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Abstract: Landslide processes are a consequence of the interactions between their triggers and the
surrounding environment. Understanding the differences in landslide movement processes and
characteristics can provide new insights for landslide prevention and mitigation. Three adjacent
landslides characterized by different movement processes were triggered from August to September
in 2018 in Hualong County, China. A combination of surface and subsurface characteristics illus-
trated that Xiongwa (XW) landslides 1 and 2 have deformed several times and exhibit significant
heterogeneity, whereas the Xiashitang (XST) landslide is a typical retrogressive landslide, and its
material has moved downslope along a shear surface. Time-series Interferometric Synthetic Aperture
Radar (InSAR) and Differential InSAR (DInSAR) techniques were used to detect the displacement
processes of these three landslides. The pre-failure displacement signals of a slow-moving landslide
(the XST landslide) can be clearly revealed by using time-series InSAR. However, these sudden
landslides, which are a typical catastrophic natural hazard across the globe, are easily ignored by
time-series InSAR. We confirmed that effective antecedent precipitation played an important role
in the three landslides’ occurrence. The deformation of an existing landslide itself can also trigger
new adjacent landslides in this study. These findings indicate that landslide early warnings are still
a challenge since landslide processes and mechanisms are complicated. We need to learn to live
with natural disasters, and more relevant detection and field investigations should be conducted for
landslide risk mitigation.

Keywords: landslides; evolution; landslide trigger landslide; InSAR

1. Introduction

Landslide processes and evolution are influenced by the interactions between trig-
gering events and local natural conditions, including hillslope topography and geological
background [1–4]. These processes can reflect the differences in landslides’ deformation
patterns and the spatial redistribution characteristics of their materials [5–10], which is
helpful in understanding the mechanisms of slope instability. Landslides processes vary
even for adjacent hillslopes with similar geological and topographical conditions due to
the complexity of the relationship between their internal structure and triggers [11–14].
Thus, it is important to provide new insights for hazard mitigation based on landslides
characterized by different movement processes.

The deformation signal of landslide is a key parameter for early landslide warning
systems. It reflects the deformation degree of the hillslope and determines how the local
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government response [15]. Many traditional monitoring techniques, such as the Global
Positioning System (GPS) and levelling techniques [16,17], are implemented on potentially
unstable hillslopes in order to obtain surface deformation, which can partially decrease
economic losses and human casualties. However, limited ground monitoring equipment
still hardly meets the demand of landslide warnings, especially in mountainous regions
where numerous sudden landslides occur. With recent advances in Earth observation
techniques, Interferometric Synthetic Aperture Radar (InSAR) has dramatically improved
our understanding of landslide movement processes at sub-centimeter accuracies over a
large area, even in regions with high cloud cover [18,19]. Dai et al. [15] and Xu et al. [20]
reported that time-series InSAR analysis combined with in situ sensors is a feasible method
for building a landslide early warning system. However, InSAR is unable to identify large
surface movement over shorter periods of time [21], such as the sudden landslides [22]
and large surface subsidence caused by underground mining. In addition, the influence of
vegetation on the accuracy of surface movement monitoring cannot be neglected, especially
in mountainous regions with high topographic relief [23,24]. Thus, landslide monitor-
ing and timely early warning remain a challenge in underdeveloped regions due to the
inadequacies of in situ sensors and the hidden and sudden nature of the landslides in
these regions.

Several studies have revealed that most landslides exhibit early deformation via
primary creep, secondary creep, and tertiary creep phases [25–28]. Although the mass
movement of each landslide is unique since it is significantly associated with local geologi-
cal and topographical conditions, this still provides a theory for landslide early monitoring
systems and opportunities for risk mitigations with respect to damages caused by natural
disasters [15,29,30]. The popularization of low cost Unmanned Aerial Vehicles (UAVs) has
allowed us to quickly acquire high-resolution orthophotos and Digital Elevation Models
(DEMs) of regions of interest. It makes hillslope scale surface displacement mapping
possible over relatively long periods of time, particularly for slow-moving landslides [5,15].
However, the entire movement process is difficult to monitor when using a single method.
These techniques have been combined with displacement sensors and geophysical meth-
ods in order to promote the development of landslide investigation and early warning
systems [31–33].

It should be noted that both InSAR detection and UAV investigations do not provide
enough information about the internal structures of landslides. In recent decades, geophysi-
cal methods have provided the opportunity to understand slide processes and to determine
the correlation between surface microtopography and internal structure. Electrical Resis-
tivity Tomography (ERT) and Ground Penetrating Radar (GPR) are the main methods used
for investigating the internal structures of landslides [34]. The former can provide evidence
for determining the depth and water content of landslide deposits [35,36]. The latter is
sensitive to dielectric and water contents, and so it can be used to reveal the distribution
of water in the deposits [37]. Geophysical methods promote landslide investigation from
the surface to the subsurface. Multiple instruments make landslide investigation more
comprehensive.

Here, we used multiple instruments and methods, such as time-series InSAR and DIn-
SAR analysis, multitemporal aerial image interpretation, UAV surveys, field investigations,
and ERT detection, in order to examine three adjacent landslides that occurred in almost
the same period in Qinghai Province, China. The aims of this study were to examine the
differences in deformation processes and evolution with respect to the three landslides,
responses of internal structure to landslide event, and possible triggering factors. The
results of this study can provide new insights for multi-scale investigations of landslide
risk mitigation on the Northeastern Tibetan Plateau.

2. Study Area

Hualong County is located in Qinghai Province, where the Tibetan Plateau and the
Loess Plateau connect. This region is characterized by high relief and steep slopes due to
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sustained uplift and regional tectonic movement (Figure 1) [38,39]. The annual precipitation
is 451 mm (China Meteorological Data Service Center, http://data.cma.cn/ (accessed on
2 September 2021)). A number of landslides have been triggered in this region, and they
always cause casualties and severe damage to infrastructure. From 2 July 2018 to 4 October
2018, three landslides occurred successively in Jinyuan Tibetan township, Hualong County,
Qinghai Province, China (Figure 1a). Xiongwa (XW) landslides 1 and 2 (Figure 1c) occurred
on 2 September 2018. These two landslides tore apart about 3.8 km of road S306. It should
be noted that XW landslide 2 occurred on the hillslope where a landslide had previously
occurred on 8 September 2007. The other landslide was the Xiashitang (XST) landslide
(Figure 1c), which occurred from 6 August 2018 to 10 September 2018, according to Sentinel-
2 images. The houses and farmland located in the toe area of the XST landslide continue to
be at risk since the landslide body is still unstable.
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Figure 1. (a) Locations of the Tibetan Plateau, Loess Plateau, Hualong County, and the three adjacent
landslides (Xiongwa landslides 1 and 2 and the Xiashitang landslide). (b) Pre-failure images taken
on 2 July 2018. (c) Post-failure images taken on 4 October 2018. The electrical resistivity tomography
(ERT) profiles AA’, BB’, and CC’ in Xiongwa landslides 1 and 2 and profiles DD’, EE’, and FF’ in the
Xiashitang landslide are shown in (c).

The lithosomes of the three landslides are mainly covered by orange glutenite (in-
terbedding hard and soft clastic rocks), which are categorized as terrigenous clastic sedi-
ments (Figure 2a). There is a weathered soil layer covered on top of the substratum with
a thickness around 1–2 m, which is the weathering product of orange glutenite. Field
investigation revealed that the landslide bodies mainly consist of unweathered substratum
(glutenite) and weathered soil (Figure 2b,c). This orange glutenite is characterized by

http://data.cma.cn/
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poor physical and mechanical properties and poor weathering resistance. Moreover, the
well-developed fissures result in rocks having low strength; thus, the rocks are prone to
sliding due to the formation of weak geological structures [40,41]. Thus, the hillslope is
prone to sliding under the influence of rainfall.
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Figure 2. Lithologic map and field investigation of the three landslides. (a) the lithologic map and
location of XW landslides 1 and 2, and XST landslide. (b,c) typical profiles of the XW landslide 1 and
XST landslide. A weathered soil layer covered on orange glutenite with a thickness about 1–2 m.

3. Methods
3.1. Measurement of Landslide Surface Movement Distance and Direction

The aerial images of pre-failure and post-failure moments allow us to track the move-
ment of the surface features. Based on the aerial images obtained on 2 July 2018 (SPOT7)
and 4 October 2018 (SPOT6), with a resolution of 1.5 m, the locations of the same surface
features (e.g., roads) were first identified in different aerial images. Then, the same surface
features were connected with lines. The lengths of the lines were measured to quantify
movement distance, and the angles between the lines and north were confirmed as the
movement direction of the surface features using ArcGIS 10.2 (ArcGIS by Esri). In this
manner, a vector displacement field was mapped.

3.2. Time-Series InSAR and DInSAR Analyses

A total of 31 Sentinel-1 ascending orbit interferometric images acquired from 4 Septem-
ber 2017 to 30 August 2018, with a spatial resolution of 20.0 × 5.0 m (Azimuth × Range,
A × R), were obtained from the European Space Agency (ESA). The image obtained on
10 October 2017 was chosen as the super master (Figure 3). A Shuttle Radar Topogra-
phy Mission (SRTM) Digital Elevation Model (DEM) (30 m) with a vertical accuracy of
±10 m was used as the topographic reference (https://earthexplorer.usgs.gov/ (accessed
on 11 June 2021)). The small-baseline subset (SBAS) technique was used to obtain cumu-
lative displacements of the three landslides in this study. Forty-five days was taken as
the temporal baseline, and 200 m was taken as the spatial baseline. The orbit datasets
generated 87 interferometric pairs. We also conducted DInSAR analysis based on two
pre-failure interferometric images (acquired on 18 August and 30 August 2018) and one
post-failure image (acquired on 11 September 2018) in order to detect sudden movement of
the landslides (Figure 4).

https://earthexplorer.usgs.gov/
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3.3. UAV Surveys

We carried out UAV photogrammetry on 21 December 2020 and 28 June 2021 (Table 1).
The UAV used was a DJI PHANTOM 4 RTK. We designated the flight heights as 300 m
on the first survey and 200 m on the second survey. The flight speed was 7.9 m/s for
both surveys. We set 6 and 21 ground control points (GCPs) to ensure the accuracy of
the orthophotos and the DEMs in the UAV surveys, respectively. The coordinates of each
GCP were measured by using a Global Navigation Satellite System Real-Time Kinematic
(GNSS RTK) (CHCNAV, i50, China). The orthophoto and DEM were generated by using
the Pix4Dmapper software (Pix4Dmapper, 2017). The coordinate system used was the
WGS_3_Degree_GK_CM_102E. In this manner, two high-resolution DEMs and orthophotos
were generated.

Table 1. UAV flight parameters for two different surveys.

UAV Surveys

Date 21 December 2020 28 June 2021
Flight altitude (m) 300 200

Number of photos used in model 390 1248
Number of GCPs 6 19

DEM and orthophoto resolution (m) 0.1 0.08

Scope Xiongwa landslides 1 and 2 Xiongwa landslides 1 and 2 and
XST landslide
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3.4. Electrical Resistivity Tomography Detection of the Internal Structures of the Landslides

Most landslides have large heterogeneities due to variations in materials and local
slope topography. Electrical resistivity tomography can reveal water content distributions
at different depths along a profile, which constitutes key evidence for investigating the
internal structure of landslide deposits [36]. In this study, we used electrical resistivity
tomography to detect the internal structures of the landslides along three profiles in XW
landslides 1 and 2 and three profiles in the XST landslide. The ERT instrument used was
a GeoERT IP 2401 (Beijing, China). Electrode spacing was set at 5 m, and the effective
measuring depth reached about 75 m along profiles AA’, BB’, and CC’ and about 75 m,
55 m, and 55 m along profiles DD’, EE’, and FF’, respectively (Figure 1c). The coordinates
of each electrode were measured by using GNSS RTK.

3.5. Effective Antecedent Precipitation

Precipitation is regarded as a key trigger for landslides in most mountainous and hilly
areas. It should be noted that hillslope stability is not only influenced by the precipitation
on the day of the event but also by the precipitation within a certain period preceding a
landslide [42]. This is referred as to the effective antecedent precipitation, and its influence
on the soil water content will gradually decay due to evaporation. Thus, we followed the
method of Ma et al. [42] and Guo et al. [43] and used the effective antecedent precipitation
(EAP) to evaluate the contribution of precipitation to hillslope instability:

EAP = P1·K + P2·K2 + . . . + Pn·Kn (1)

where EAP is the effective antecedent precipitation, Pi is the daily precipitation on the ith
day before the landslide, n is the number of days before the landslide (1 ≤ i ≤ n), and K
is the decay coefficient due to evaporation [42]. Here, following Ma et al. [42], K was set
to 0.84.

4. Results and Discussion
4.1. Evolution and Displacement of the Three Adjacent Landslides
4.1.1. Evolution of XW Landslides 1 and 2 and Its Influence

As is shown in Figure 5, road S306 was mainly destroyed by the landslides on
8 September 2007 and 2 September 2018. Historical aerial images revealed that the earlier
landslide, which occurred on 8 September 2007, was located in the middle of the hillslope,
and it destroyed about 2.7 km of road S306 (Figure 5b). As shown in Figure 5a, the main
sliding direction of XW landslides 1 and 2 was east. Due to the fact that road S306 is the
key road from Bayan Town to Guanting Town, the government had to repair the damaged
road in order to ensure that traffic could pass through, but the risk of future landslides
to inhabitants and their houses and farmland remained. On 2 September 2018, about
3.8 km of road S306 was destroyed again by XW landslides 1 and 2 (Figure 5d), which
disrupted traffic for 10 days. Then, road S306 was repaired again after the second landslide.
It is likely that this portion of road S306 will be destroyed again as the landslide region
remains unstable.

Road construction is difficult and expensive, especially in underdeveloped moun-
tainous areas. Thus, even though the road was damaged by landslides several times,
the government had to repair the road multiple times over a short period. Short-term
evacuation, but not relocation, is feasible for most villages because their property, such
as their houses and farmland, cannot be moved. As a result, we have to learn how to
live with the risk of landslides. Fortunately, with the development of monitoring tech-
niques, more early warning systems are being used to provide key information for hazard
warning announcements.



Remote Sens. 2021, 13, 4579 7 of 19Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 5. Road S306 was destroyed by the landslides on 8 September 2007 and 2 September 2018. 
The images in (a,b) were acquired from Google Earth on 23 October 2002 and 17 October 2011, 
respectively. The two SPOT images in (c,d) were acquired on 2 July 2018 and 4 October 2018, re-
spectively. The two UAV-based orthophotos in (e,f) were acquired on 21 December 2020 and 28 
June 2021, respectively. 

4.1.2. Landslide Surface Movement Vector Field 
Figure 6a shows that only a few points can be treated as reliable ground features and 

were used to identify the movement direction and distance of XW landslides 1 and 2. The 
main sliding direction of XW landslide 1 was east, with a mean slip distance of 93.5 m. 
Moreover, the local topographic features helped us to estimate the slip directions in re-
gions 1 and 2 (black dashed circles 1 and 2 in Figure 6a). Part of the deposits moved down-
ward into the gully, with a S–SE direction in region 1 and a N–NE direction in region 2. 
The ground features in the middle of the hillslope were completely destroyed, so the dis-
placement in this region could not be identified. The results of the vector fields in XW 
landslide 2 indicate that the displacement in the right part (with a mean slip distance of 
26.0 m) was less than that in the left part (with a mean slip distance of 81.5 m). 

The vector displacement field shown in Figure 6b was formed based on 18 pairs of 
ground features, which were identified in pre-landslide and post-landslide aerial images. 
The vector fields of the XST landslide were completely different from those of XW land-
slides 1 and 2. With the exception of region 1 (black dashed circle 1 in Figure 6b), which 
lacked the reliable ground features needed to confirm the direction and distance of the 
movement, clear vector fields were obtained for the other parts of the XST landslide. Their 
displacements ranged from 16.0 to 46.1 m, with a mean distance of 30.9 m. Displacement 
gradually decreased from the NW to the SE. All of the directions of the vectors showed 
that the main slip direction of the XST landslide was east. The vector displacement fields 
demonstrated that the XST landslide was a typical retrogressive landslide; that is, the 
movement distance in its upper part was greater than that in its lower part. Most of the 
topography and geomorphology in this region differ from those of a natural hillslope due 
to the construction of terraced fields. These changes in topography may be the key factors 
that caused the old landslide and the XST landslide. The entire landslide body, except for 
the upper part, moved downslope, but the relative spatial positions of the surface features 

Figure 5. Road S306 was destroyed by the landslides on 8 September 2007 and 2 September 2018. The
images in (a,b) were acquired from Google Earth on 23 October 2002 and 17 October 2011, respectively.
The two SPOT images in (c,d) were acquired on 2 July 2018 and 4 October 2018, respectively. The two
UAV-based orthophotos in (e,f) were acquired on 21 December 2020 and 28 June 2021, respectively.

4.1.2. Landslide Surface Movement Vector Field

Figure 6a shows that only a few points can be treated as reliable ground features
and were used to identify the movement direction and distance of XW landslides 1 and
2. The main sliding direction of XW landslide 1 was east, with a mean slip distance of
93.5 m. Moreover, the local topographic features helped us to estimate the slip directions
in regions 1 and 2 (black dashed circles 1 and 2 in Figure 6a). Part of the deposits moved
downward into the gully, with a S–SE direction in region 1 and a N–NE direction in region
2. The ground features in the middle of the hillslope were completely destroyed, so the
displacement in this region could not be identified. The results of the vector fields in XW
landslide 2 indicate that the displacement in the right part (with a mean slip distance of
26.0 m) was less than that in the left part (with a mean slip distance of 81.5 m).

The vector displacement field shown in Figure 6b was formed based on 18 pairs of
ground features, which were identified in pre-landslide and post-landslide aerial images.
The vector fields of the XST landslide were completely different from those of XW land-
slides 1 and 2. With the exception of region 1 (black dashed circle 1 in Figure 6b), which
lacked the reliable ground features needed to confirm the direction and distance of the
movement, clear vector fields were obtained for the other parts of the XST landslide. Their
displacements ranged from 16.0 to 46.1 m, with a mean distance of 30.9 m. Displacement
gradually decreased from the NW to the SE. All of the directions of the vectors showed
that the main slip direction of the XST landslide was east. The vector displacement fields
demonstrated that the XST landslide was a typical retrogressive landslide; that is, the
movement distance in its upper part was greater than that in its lower part. Most of the
topography and geomorphology in this region differ from those of a natural hillslope due
to the construction of terraced fields. These changes in topography may be the key factors
that caused the old landslide and the XST landslide. The entire landslide body, except for
the upper part, moved downslope, but the relative spatial positions of the surface features
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only changed slightly, which is key evidence confirming the movement process of the
XST landslide.
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Figure 6. Vector displacement fields of (a) Xiongwa landslides 1 and 2 and (b) the Xiashitang
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surface features mapped via visual interpretation.

4.1.3. Pre-Failure Displacement Detection Revealed by Time-Series InSAR

We used the InSAR technique to determine the pre-failure displacements of the
landslides from 4 September 2017 to 30 August 2018. Figure 7 shows the cumulative
displacements of the three landslides. We found that only the area along road S306 exhibited
a small displacement and that most of the regions did not exhibit significant displacement
for XW landslide 1. In particular, the main scarp region of XW landslide 1 was almost
stable. Thus, the XW landslide was a sudden landslide, and its short deformation period
was less than the Sentinel-1 satellite revisit period (minimum of 6 days). The cumulative
displacement of XW landslide 2, except for point L6, was less than 11 mm, illustrating
that XW landslide 2 was also still stable, except for the toe region (point P6) (Figure 7b).
However, the cumulative deformation of the XST landslide gradually increased from 4
September 2017 to 30 August 2018. Figure 7c–e illustrates that the instability occurred in
the upper part of the XST landslide first and then the deformation area gradually increased
(Figure 7f–i). From 20 June 2018 to 30 August 2018, except for the upper part of the XST
landslide, the main landslide body exhibited clear displacement (Figure 7j,k). The time-
series InSAR analysis revealed that the displacement at the top of the XST landslide was
negligible since this part did not move downward, but it was cracked by the movement
of the main body. This is also key evidence for illustrating that the XST landslide was a
retrogressive landslide.
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Figure 8c shows that the displacement at point R2 in the XST landslide was larger
than those at points R3 and R4, which were larger than that at point R1. Moreover, the
upper part of the XST landslide failed first (Point R2 in Figure 8a). This is consistent with
the results of the surface movement vector field based on pre-failure and post-failure aerial
images. As cumulative displacement increased, the lower part of the landslide moved
downward due to the extrusion of material in the upper part. Thus, the XST landslide was
a typical retrogressive landslide.
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4.1.4. Large Displacement Detection Revealed via DInSAR

An obvious phase jump was identified based on the interferograms of two adjacent
periods. It corresponds to severe low coherence, which means that a large amount of
displacement occurred in a short period of time. It general, this can be treated as the signal
of the landslide’s occurrence and can be used to identify where the larger deformation
occurred [19]. Figure 9a,b show that most of the parts of XW landslides 1 and 2 did not
exhibit significant interferometric fringes and were characterized by a higher correlation.
Thus, XW landslides 1 and 2 remained stable until 30 August 2018. However, the significant
interferometric fringes (Figure 9c) and low correlation (Figure 9d) indicate that a larger
displacement occurred in XW landslides 1 and 2 and part of the XST landslide from
30 August to 11 September 2018. This DInSAR analysis provides key evidence of the
occurrences of larger displacements, which means that XW landslides 1 and 2 occurred
without significant early deformation until 30 August 2018.

Most landslides around the world are preceded by deformations [15,24]. Deformation
detection of landslides that remain stable until several days or even one day before their
failure is undoubtedly difficult when using time-series InSAR analysis because Sentinel-1
images have a relatively long repeating period (minimum of 6 days). For example, for
Shuicheng landslide—which occurred on 23 July 2019, killed 42 people, and destroyed
21 houses in Guizhou, China—even in the latest image, which was acquired on 20 July 2019
(three days before the landslide), the surface deformation process was not detected via
multitemporal InSAR [22]. Thus, the InSAR technique can track the movement processes
of some potential landslides, but it ignores some unstable slopes that may transform into
catastrophic landslides. We have to learn how to live with this risk because natural hazards
are unavoidable and numerous landslides still cannot be detected [44]. The early warning
of landslides is still a challenge even with the development of the Earth observation system,
InSAR, UAV surveys, and in situ monitoring sensors. Determining where and when
landslides will occur still requires further study [15].
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11 September 2018.

4.2. Surface and Subsurface Characteristics of the Three Adjacent Landslides
4.2.1. Surface Characteristics Based on UAV and Field Investigations

We conducted field investigations and UAV surveys on 21 December 2020 and 28 June
2021. Figure 10a–d shows that XW landslides 1 and 2 tore apart the hillslope surface. Most
of the damage to the road and hillslope surface was X-shaped. A witness reported that
XW landslide 1 began as collapses in the main scarp area (Figure 10a) on the morning of
2 September 2018, and the entire hillslope moved slowly downward until the afternoon [45].
The deformation and movement processes of XW landslides 1 and 2 were different from
those of the landslides characterized by long-runout distances and great mobility. The
unstable material of latter landslides is usually semi-fluid, and it quickly slides along
the surface. However, the main body of XW landslides 1 and 2 did not exhibit obvious
liquefaction and, thus, moved slowly, which caused most of the parts of the landslide body
to deform several times due to interactions between the material and local topography. The
entire unstable hillslope length (including XW landslides 1 and 2) was more than 1200 m.
Figure 10b,c shows that the damaged road exhibited a different shape, which indicates that
the stress conditions varied in different parts of XW landslides 1 and 2.



Remote Sens. 2021, 13, 4579 12 of 19

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

[45]. The deformation and movement processes of XW landslides 1 and 2 were different 
from those of the landslides characterized by long-runout distances and great mobility. 
The unstable material of latter landslides is usually semi-fluid, and it quickly slides along 
the surface. However, the main body of XW landslides 1 and 2 did not exhibit obvious 
liquefaction and, thus, moved slowly, which caused most of the parts of the landslide 
body to deform several times due to interactions between the material and local topogra-
phy. The entire unstable hillslope length (including XW landslides 1 and 2) was more than 
1200 m. Figure 10b,c shows that the damaged road exhibited a different shape, which in-
dicates that the stress conditions varied in different parts of XW landslides 1 and 2. 

 
Figure 10. Field investigation of Xiongwa landslides 1 and 2, as well as the Xiashitang landslide. (a) the main scarps of XW 
landslide 1. (b,c) the destroyed road due to the XW landslides 1 and 2. (d) the destroyed road S306. (e,f) vertical offsets in 
head of the XST landslide. (g) typical fissures in the XST landslide. (h) the foot of the XST landslide. (i) the dammed lake 
in the toe of the XST landslide. 

The XST landslide was a reactivated landslide, which was located in an old landslide 
body (Figure 1c). Figure 10e shows that the head of the XST landslide was cracked and 
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[48] obtained from 2006 to 2011 with a resolution of 2.5 m, we examined elevation differ-
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Figure 10. Field investigation of Xiongwa landslides 1 and 2, as well as the Xiashitang landslide. (a) the main scarps of XW
landslide 1. (b,c) the destroyed road due to the XW landslides 1 and 2. (d) the destroyed road S306. (e,f) vertical offsets in
head of the XST landslide. (g) typical fissures in the XST landslide. (h) the foot of the XST landslide. (i) the dammed lake in
the toe of the XST landslide.

The XST landslide was a reactivated landslide, which was located in an old landslide
body (Figure 1c). Figure 10e shows that the head of the XST landslide was cracked
and formed several vertical offsets. In contrast, the foot of the XST landslide was not
significantly deformed since part of the deposition was transported into the river along
the gully. Two dammed lakes formed in the toe the XST landslide, which may become
sources of debris flow (Figure 10i). Thus, the houses and farmland located in the toe are
still threatened.

High resolution UAV-based DEMs and orthophotos have become powerful methods
in landslide surveying and mapping [46,47]. Here, by using a UAV-based DEM obtained
on 28 June 2021, which was resampled to a 2.5 m resolution in ArcGIS 10.2, in addition to
an Advanced Land Observing Satellite World 3-D Digital Surface Model (AW3D DSM) [48]
obtained from 2006 to 2011 with a resolution of 2.5 m, we examined elevation differences
during pre-failure and post-failure periods by using the Raster Calculator tool in ArcGIS
10.2. Figure 11a,e show that the upper and middle parts of the hillslope were actually
destroyed by two landslides, i.e., XW landslides 1 and 2, respectively. Moreover, the
slope (Figure 11c) and hillshade (Figure 11d) clearly show the main scarp of XW landslide
2, which was difficult to identify in the orthophotos (Figure 11b). Although part of the
landslide body has been artificial disturbed, the pre-failure and post-failure characteristics
of profile A–D still show the erosion and deposition regions of each landslide.
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Figure 11. UAV surveys showing that the failure of XW landslide 1 triggered the XW landslide
2. (a) Elevation differences revealed by AW3D DSM (pre-failure) UAV-based DEM (post-failure).
(b) Orthophoto, (c) slope, and (d) hillshade on main scarp of XW landslide 2. (e) Elevation changes
along profile A–D during pre-failure and post-failure stages.

4.2.2. Electrical Resistivity Tomography Detection of the Internal Structures of Landslides

We used electrical resistivity tomography to investigate the influence of landslides
with different movement processes on internal structures along six profiles (Figure 1c).
Figure 10 shows the distribution of the electrical resistivity in the XST landslide along
profile DD’ after four iteration calculations. The significant electrical resistivity changes
are interpreted as a possible shear surface. The depth of the shear surface varies from
20 to 40 m along the profile. Most of the region above the shear surface is characterized
by lower electrical resistivities (<10 Ωm). The region below the shear surface has a higher
electrical resistivity than compared to the surrounding area (>60 Ωm) and could be bedrock
or compacted soil. In the upper part of the XST landslide (upper 200 m) (red irregular
region 1 in Figure 12a), surface cracks promote water infiltration and result in this region
having high-water content.
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Figure 12. (a) Slope along profile DD’ in the Xiashitang landslide and (b) internal structure detection
of the Xiashitang landslide based on ERT.

Figure 13 shows the distributions of electrical resistivity in the XST landslide along
profiles EE’ and FF’ after four and five iteration calculations, respectively. Profile EE’ is
nearly perpendicular to the sliding direction and is longer than the landslide’s boundary
(Figure 13a). We found that both landslide flank regions (black and blue dashed circles in
Figure 13b) are characterized by lower electrical resistivity values than the surrounding
areas, which indicates that where soil structure has been disturbed, the water concentration
is higher. According to the differences in the electrical resistivity, we speculate that the
shear surface along profile EE’ varied from 20 to 25 m in depth. The landslide body has
lower electrical resistivities than the bedrock region. The same pattern was found along
profile FF’ (Figure 13d), but the shear surface along profile FF’ varied from 15 to 45 m in
depth. This indicates that the depth of the XST landslide varied in different parts of the
landslide, which may have been caused by local topography and soil properties.
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Figure 14 shows the distribution of electrical resistivities in XW landslides 1 and 2,
which are the result of five iteration calculations, along profiles AA’, BB’, and CC’ to a
maximum depth of about 70 m. Shear surface recognition of XW landslides 1 and 2 from
electrical resistivity tomography was difficult because the landslides are characterized by
significant heterogeneities along the profiles and with depth, which makes them difficult to
identify in 2D images. The post-failure road repair also changed the surface structure (to a
depth of about 5 m) and affected the electrical resistivity of the soil. However, the locations
of the road and damaged road are characterized by a larger resistivity (Figure 14).
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tomography (ERT) along profiles (a) AA, (b) BB′, and (c) CC’.

Electrical resistivity tomography has been widely used to detect the internal structures
of landslides based on 2D or 3D images of the spatial distribution of electrical resistiv-
ities [36]. ERT provides us with an opportunity to understand the landslide’s internal
structure without using boreholes. However, the internal structure was not speculated
based on the exact value of the electrical resistivity but on its spatial distribution character-
istics and even on the stratigraphic data from boreholes [34,36]. In our study, the electrical
resistivity tomography profiles illustrate that XW landslides 1 and 2 were characterized
by cracked surfaces and significant internal heterogeneities. This is the complex result of
the influence of multiple deformations between deposition periods and local topography,
as well as human activities. Compared with the XW landslides, the XST landslide may
have a clear shear surface since it is a retrogressive landslide. Both the time-series InSAR
analysis and surface movement vector fields illustrate that the main body flowed down as
a whole. Thus, the ERT technique may be more suitable for detecting the internal structure
of landslides similar to XST.

4.3. Possible Triggering Factors of the Landslides
4.3.1. Effective Antecedent Precipitation

Precipitation intensity is a common and easily accessible landslide warning signal. It
is crucial for hazard warnings in most mountainous and hilly areas, especially in the under-
developed regions where there is a lack of ground-based sensors obtaining deformation
information of unstable hillslopes [46–52]. However, daily precipitation on 2 September
2018 (timing of XW landslides 1 and 2) was only 0.4 mm. We suggest that cumulative
effective antecedent precipitation (EAP) may have played a key role in the occurrences of
these landslides. According to the China Meteorological Administration [53], the number



Remote Sens. 2021, 13, 4579 16 of 19

of heavy rainfall days (25 mm < precipitation < 50 mm within 24 h) was seven during
the study period (Figure 15). The EAP on 2 September 2018 reached 34.8 mm (n = 7) and
39.0 mm (n = 10). Thus, although the daily precipitation on 2 September 2018 was only
0.4 mm, the landslides occurred due to the effect of the antecedent precipitation. Moreover,
this study area is mainly covered by layered clastic rocks (Figure 2). The poor physical
and mechanical properties of clastic rocks render them more susceptible to sliding than
compared to other hard rocks, such as intrusive rocks [40,41]. The strength of clastic rocks
is also significantly influenced by water content. Thus, effective antecedent precipitation
played a key role in landslide failure.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 20 
 

 

deformation information of unstable hillslopes [46–52]. However, daily precipitation on 2 
September 2018 (timing of XW landslides 1 and 2) was only 0.4 mm. We suggest that cu-
mulative effective antecedent precipitation (EAP) may have played a key role in the oc-
currences of these landslides. According to the China Meteorological Administration [53], 
the number of heavy rainfall days (25 mm < precipitation < 50 mm within 24 h) was seven 
during the study period (Figure 15). The EAP on 2 September 2018 reached 34.8 mm (n = 
7) and 39.0 mm (n = 10). Thus, although the daily precipitation on 2 September 2018 was 
only 0.4 mm, the landslides occurred due to the effect of the antecedent precipitation. 
Moreover, this study area is mainly covered by layered clastic rocks (Figure 2). The poor 
physical and mechanical properties of clastic rocks render them more susceptible to slid-
ing than compared to other hard rocks, such as intrusive rocks [40,41]. The strength of 
clastic rocks is also significantly influenced by water content. Thus, effective antecedent 
precipitation played a key role in landslide failure. 

In fact, EAP is a key parameter in most landslide early warning systems, which are 
based on precipitation thresholds, e.g., the daily rainfall in 24 h and the cumulative rainfall 
in the previous 15 days are used for landslide advisory in Hong Kong [54]. In the Seattle 
area, USA, the empirical rainfall thresholds for landslides were confirmed to be a result 
of antecedent precipitation 3–15 days before landslide activity [49,55]. Landslides trig-
gered by EAP are always potentially catastrophic because villagers have lowered their 
alertness. Thus, longer rainfall durations, even when each daily amount of rainfall is 
small, always results in a larger EAP for landslide occurrences. More attention should be 
paid to EAP, especially in under-developed mountainous regions. 

 
Figure 15. Daily precipitation and effective antecedent precipitation from 1 July 2018 to 30 Septem-
ber 2018 at the Tuwacang meteorological station. K is the decay coefficient due to evaporation, and 
n is the days before the landslide. Here, K was identified as 0.84. 

4.3.2. Influence of Adjacent Landslides 
Rainfall, earthquakes, and anthropogenic activities such as road construction, irriga-

tion, and coal mining are responsible for the occurrences of most landslides [56–62]. In 
this study, we found that the deformation of an existing landslide itself can also trigger 
new adjacent landslides. In fact, many studies have reported that early landslides are 
likely to cause subsequent landslides in adjacent areas due to local topography and mor-
phology changes caused by earlier landslides [63,64]. The degree of overlap between ear-
lier and later landslides is a key assessment factor for previous landslides triggering later 
landslides [3,64]. In this study, we calculated the degree of overlap between the old land-
slide, which occurred on 8 September 2007, and the XW landslides 1 and 2, which occurred 
on 2 September 2018, following Samia et al. [64]. The result showed that 56.8% of XW 
landslide 2 spatially overlapped the older landslide (Figures 1b,c and Figure 5b). Thus, 
the XW landslide 2 may be reactivated with a larger scale due to the extrusion of the XW 
landslide 1. Hillslope remained in a critical state after the previous landslide. This means 
that the topographic instabilities remaining after an earlier landslide need to be removed 

Figure 15. Daily precipitation and effective antecedent precipitation from 1 July 2018 to 30 September
2018 at the Tuwacang meteorological station. K is the decay coefficient due to evaporation, and n is
the days before the landslide. Here, K was identified as 0.84.

In fact, EAP is a key parameter in most landslide early warning systems, which are
based on precipitation thresholds, e.g., the daily rainfall in 24 h and the cumulative rainfall
in the previous 15 days are used for landslide advisory in Hong Kong [54]. In the Seattle
area, USA, the empirical rainfall thresholds for landslides were confirmed to be a result of
antecedent precipitation 3–15 days before landslide activity [49,55]. Landslides triggered
by EAP are always potentially catastrophic because villagers have lowered their alertness.
Thus, longer rainfall durations, even when each daily amount of rainfall is small, always
results in a larger EAP for landslide occurrences. More attention should be paid to EAP,
especially in under-developed mountainous regions.

4.3.2. Influence of Adjacent Landslides

Rainfall, earthquakes, and anthropogenic activities such as road construction, irri-
gation, and coal mining are responsible for the occurrences of most landslides [56–62].
In this study, we found that the deformation of an existing landslide itself can also trig-
ger new adjacent landslides. In fact, many studies have reported that early landslides
are likely to cause subsequent landslides in adjacent areas due to local topography and
morphology changes caused by earlier landslides [63,64]. The degree of overlap between
earlier and later landslides is a key assessment factor for previous landslides triggering
later landslides [3,64]. In this study, we calculated the degree of overlap between the old
landslide, which occurred on 8 September 2007, and the XW landslides 1 and 2, which
occurred on 2 September 2018, following Samia et al. [64]. The result showed that 56.8% of
XW landslide 2 spatially overlapped the older landslide (Figure 1 b,c and Figure 5b). Thus,
the XW landslide 2 may be reactivated with a larger scale due to the extrusion of the XW
landslide 1. Hillslope remained in a critical state after the previous landslide. This means
that the topographic instabilities remaining after an earlier landslide need to be removed
by further mass movement. In this manner, the failure of XW landslide 1 became a key
trigger for the reactivation of the old landslide on a larger scale.
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5. Conclusions

In this study, we observed three landslides that occurred on adjacent hillslopes in the
same period and were characterized by different movement processes using UAV surveys,
time-series InSAR and DInSAR analyses, and electrical resistivity tomography. This com-
bination of methods provided us with the opportunity to obtain a better understanding
of the landslide processes in the surface and subsurface regions of these landslides. Road
S306 was torn apart by XW landslides 1 and 2 on 2 September 2018. The UAV and field
investigations revealed that the hillslope was deformed due to interaction between land-
slide materials and local topography. Only a few of the surface features could be used to
build a surface movement vector field. Based on time-series InSAR and DInSAR analyses,
we confirmed that the XW landslides 1 and 2 occurred suddenly without significant early
deformations under the effect of effective antecedent precipitation. Moreover, the poor
physical and mechanical properties of clastic rocks were also key factors in the formation of
multiple landslides. We found that the failure of XW landslide 1 was partly in response to
XW landslide 2. This means that a landslide can also trigger another landslide under special
topographic and local natural conditions. However, the XST landslide, which occurred on
an adjacent hillslope, is a typical retrogressive landslide that occurred through slow creep
deformation over about one year and eventually slipped. Our results suggest that InSAR
detection of regional potential hazards may have difficulty identifying some catastrophic
landslides that lack significant early deformation. We need to learn to live with the risk of
landslides because natural hazards are unavoidable.
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