameters and residuals.
Finally, the residual standard deviation is used to verify the effect of 3D compensation
and reconstruction.

F(a/ b,c, R) = (Xsphere - a)z + (Ysphere - b)2 + (Zsphere - C)2 —R? (14)

where (Xspheres Yspheres Zsphere) Tepresents the 3D coordinates of the sphere; (4, b, c) are the
coordinates of the center of the sphere and R is the radius of the sphere.

3. Results

The experimental design is as follows. The first step is to preprocess the 3D data,
including eliminating the gross errors based on the BaySAC algorithm to obtain accurate
inliers, computing the residual, and splitting all inliers into control points and check points.
In the second step, three models for systematic error compensation are established based
on control points, the cross validations are evaluated by checkpoints, and then the models
are compared so that the optimal model can be selected. Finally, the checkerboard and
real sphere data are used to verify the effectiveness of the compensation of the optimal 3D
model that can be applied to the field of 3D modeling.

3.1. Pre-Processing of 3D Data

Figure 4a shows that even if there is considerable noise in the data, the outliers could
be eliminated accurately by BaySAC. Then, the iteration method with variable weights
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was used to compute the parameters of the 3D registration model and control the slightly
larger accidental errors in the data. The inliers were randomly and uniformly split into
80% control points and 20% check points 20 times, and one split of the dataset is shown in
Figure 4b.

+ Inliers 6
55 *  Outliers

+  Control Points
+  Check Points

(a) (b)

Figure 4. 3D points in RGB-D camera. (a) Inliers and outliers calculated by BaySAC; and (b)
distribution of control points and check points.

After the coordinate systems were unified, the residuals between the 3D coordinates
of the corresponding points were calculated by Equation (9). Then, the results of the
distribution and direction of the residual after coordinate transformation are shown in
Figure 5, where the arrow represents the error vector. The figure shows that the error of
Kinect V2 depth measurement is obviously related to the 3D coordinates of the measured
object in space, and this verifies the systematic spatial distribution of the errors.

2 15 1 05 \g -05 -1 15 -2 -253 &8
5
N = F -2 \[ T ; —
A A 4
(\\ '\ /; = = A 5 / / /// lz g&l V \}’
-~ L. iy f / V
SUARE K Y Dox / )
35 -
AL 14TV VNN N 1 |l 1l |
// / / Tl \7\: ~ 7 7 3 \\ 1 / / ///
- g 7 (R N / ////
J v 25 E \ Lz L l‘//
,\ ) = - 7 + v
T \ ’ 50 T T T T T 1
4 X 2 15 1 05 0 =05 -1 -15 -2 =25
Y
(a) (b)

Figure 5. The error distribution and direction of observation points of the Kinect V2 RGB-D camera.
(a) Error distribution under the XOY plane; and (b) error distribution in 3D space. The direction of
the arrow indicates the direction of the error, and the unit in the figure is mm.

3.2. Establishment of Error Compensation Model in 3D Calibration Field

After the x and y errors of the 2D image were compensated by Formula (10), the errors
in the depth direction were also compensated and calculated by stepwise regression, which
can test the hypothesis and screen the parameters. Therefore, the optimal linear, quadratic,
and cubic models for residual compensation are as follows:

Linear model:

Ad = ag + a1x’ + agy’ + agr’ (15)
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Quadratic model:

Ad = ag + a1x" + ay’ + agr’ + agx'y/ (16)
Cubic model:
Ad = ag + a1x’ + axy’ + agr’ + agx'y’ + apx'v' + aysx’ + apsd®x’ + azx'y'd (17)

Then, check points (i.e., cross validation) were substituted into the three models to
calculate the RMSE and the percentage reduction of the error before and after correction
in the 2D, depth and 3D directions. The average RMSEs of the 20% splits before and after
correction were calculated. The results are shown in Table 1.

Table 1. Effects of three error compensation models. Bolded numbers indicate the best accuracy in the comparison.

RMSE
Dimension Compensation Model
Before Correction After Correction Percentage Reduction of Error

2D 2D correction model 0.0963 0.0794 17.55%
Linear model 0.0161 91.19%

Depth Quadratic model 0.1828 0.0165 90.97%
Cubic model 0.0174 90.48%

Linear model 0.0794 61.58%

3D Quadratic model 0.2066 0.0795 61.53%
Cubic model 0.0797 61.45%

The result shows that all the 3D error compensation models can compensate for the
systematic error to a certain extent. Compared with the quadratic and cubic models, the
linear model is the most effective because it can compensate 91.19% of the error in the
depth direction, and its coordinate error in the 3D direction can be reduced by 61.58% due
to different denominators of percentages. Please note that the percentages of improvement
calculated in the paper were acquired from the raw results of RMSE, but for presentation
purposes, the results of before and after correction are rounded in the table, while the latter
are referenced to this standard. The effect of the 3D compensation model outperforms that
of the 2D and 1D (depth) compensation models. In addition, the » with better significance
is retained.

3.3. Accuracy Evaluation Based on Checkerboard

To prove the generalization of the optimal compensation model for different distances,
a high accuracy chessboard was used in the experiment. The data were taken by the Kinect
V2 camera every 500 mm to acquire 10 sets of images, i.e., color images and corresponding
depth images within the range of 500-5000 mm. As seen in Figure 6, many data points are
missing due to the short distance at 500 mm.

Then, the coordinates of the checkerboard corner points at different distances were
extracted and compensated through the optimal compensation model. The RMSEs before
and after correction in the 3D direction are summarized in Table 2.
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Figure 6. Checkerboard data collected at different distances. (a) 500 mm; (b) 1000 mm; (c) 1500 mm; (d) 2000 mm;
(e) 2500 mm; (f) 3000 mm; (g) 3500 mm; (h) 4000 mm; (i) 4500 mm; and (j) 5000 mm.
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(a)

Figure 7. Images of a sphere taken by a Kinect V2. (a) Color image; (b) depth image; and (c) 3D point cloud data.

Table 2. Compensation effect of the optimal model on the checkerboard at different distances.

RMSE

Distance (mm) : : .
Before Correction  After Correction Percentage Reduction of Error

500 0.0463 0.0444 4.20%
1000 0.0694 0.0407 41.31%
1500 0.0846 0.0283 66.50%
2000 0.1268 0.0411 67.53%
2500 0.1374 0.0242 82.37%
3000 0.1611 0.0197 87.79%
3500 0.1958 0.0248 87.35%
4000 0.2200 0.0216 90.19%
4500 0.2889 0.0599 79.25%
5000 0.2092 0.0469 77.59%

The results show that all the error values of the data at different distances were
improved. Although the compensation accuracies at distances of 500 mm (4.20%) and
1000 mm (41.31%) were relatively low, the compensation accuracy reached 60% at other
distances, especially up to 90.19% at 4000 mm. The compensation effect increased to the
maximum value at 4000 mm and then decreased at 4500 mm with the change in distance.

3.4. Accuracy Evaluation of the Model for Real Sphere Fitting

A regular gypsum sphere with a polished surface was used in this experiment. The
Kinect V2 camera was utilized to collect color images at multiple angles, as shown in
Figure 7a; and depth images, as shown in Figure 7b. The 3D point cloud data obtained
after processing are shown in Figure 7c.

e ——

(b) (c)

After the outliers were removed, the optimal 3D compensation model proposed
was utilized to correct the spherical coordinates. Finally, the original coordinates and
optimized coordinates were substituted into the sphere fitting model to calculate the sphere
parameters and residual standard deviation, respectively.

In the results, the residual standard deviation of the coordinates before correction was
0.3354 mm and after correction was 0.3024 mm, and the error was reduced by 9.84%. The
coordinates of the three directions can all be improved, and the sphere radius fit by the
optimized coordinates was closer to the real value (shown in Figure 8b).
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Figure 8. Compensation effect of optimal model on sphere data. (a) Before correction; and (b) After correction.

4. Discussion

@

)]

®)

4)

©)

We analyze and discuss the results of the above experiments as follows:

The optimized BaySAC algorithm can effectively eliminate gross errors. This oc-
curs because the algorithm adds the influence of Bayesian prior probability into the
RANSAC algorithm, which could reduce the number of iterations by half. In addition,
a novel robust and efficient estimation method is applied that leads to the outliers be-
ing eliminated more accurately, and the relatively accurate coordinate transformation
relationship can also be determined.

The accidental error could be further reduced by the iteration method with variable
weights. In the parameter calculation process of the 3D registration model, the
residuals between the matching points are used to update the weights until the
iteration termination condition is reached. While more optimized parameters of the
3D registration model are obtained, the influence of larger accidental errors could
also be reduced.

The systematic error of the depth camera could be controlled better by the error
compensation model. Because some errors existed in the three directions of the
depth data, compared with the 2D calibration field, the 3D calibration field with
depth variation among control points can preferably meet the requirements of RGB-D
camera calibration in the depth direction. Moreover, it is also helpful to obtain depth
data with better accuracy.

Model optimization can reduce part of the model error. Three systematic error
compensation models are established in the paper, and then we compared their
compensation effects and selected the optimal model to calibrate the RGB-D camera.
The results show that the linear model obtains the best compensation result. This may
be because the essential errors of the Kinect V2 are relatively simple so that the linear
model fits it well and has no overparameterization issue. Hence, the linear model has
good generalization ability with simple parameters, while the quadratic and cubic
models are relatively complicated.

The proposed compensation models are effective and have good generalization ability,
which allows them to be applied to 3D modeling. This has been proven by the
realization of the checkerboard and sphere fitting experiments, and the generalization
differences are discussed below.

The checkerboard results show that the model has a good compensation effect in the

appropriate shooting range (500-4500 mm) of the Kinect V2. However, the compensation
effect gradually decreases when the distance is too close or too far. The result is consistent
with that of the 3D calibration field, and some compensation effects are higher than the
calibration field as the distance changes. The reason may be that the checkerboard has high
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manufacturing accuracy (£0.01 mm), and its surface has been specially treated by diffuse
reflection and no light reflection so that the error caused by reflection is greatly reduced,
which ensures original data quality.

In addition, the manufacturing process of the sphere may not be sufficiently strict;
and the surface of the sphere is relatively smooth, which may result in some reflection
errors. Hence, the compensation result is not as good as the 3D calibration field data
and checkerboard.

5. Conclusions

In this paper, a Kinect V2 depth camera is taken as the research object and a new
3D compensation method for systematic error is proposed. The proposed linear model
can better compensate for the systematic errors of a depth camera. The method considers
overparameterization and provides a high-quality data source for 3D reconstruction.

Future work will focus on the depth measurement error caused by mixed pixels
generated by low resolution and an estimation of the continuous depth value through
the neighborhood correlation method. In addition, there are some more accurate camera
calibration models (e.g., Sturm’s model [25]) that will be studied to further improve the 3D
compensation accuracy for a Kinect RGB-D camera.
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