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Abstract: The knowledge of Arctic Sea ice coverage is of particular importance in studies of climate
change. This study develops a new sea ice classification approach based on machine learning (ML)
classifiers through analyzing spaceborne GNSS-R features derived from the TechDemoSat-1 (TDS-1)
data collected over open water (OW), first-year ice (FYI), and multi-year ice (MYI). A total of eight
features extracted from GNSS-R observables collected in five months are applied to classify OW,
FYI, and MYI using the ML classifiers of random forest (RF) and support vector machine (SVM) in
a two-step strategy. Firstly, randomly selected 30% of samples of the whole dataset are used as a
training set to build classifiers for discriminating OW from sea ice. The performance is evaluated
using the remaining 70% of samples through validating with the sea ice type from the Special Sensor
Microwave Imager Sounder (SSMIS) data provided by the Ocean and Sea Ice Satellite Application
Facility (OSISAF). The overall accuracy of RF and SVM classifiers are 98.83% and 98.60% respectively
for distinguishing OW from sea ice. Then, samples of sea ice, including FYI and MYI, are randomly
split into training and test dataset. The features of the training set are used as input variables to train
the FYI-MYI classifiers, which achieve an overall accuracy of 84.82% and 71.71% respectively by RF
and SVM classifiers. Finally, the features in every month are used as training and testing set in turn
to cross-validate the performance of the proposed classifier. The results indicate the strong sensitivity
of GNSS signals to sea ice types and the great potential of ML classifiers for GNSS-R applications.

Keywords: GNSS-R; Delay-Doppler Map; machine learning; sea ice classification; TDS-1

1. Introduction

Arctic sea ice is one of the most significant components in studies of climate change [1].
The knowledge of sea ice information is useful for shipping route planning and offshore
oil/gas exploration. As one of the most important sea ice parameters, sea ice type is of
particular interest since the characteristics of first-year ice (FYI) and multi-year ice (MYI)
are different [2]. Compared to FYI, MYI has greater thickness and higher albedo, which
is critical for energy exchange in the air-sea interface. Some previous studies indicated
that the Arctic sea ice has reduced in extent and a part of ice cover is becoming thinner,
changing from thicker MYI to thinner FYI [3]. The surface roughness and dielectric constant
of different sea ice types change at different stages of ice growth. It is well known that the
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surface of FYI is usually smoother than that of MYI. In addition, the salinity of FYI is higher
than that of MYI. The FYI around the floe edges tends to undergo deformation when it
collides with thicker ice. In general, the ice that survives at least one summer is regarded
as MYI, which retains low salinity values and an undulating surface. These characteristics
of different sea ice types are the basis for classification.

A wide variety of techniques has been applied to characterize changes in sea ice. Sea
ice can be monitored from different platforms, such as buoys [4], ships [5], aircraft [6], and
satellites [7]. Among them, satellite-based microwave remote sensing has been regarded as
the most effective tool for monitoring sea ice [7].

In recent years, Global Navigation Satellite System (GNSS) Reflectometry (GNSS-R)
has emerged as a powerful tool for sensing bio-geophysical features using L-band signals
scattered from the Earth’s surface [8]. GNSS-R was initially proposed for ocean altimetry
in 1993 [9] after the concept of GNSS-R was proposed in 1988 [10]. Subsequently, the scope
of the applications of GNSS-R has been extended to various fields, such as wind speed
retrieval [11], snow depth estimation [12], soil moisture sensing [13], ocean altimetry [14],
and sea ice detection [15]. Most GNSS-R studies were carried out using reflected L-band
data collected on ground-based, airborne, and spaceborne platforms, and the latter one
is regarded as the future trend due to its global coverage and high mobility [16]. The
United-Kingdom (UK) TechDemoSat-1 [16] and NASA Cyclone GNSS (CYGNSS) [17],
launched in 2014 and 2016 respectively, have promoted the research of spaceborne GNSS-R
since their data are publicly available. Particularly, the TDS-1 data can be used for polar
research as its global coverage, while the CYGNSS can only be applied in middle and
lower latitude regions as its coverage of interest is the oceans within the latitude of ±38◦.
Recently, some other spaceborne GNSS-R missions have been successfully carried out one
after another, such as the Chinese BuFeng-1 A/B [18], and Fengyun 3E [19].

Many applications of GNSS-R make use of the specular scattering geometry since
GNSS signals reflected from the Earth’s surface have the greatest amplitude at specular
scattering. The Delay-Doppler Map (DDM), which is one of the most important GNSS-R
observables, demonstrates the power scattering from the reflected surface as a function
of time delays and Doppler shifts (Figure 1). The reflection over rough surfaces, such as
open water (OW), is usually regarded as incoherent, which results in a “horseshoe” shape
of DDM presented in Figure 1a. The specular scattering is considered coherent when the
reflected surface is relatively smooth. The typical coherent DDM is shown in Figure 1b.
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Figure 1. Typical TDS-1 Delay-Doppler Maps (DDMs) of (a) incoherent and (b) coherent returns. The
incoherent and coherent DDMs are observed over open water (OW) (8.05◦E, 79.53◦N) and first-year
ice (FYI) (0.93◦W, 79.99◦N), respectively, on 26 November 2015.
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The TDS-1 data have been successfully used to sense sea ice parameters over the
past few years. Yan et al. [20] firstly explored the sensitivity of TDS-1 Delay-Doppler Map
(DDM) to sea ice presence using the pixel number of DDM with a signal-to-noise ratio (SNR)
above a threshold. Similarly, Zhu et al. [21] proposed a differential DDM observable, which
was used to recognize ice-water, water-water, water-ice, and ice-ice transitions. Schiavulli
et al. [22] reconstructed a radar image based on DDM to distinguish sea ice from water.
Alonso-Arroyo et al. [15] applied a matched filter ice detection approach with a probability
of detection of 98.5%, a probability of false alarm of 3.6%, and a probability of error of
2.5%. Afterward, another study has proven that spaceborne GNSS-R can be effective for
sea ice discrimination with a success rate of up to 98.22% compared to collocated passive
microwave sea ice data [23]. Cartwright et al. [24] combined two features extracted from
DDMs to detect sea ice with an agreement of 98.4% and 96.6% in the Antarctic and Arctic
regions by comparing with the European Space Agency Climate Change Initiative sea
ice concentration product. On the other hand, TDS-1 data were expanded to altimetry
applications [25,26]. The ice sheet melt was also investigated in [27] using TDS-1 data.
Furthermore, it has been shown that spaceborne GNSS-R is also useful for retrieving sea
ice thickness [28], sea ice concentration [29], and sea ice type [30]. The GNSS-R observables
derived from DDMs were used to classify Arctic sea ice in [30], where the TDS-1 sea ice
types were compared with the sea ice type maps derived from Synthetic Aperture Radar
(SAR) measurements.

In recent years, machine learning (ML) based methods have been widely used in
geosciences and remote sensing applications [31]. ML has been proven powerful for
applications in various remote sensing fields, such as classification [32,33], object detec-
tion [34], and parameter estimates [35]. Yan et al. [36] firstly adopted the neural network
(NN) method to detect sea ice using spaceborne GNSS-R DDMs from TDS-1. This study
demonstrated the potential of an NN-based approach for sea ice detection and sea ice
concentration (SIC) estimation, which was further explored through the convolutional
neural network (CNN) algorithm [37]. The DDMs were directly used as input variables
in the CNN-based approach. Compared to NN and CNN, support vector machine (SVM)
achieved the best performance in sea ice detection [38]. These three studies utilized the
original DDM and the values derived from DDMs as input features for sensing sea ice.
Zhu et al. [39] employed feature sequences that depict the characteristics of DDMs as
input parameters to monitor sea ice using the decision tree (DT) and random forest (RF)
algorithms. The RF aided method can discriminate sea ice from water with a success
rate up to 98.03% validated with the collocated sea ice edge maps from the special sensor
microwave imager sounder (SSMIS) data provided by the Ocean and Sea Ice Satellite
Application Facility (OSISAF). Llaveria et al. [40] applied the NN algorithm for sea ice
concentration and sea ice extent sensing using GNSS-R data from the FFSCat mission [40].
Rodriguez-Alvarez et al. [30] initially exploited the implementation of the classification
and regression tree (CART) algorithm for sea ice classification using GNSS-R observables
derived from GNSS-R DDM. The results showed that the FYI and MYI can be classified
with an accuracy of 70% and 82.34% respectively. In order to illustrate the ML for sea
ice sensing based on GNSS-R, relevant information about the above-mentioned studies is
presented in Table 1.
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Table 1. Applications of machine learning-aided sea ice sensing using spaceborne GNSS-R data.

Source Algorithms Purpose Data Time Span Overall Performance

Rodriguez-Alvarez et al.
(2019) [30] CART Sea ice classification 10 days of TDS-1 data in 2015

Seawater 97%
First-year ice 70%
Multi-year ice 82%
Young ice 81%

Yan et al. (2017) [36] NN Sea ice detection and
SIC retrieval 15 days of TDS-1 data in 2015 ice detection:98.4%

SIC retrieval error: 0.09

Yan and Huang (2018) [37] CNN Sea ice detection and
SIC retrieval 15 days of TDS-1 data in 2015 ice detection: 98.73%

SIC retrieval error: 0.16
Yan and Huang (2019) [38] SVM Sea ice detection 15 days of TDS-1 data in 2015 ice detection: 98.56%

Zhu et al. (2020) [39] DT and RF Sea ice detection Four years of available TDS-1
data from 2015 to 2018

DT: 97.51% in Arctic
RF: 98.03% in Arctic

Llaveria et al. (2021) [40] NN Sea ice extent and
Sea ice concentration Two months data from FSSCat

Sea ice extent: 99%
Sea ice concentration:
0.03

Herbert et al. (2021) [41] NN Sea ice Thickness Two months data from FSSCat thin ice: 6.5 cm
full-range: 23 cm

As one of the most powerful ML algorithms, RF has been widely applied for remote
sensing image classification [33,42,43]. However, RF has not been considered for classifying
FYI and MYI using spaceborne GNSS-R data. In addition, the SVM-based method showed
great potential in sea ice detection and classification in some previous studies [33,38].
Although SVM has been applied to sea ice classification using SAR images [33], the applica-
tion of SVM to GNSS-R sea ice classification has not been investigated. Therefore, RF and
SVM classifiers are adopted in this study to develop algorithms for sea ice classification.
The purpose of this research is to demonstrate the feasibility of spaceborne GNSS-R to
classify sea ice types using ML classifiers.

The spaceborne GNSS-R dataset and reference sea ice type data from the European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT) OSISAF [44]
used in this study is firstly described in Section 2. Then, the theoretical basis and the
proposed method for sea ice classification are described with details in Section 3. The
sea ice classification results are presented in Section 4 and discussed in Section 5. The
conclusions are finally addressed in Section 6.

2. Dataset Description
2.1. TDS-1 Mission and Dataset

The TDS-1 satellite began its data acquisition in September 2014 after its launch in July
2014. As one of eight instruments placed on the TDS-1 satellite, the Space GNSS Receiver-
Remote Sensing Instrument (SGR-ReSI) was turned on only two days of an eight-day cycle
until January 2018 [45]. The SGR-ReSI started its full-time operation in February 2018, and
it came to the end in December 2018. The TDS-1 has provided a large amount of data at a
global scale as the satellite runs on a quasi-Sun synchronous orbit with an inclination of
98.4◦. Currently, the TDS-1 data are freely available on the Measurement of Earth Reflected
Radio-navigation Signals by Satellite (MERRBYS) website (www.merrbys.co.uk, accessed
on 11 September 2021). The TDS-1 data are processed into three levels, including Level 0
(L0), Level 1 (L1), and Level 2 (L2). Among them, L1 data are usually adopted in scientific
research. L0 refers to the raw data, which are not accessible except for a small amount of
sample data. L2 includes wind speed, mean square slope, and sea ice products. One of the
most important GNSS-R observables is DDM, which is generated by the SGR-ReSI through
the cross-correlation between scattered signals and locally generated code replicas with
different delays and Doppler shifts. The orbit and instrument specifications of the TDS-1
mission are presented in Table 2 [45].

www.merrbys.co.uk
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Table 2. Orbit and instrument specifications of TDS-1 [45].

Parameter Value

Orbit quasi-Sun synchronous
Altitude ~635 km

Inclination 98.4◦

Delay pixels/resolution 128/244 ns
Doppler pixels/resolution 20/500 Hz
Coherent integration time 1 ms

Incoherent integration time 1 s

2.2. Reference Sea Ice Data

The sea ice type (SIT) provided by the OSISAF [44] is adopted as the reference data to
train the sea ice classification model and validate the results. The OSISAF provides daily
SIT maps with a spatial resolution of 10 km in the polar stereographic projection. The
SIT products discriminate OW, FYI, and MYI through analyzing multi-sensor data. The
data with a confidence level above 3 are adopted to avoid using low-quality data [44]. In
addition, the SIC products generated from the SSMIS measurements provided by OSISAF
are also used as reference data to analyze the impacts of SIC on sea ice classification. The
reference SIC products are mapped on a grid with a size of 10 km × 10 km in the polar
stereographic projection. The TDS-1 data is matched with the SIC maps through the SP
location and data collection date, which are available in the TDS-1 dataset.

Figure 2a presents the GNSS-R ground tracks over OW, FYI, and MYI on 26 November
2015. The TDS-1 DDMs over OW-FYI and FYI-MYI transitions are shown in the figure.
Meanwhile, the GNSS-R ground tracks are mapped against the SIC map in Figure 2b. In
general, the SIC of MYI is higher than that of FYI.
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Figure 2. Typical TechDemoSat-1 (TDS-1) Delay-Doppler Maps (DDMs) collected over (a) sea ice type (SIT), which includes
open water (OW), first-year ice (FYI), and multi-year ice (MYI)) and (b) sea ice concentration (SIC) maps on 26 November
2015. The magenta, blue and green plots represent the ground tracks of OW, FYI, and MYI respectively. The continuous
DDMs from index 709 to 714 for the OW-FYI transition area is marked with the cyan rectangle. Similarly, the FYI-MYI
transition area with DDMs from index 726 to 731 is presented in the figure. The SIT and SIC maps are obtained from the
Ocean and Sea Ice Satellite Application Facility (OSISAF). The OW is depicted by the light blue color. FYI and MYI are
demonstrated by white and gray respectively in Figure 2a.

3. Theory and Methods
3.1. Spaceborne GNSS-R Features
3.1.1. Surface Reflectivity

The GNSS-R instrument (e.g., SGR-ReSI) receives signals directly transmitted from
GNSS constellations and scattered from the Earth’s surface. For the TDS-1 mission, the
signals observed are the L1 C/A codes with a center frequency of 1.575 GHz. The L-band
signal is useful for remote sensing applications due to its insensitivity to the precipitation
and atmosphere. The specular reflections are dominant when the surface is relatively flat
and smooth. As demonstrated in [15], the GNSS-R signal received over sea ice is usually
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coherent due to its smooth surface. Thus, the coherent surface reflectivity SRcoh at the
specular point (SP) can be modeled as [46,47],

SRcoh =
(4π)2(Rt + Rr)

2

(λ)2GrGtPt
Pcoh, (1)

where Pcoh is the coherently received power reflected by the surface, Rr and Rt are the
distances from the receiver and transmitter to the SP respectively, Gr and Gt are the antenna
gain of the receiver and transmitter, λ is the GNSS signal wavelength, and Pt is the power
transmitted by GNSS satellites.

Most of the variables in (1) can be obtained from the TDS-1 L1b data. Rr and Rt can
be easily calculated according to the positions of the transmitter, receiver, and SP, which
are stored in the metadata. Gr at SP can be directly extracted from the metadata. The
noise floor is determined using the average value of the first four rows of DDM [23]. The
transmitted signal power can be derived using [48],

PtGt = 4πR2
dGdPd, (2)

where PtGt is also termed as effective isotropic radiated power (EIRP). Pd is the direct
power, Rd is the distance from the transmitter to receiver, and Gd is the zenith antenna gain,
which is set as 4 dB in this study according to the Merrbys documentation [45,49].

As demonstrated in [28], the received power originates from a region surrounding the
SP, which is usually the first Fresnel zone. As demonstrated in [50], the Fresnel reflectivity
SRcoh can also be modeled as,

SRcoh = |R|2·exp

[
−
(

4π

λ
cosθiσ

)2
]

, (3)

where θi stands for the incidence angle and σ is the surface root mean square (RMS) height.
The second term in Equation (3) represents the surface roughness. TheR represents the
Fresnel reflection coefficient, which can be derived through Equations (4)–(6):

R =
1
2
(RVV −RHH), (4)

RVV =
εicosθi −

√
εi − sin2θi

εicosθi +
√

εi − sin2θi
, (5)

RHH =
cosθi −

√
εi − sin2θi

cosθi +
√

εi − sin2θi
, (6)

where θi is the incidence angle over the sea ice, and εi is the permittivity of sea ice, which
is related to sea ice types. In this study, the data with an incidence angle below 45◦ are
applied. Data marked by the quality flags eclipse or direct signal in DDM [51] have also
been removed to deal with reliable data. The TDS-1 surface reflectivity and corresponding
incidence angle distribution in Arctic regions in 5 days (from 11 to 15 February 2018) is
presented in Figure 3.
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Figure 3. The (a) TDS-1 surface reflectivity and corresponding (b) incidence angle distribution in Arctic regions in 5 days
(from 11 to 15 February 2018). The open water (OW) is described as light blue. The white and gray represent the first-year
ice (FYI) and multi-year ice (MYI).

3.1.2. Features Derived from DDM

Besides the surface reflectivity, the other seven GNSS-R observables are chosen for
sea ice classification. GNSS-R observables are defined as characteristics derived from the
DDMs that describe their power and shape.

The DDM average (DDMA), which represents the mean signal-to-noise ratio (SNR)
values over the point of peak SNR (Figure 4a), is applied in this study to classify sea ice
types. As shown in Figure 4a, the DDMA expands 3 delay bins and 3 Doppler shifts
centered at the peak SNR point. The distribution of DDMA in 5 days (from 11 to 15
February 2018) is presented in Figure 4b compared with the OSISAF SIT map.
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Figure 4. (a) The range of calculating Delay-Doppler Map average (DDMA) is marked by the white box, which expands
3 delay bins and 3 Doppler shifts centered at the peak signal-to-noise ratio (SNR) point. (b) The distribution of DDMA
compared with the OSISAF SIT map. The open water (OW) is described by the light blue color. The white and gray represent
the first-year ice (FYI) and multi-year ice (MYI).

As illustrated in [23,39], the integrated delay waveform (IDW) is defined as the sum-
mation of 20 delay waveforms, which are the cross-sections of DDM at 20 different Doppler
shifts. The cross-section of zero Doppler shift is defined as the central delay waveform
(CDW) of the DDM. The degree of difference between IDW and CDW is described by
differential delay waveform (DDW), which is depicted as follows,

DDW = NIDW−NCDW, (7)

where NIDW and NCDW represent the normalized IDW and CDW respectively. The
NIDW is related to the power spreading characteristics caused by surface roughness. The
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delay waveforms from delay bins −5 to 20 over OW, FYI, and MYI surfaces are shown in
Figure 5.
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Figure 5. (a) Normalized central delay waveform (NCDW), (b) normalized integrated delay waveform (NIDW), and
(c) differential delay waveform (DDW) of samples over open water (OW), first-year ice (FYI), and multi-year ice (MYI)
surfaces respectively.

Features extracted from delay waveforms are described as follows:

• RESC (Right Edge Slope of CDW). The fitting slope of NCDW with 5 delay bins
starting from the zero delay one is defined as RESC, which is depicted by the slope of
the blue line in Figure 6a.

• RESI (Right Edge Slope of IDW). The fitting slope of NIDW with 5 delay bins starting
from the zero delay one is defined as RESI, which is depicted by the slope of the green
line in Figure 6a.

• RESD (Right Edge Slope of DDW). The fitting slope of DDW with 5 delay bins starting
from the zero delay one is defined as RESD, which is depicted by the slope of the
magenta line in Figure 6a.

• REWC (Right Edge Waveform Summation of CDW). The summation of NCDW values
(marked with blue diamond dots in Figure 6b) from the delay bins 0 to 6 is defined as
REWC.

• REWI (Right Edge Waveform Summation of IDW)}. The summation of NCDW values
(marked with green cross dots in Figure 6b) from the delay bins 0 to 6 is defined as
REWI.

• REWD (Right Edge Waveform Summation of DDW)}. The summation of DDW values
(marked with magenta circle dots in Figure 6b) from the delay bins 0 to 6 is defined as
REWD.
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Figure 6. (a) GNSS-R Features demonstration of RESC (Right Edge Slope of CDW), RESI (Right Edge Slope of IDW), and
RESD (Right Edge Slope of DDW). The fitting slope of blue, green, and magenta lines are defined as RESC, RESI, and RESD,
respectively. (b) GNSS-R Features demonstration of REWC (Right Edge Waveform Summation of CDW), REWI (Right Edge
Waveform Summation of IDW), and REWD (Right Edge Waveform Summation of DDW). The waveform summation of the
blue, green, and magenta dots are defined as REWC, REWI, and REWD, respectively.
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The distribution of these six features versus the OSISAF SIT maps is illustrated in
Figure 7.
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is described by the light blue color. The white and gray represent the first-year ice (FYI) and multi-year ice (MYI).

3.2. Sea Ice Classification Method

Many previous studies indicate that RF and SVM show great potential in classifi-
cations [33,38,39,42], while they have not been used for classifying FYI and MYI using
GNSS-R features. Thus, these two classifiers are used in this study to classify sea ice types.

3.2.1. Random Forest (RF)

The RF is one of the ensemble methods that have received increasing interest since
they are more robust and accurate than single classifiers [52,53]. RF is composed of a set of
classifiers where each classifier casts a vote for the allocation of the most frequent type to the
input vectors. The principle of ensemble classifiers is based on the basic precondition that
a variety of classifiers usually outperform an individual classifier. Some of the advantages
of RF for remote sensing applications include (1) It has high efficiency on large datasets;
(2) It can deal with a large number of input variables without variable deletion; (3) The
variable importance can be estimated in the classification; (4) Relatively strong robustness
to noise and outliers.

The design of a decision tree needs to choose an attribute selection measure and a
pruning approach. The Gini index [54] is usually used to measure the impurity of training
samples in RF. For a given training dataset T, the Gini index (Gindex) can be expressed as,

Gindex(T) = 1−
m

∑
i=1

p2
i , (8)
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where m is the number of categories and pi is the proportion of samples T that belongs to
class i. In the case of binary classification problems, the most appropriate characteristics at
each node can be identified by the Gini index, given by:

Gindex(T) = 2p(1− p). (9)

The RF can also evaluate the relative importance of different features in the classifica-
tion process. It is helpful to select the best features and know-how each feature influences
the classification results [55,56].

3.2.2. Support Vector Machine (SVM)

SVM is a powerful machine learning algorithm based on statistical learning theory
and has the purpose of determining the location of decision boundaries that produce the
optimal separation of classes [57]. It is a supervised classification approach, which can
deal with linear, nonlinear, high-dimensional samples and result in good generalization.
SVM is primarily used for binary classification problems, in which the sample data can be
expressed as,

(x1, y1), (x2, y1), . . . , (xn, yn) ∈ Rn ×Y, Y = (−1, 1), (10)

where xi represents the input samples that consist of features for classification, yi is the
class label of xi For the linear classification, the SVM classifier satisfies the following rule,

yi

(
wTxi + b

)
≥ 1, 1 ≤ i ≤ n, (11)

where wTx + b = 0 represents a hyperplane, with parameters w and b being the coefficient
and bias, respectively. The maximum classification interval algorithm can be formulated
as, {

min
(

1
2

∣∣∣∣∣∣w||2)
yi
(
wTxi + b

)
≥ 1

. (12)

In order to obtain good predictions in nonlinear classification, the slack variables are
introduced to express the soft margin optimal problem,{

min
(

1
2 ||w||

2 + C ∑n
i=1 ξi

)
ξi ≥ 0, yi

(
wTφ(xi) + b

)
≥ 1− ξi, 1 ≤ i ≤ n

, (13)

where ξi represents the ith slack variable, C is a penalty parameter. φ is a high-dimensional
feature projection function related to the kernel function [58].

3.2.3. Sea Ice Classification Based on RF and SVM

In this study, the sea surface is divided into three categories, including OW, FYI, and
MYI. As a powerful ML classifier, RF can deal with both binary and multi-classification
problems. The strategy of one-against-one and one-against-all can be chosen to address the
multi-classification problem. The RF classifier can be split into several binary classifiers
using a one-against-all strategy (Anand et al., 1995) [59]. Although the standard RF
algorithm can deal with multi-type problems, the one-against-all binarization to the RF
can achieve better accuracy with smaller forest sizes than the standard RF [60]. In addition,
the SVM is usually used for binary classification. Thus, the one-against-all binarization
strategy is used in this study to classify OW, FYI, and MYI in two steps. In the first stage,
the FYI and MYI are regarded as one category (sea ice), whereas the OW is regarded as
another category. Then, the classification of sea ice types (FYI and MYI) will be carried
out in the second stage using a similar method. The python software package from the
Scikit-Learn is adopted in this study [61]. The process flow of sea ice classification is shown
in Figure 8.
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elimination, data filter, and selection, delay waveform extraction, and normalization) to extract features. Then the TDS-1
features are matched with the reference sea ice type (SIT) maps from OSISAF. In the first step, the whole datasets are used to
classify open water (OW) and sea ice which includes first-year ice (FYI) and multi-year ice (MYI). In the second step, the sea
ice datasets are applied to classify FYI and MYI. Finally, the OW-Sea Ice and FYI-MYI classification results are evaluated
against the OSISAF SIT.

The sea ice classification method can be generally categorized into four parts:

• TDS-1 data preprocessing and features extraction. Firstly, the TDS-1 data with a
latitude above 55◦N and peak SNR above−3 dB is adopted to extract delay waveforms,
which are further normalized to extract features. A total of eight features, namely SR,
DDMA, RESC, RESI, RESD, REWC, REWI, and REWD, are extracted from the TDS-1
data. Then the TDS-1 features are matched with OSISAF SIT maps based on the data
collection date and specular point position through a bilinear interpolation approach.

• OW-sea ice classification. In this step, the FYI and MYI are regarded as one category
(i.e., sea ice). 30% of samples are randomly selected as training set and the rest 70% of
samples are used to test the OW-sea ice classification results.

• FYI-MYI classification. The sea ice datasets are applied in this step to classify FYI and
MYI. As with the process of OW-sea ice classification, sea ice samples are randomly
selected as training and test sets to classify FYI and MYI.

• Performance evaluation of sea ice classification. The classification performance is
firstly evaluated using the confusion matrix and some evaluation metrics, which are
defined in Figure 9 and Table 3, respectively.

The row and column represent the actual and predicted types, respectively. As shown
in Table 3, TP stands for the number of positive samples that are classified correctly. FN
represents the number of positive samples that are classified into a negative type incorrectly.
FP is the number of negative samples that are classified into a positive type incorrectly.
TN is the number of negative samples that are classified correctly. The evaluation metrics
that are used to evaluate the classification performance are defined in Table 3. Accuracy
represents the ratio of the correct classification number in all the samples. Precision depicts
the precision of predicted results that positive samples are classified correctly. Recall means
the completeness of the samples that are classified correctly in all positive samples. F-value
is the harmonic mean of classification performance for positive samples, where β is usually
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set as 1. Then the F-value is the F1 score, which is the weighted average of Precision and
Recall. Therefore, this score takes both false positives and false negatives into account.
G-mean can be used to evaluate the overall classification performance. G-mean measures
the balance between classification performances on both the majority and minority classes.
In addition, the kappa coefficient is also used to measure inter-rater reliability for classifiers.
The kappa coefficient measures the agreement between two raters who each classify N items
into C mutually exclusive categories.
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Table 3. The definition of evaluation metrics.

Evaluation Metrics Equation

Accuracy TP+TN
TP+FP+TN+FN

Precision TP
TP+FP

Recall TP
TP+FN

F-value Recall·Precision·(1+β2)
β·(Recall+Precision)

G-mean
√

TP·TN
(TP+FN)·(TN+FP)

Kappa coefficient 2·(TP·TN−FN·FP)
(TP+FP)·(FP+TN)+(TP+FN)·(FN+TN)

4. Results

Although the OSISAF SIT products are provided continuously, there is a lack of
MYI information from May to October most of the time in the OSISAF SIT products. In
addition, the TDS-1 data is very sparse from 2015 to 2017 as the GNSS-R receiver was
working only two days in an eight-day cycle. Therefore, the TDS-1 datasets collected in
2018 are selected according to the availability of MYI information of OSISAF SIT products.
Figure 10a presents the data availability status of both OSISAF SIT products and TDS-1
data that are used in this study. The number of OW, FYI, and MYI samples every month
are shown in Figure 10b. According to the statistics, a total number of 460,685 samples,
including 165,434 OW samples, 266,680 FYI samples, and 28,571 MYI samples, are used in
this study.
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Figure 10. (a) The availability of both TDS-1 and OSISAF SIT data, which includes the information 
of open water (OW), first-year ice (FYI), and multi-year ice (MYI) in 2018. (b) Statistics of OW, FYI, 
and MYI samples every month. 

As illustrated in Section 3, the sea ice classification is implemented using a two-step 
method. The first step aims to discriminate OW from sea ice using the RF and SVM clas-
sifiers. During the RF model training, the number of trees is set to different values ranging 
from 10 to 200, in order to find the best classifier. The number of estimators is finally set 
as 70 in this study. After identifying the OW, the sea ice samples are employed to classify 
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Figure 10. (a) The availability of both TDS-1 and OSISAF SIT data, which includes the information of open water (OW),
first-year ice (FYI), and multi-year ice (MYI) in 2018. (b) Statistics of OW, FYI, and MYI samples every month.

As illustrated in Section 3, the sea ice classification is implemented using a two-step
method. The first step aims to discriminate OW from sea ice using the RF and SVM
classifiers. During the RF model training, the number of trees is set to different values
ranging from 10 to 200, in order to find the best classifier. The number of estimators is
finally set as 70 in this study. After identifying the OW, the sea ice samples are employed
to classify FYI and MYI in the second step using the RF classifier. It is worth noting that the
number of FYI samples is about nine times that of MYI samples. When randomly selecting
samples from the whole FYI and MYI dataset as the training set, only a small amount
of MYI samples are selected out. The proportion gap between FYI and MYI samples in
the training set is too large and the training model may not grasp the features of MYI.
Therefore, 30% of MYI samples are randomly selected as training set and the number of
FYI samples is controlled to be three times that of MYI.

The confusion matrix of RF and SVM classifiers are presented in Figure 11, which
presents the classification results of each class. Table 4 presents the evaluation metrics
which are computed according to equations listed in Table 3.
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Table 4. The evaluation metrics of open water (OW)-sea ice and first-year ice (FYI)-multi-year ice
(MYI) classification.

Evaluation
Metrics

OW-Sea Ice Classification FYI-MYI Classification

RF SVM RF SVM

Accuracy (%) 98.83 98.60 84.82 71.71
Precision (%) 98.47 98.30 98.57 98.83

Recall (%) 98.07 97.56 84.79 70.19
F1-value 0.98 0.98 0.91 0.82
G-mean 0.99 0.98 0.85 0.79

Kappa coefficient 0.97 0.97 0.39 0.23

Table 4 demonstrates the evaluation metrics through validating with the OSISAF
SIT maps using the test dataset. As shown in Figure 11a,b, a total of 322,480 samples,
which include 109,559 OW and 212,921 sea ice samples, are applied for testing. The
overall accuracy of RF and SVM classifiers for OW-sea ice classification is 98.83% and
98.60% respectively, which are comparable to the results in previous studies [15,38,40].
Similarly, the FYI-MYI classification results are evaluated using 20,000 FYI samples and
240,967 MYI samples (Figure 11c,d), which results in an overall accuracy of 84.82% for RF,
whereas 71.71% for SVM. The performance of RF and SVM for OW-sea ice classification
is comparable, whereas RF outperforms SVM significantly in the FYI-MYI classification.
The overall space distribution of classification results is shown in Figure 12, which depicts
the distribution of predicted and reference types. For illustration purposes, parts of
classifications are shown in Figure 13, which demonstrates the predicted, reference, and
their comparison results. Firstly, sea ice and OW are labeled as −1 and 1, respectively, in
the OW-sea ice classification, whereas FYI and MYI are labeled as −1 and 1, respectively, in
the FYI-MYI classification. The comparison results between predicted and reference types
are computed as follows,

Di f f = Re f – Pre, (14)

where Ref represents the value of reference types, Pre is the value of predicted types, Diff
is the comparison results. In the OW-sea ice classification, −2 represents the sea ice is
misclassified as OW (ice-OW), 2 represents the OW is misclassified as sea ice (OW-ice),
and 0 means the predicted and reference type is consistent. In the FYI-MYI classifica-
tion, −2 represents the FYI is misidentified as MYI (FYI-MYI), 2 represents the MYI is
misidentified as FYI (MYI-FYI), and 0 means the predicted and reference type is consistent.

As shown in Figure 12b, c, most OW and sea ice misclassifications of RF and SVM
classifiers appear similarly at the points of OW-sea ice transitions. This can also be seen
in Figure 13a,b. The confusion matrix in Figure 11c,d presents that the number of FYI
misclassifications is much larger than that of MYI misclassifications. This may be due to
the large gap in the number of FYI and MYI samples. The overall accuracy is affected less
by the MYI misclassifications since the number of FYI samples is more than 10 times that
of MYI samples. As shown in Figure 12e,f, both RF and SVM classifiers have lots of mis-
classifications, which are widely distributed. In general, the number of misclassifications
of SVM is more than that of RF, which can also be seen in Figure 13c,d. In addition, the
kappa coefficient of OW-sea ice classification is 0.97 both for RF and SVM, whereas that of
FYI-MYI is only 0.39 and 0.23 respectively for RF and SVM. In addition, although SVM can
achieve comparable accuracy as RF in OW-sea ice classification, the time consumption of
SVM is about nine times that of RF for the same test dataset.
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ice (FYI) and multi-year ice (MYI). (e) Predicted FYI and MYI of RF. (f) Predicted FYI and MYI of SVM.
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Figure 13. Parts of classification results of random forest (RF) and support vector machine (SVM) classifiers. Zoomed (a) RF
and (b) SVM results of 10,000 samples for OW-sea ice classification. Zoomed (c) RF and (c) SVM results of 1000 samples for
FYI-MYI classification. In each figure of (a) to (d), the top plot represents the predicted types of the classifier, the middle one
is the reference types from OSISAF SIT and the lowest one is the comparison results between predicted and reference types.
OW-ice means the OW is misidentified as sea ice, and ice-OW means the sea ice is misclassified as OW. FYI-MYI means the
FYI is misidentified as MYI, and MYI-FYI means the MYI is misclassified as FYI.

5. Discussion

In order to analyze the influence of sea ice growth and melt on sea ice classification
and the robustness of the sea ice classification method, another experiment is implemented.
Each month of data is used as a training set individually, and the remaining four months
of data are used as a test set. The strategy is similar to k-fold cross-validation [62] usually
applied in ML. However, the k-fold cross-validation is to split the dataset into k parts
randomly, which would eliminate the seasonal effects. Firstly, the data in February are
used as the training set, and the data in March, April, November, and December are used
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as the testing set in turn. Hereafter, the data in Mar, April, November, and December are
used as training set successively. The space distribution of classification results is presented
in Appendix A (Figures A1–A10) and Appendix B (Figures A11–A20). The accuracy and
kappa coefficients of OW-sea ice and FYI-MYI classification are shown in Figures 14 and 15,
which indicate that the overall accuracy of OW-sea ice changes less than that of FYI-MYI
classification. This may be caused by the change of samples distribution as the proportion
of OW and sea ice is relatively stable, while that of FYI and MYI changes more easily with
ice growth and melt.
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Figure 14. The (a) accuracy and (b) kappa coefficient of OW-sea ice classification using data of each month as the training
set in turn. The top and middle plots in (a) represent the accuracy of RF and SVM respectively, while the lowest plot is
the accuracy of RF minus that of SVM. The top and middle plots in (b) represent the kappa coefficient of RF and SVM
respectively, while the lowest plot is the kappa coefficient of RF minus that of SVM.

As shown in Figure 14, the accuracy of OW-sea ice classification changes slightly from
February to April and then drops from April to November, followed by a larger increase
from November to December. The accuracy in November reaches the lowest point among
all tested months. Figure 15 demonstrates that the general changing trend of accuracy for
FYI-MYI classification is similar to that for OW-sea ice classification. This can be explained
in combination with the sea ice extent trend in 2018, shown in Figure 16. As shown in
Figure 16a, the sea ice extent reached the maximum and minimum on 14 March 2018 and 21
September 2018, respectively. The sea ice extent increases firstly to the peak sea ice extent
and then decreases slightly from March to April, while it increases continuously from
November to December. Moreover, among five months of use, the ice extent in November
is the smallest (Figure 16b). The increase and decrease of sea ice extent can be regarded
as ice growth and melt process, respectively. The ice extent during February to April
changes less than that during November to December since November is a period of the
early stage of winter. The sea ice extent during February to April is relatively stable. From
February to March, the FYI grows and the presence of ocean water in FYI becomes less,
which results in less misclassification for FYI. During the melting process from March to
April, the surface of FYI can be more easily affected by ocean winds due to the decrease of
sea ice concentration of FYI. This may lead to more misclassification of FYI to MYI. The
overall accuracy for OW-sea ice and FYI-MYI classification in November is the smallest.
The explanation is that the sea ice extent is relatively low in November when newly added
sea ice is mostly surrounded by ocean water, which leads to more misclassifications. With
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the ice growth from November to December, the successful classification rate increases
relatively obviously, which is consistent with the sea ice extent trend shown in Figure 16.
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Figure 16. (a) Arctic daily sea ice extent trend in 2018. The average sea ice extent per month is depicted by the blue
circle. The maximum and minimum sea ice extent are marked by a red cross-section and green circle. The data used in
this study are collected during two periods which are marked by magenta and blue rectangles, respectively. The data
availability during the first period (February to May) is marked by red dots in the magenta rectangle. The data availability
during the second period (October to December) is marked by blue dots in the blue rectangle. (b) Arctic monthly sea ice
extent trend in 2018. The upper and lower value of the error bar represents the maximum and minimum sea ice extent
per month. Sea ice extent data are obtained from the National Snow and Ice Data Center on 15 August 2021 (NSIDC,
https://nsidc.org/data/seaice_index/archives, accessed on 11 September 2021).

6. Conclusions

This study investigates the RF and SVM-based classifiers for Arctic Sea ice classifi-
cation using the one-against-all binarization, which converts a multi-classification into
several binary classification problems. Thus, the classification is implemented in a two-step
way. The first step aims to discriminate OW from sea ice (FYI and MYI), which is further
classified in the second step. The selected data periods include February to April and
November to December in 2018, during which the information of different surface types
(OW, FYI, and MYI) is available and can be used for comparison. Through validating
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against OSISAF SIT maps, the overall accuracy of the RF and SVM for OW-sea ice classi-
fication is up to 98.83% and 98.60%, which is comparable to results from some previous
studies using TDS-1 data [15,30,38–40]. Hereafter, the FYI-MYI classifier is modeled in the
second using the samples of sea ice that include FYI and MYI. The overall accuracy of RF
and SVM for classifying FYI and MYI is 84.82% and 71.71%, respectively, which are lower
than those of the OW-sea ice classifier. Moreover, the influence of ice growth and melt for
sea ice classification is evaluated through a cross-validating strategy, which applies each
month of data as the training set and the remaining four months of data as the test set. To
the best of the author’s knowledge, the RF and SVM are firstly used for classifying FYI
and MYI using the spaceborne GNSS-R data. The results indicate that RF and SVM-based
GNSS-R have great potential in sea ice classification. This study demonstrates that the
great potential of GNSS-R for classifying sea ice types, which can be an effective and com-
plementary approach for remotely sensing sea ice. In future studies, more GNSS-R features,
ML algorithms, and environmental effects (such as ocean wind) should be investigated to
improve the accuracy of classifying FYI and MYI.
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CDW Central Delay Waveform
CYGNSS Cyclone Global Navigation Satellite System
DDM Delay-Doppler Map
DDMA Delay-Doppler Map Average
DDW Differential Delay Waveform
EIRP Effective Isotropic Radiated Power
EUMETSAT European Organization for the Exploitation of Meteorological Satellites
FYI First-Year Ice
GNSS Global Navigation Satellite System
GNSS-R Global Navigation Satellite System Reflectometry
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IDW Integrated Delay Waveform
ML Machine Learning
MYI Multi-Year Ice
NCDW Normalized Central Delay Waveform
NIDW Normalized Integrated Delay Waveform
NSIDC National Snow and Ice Data Center
OSI SAF Ocean and Sea Ice Satellite Application Facility
OW Open Water
RESC Right Edge Slope of CDW
RESD Right Edge Slope of DDW
RESI Right Edge Slope of IDW
REWC Right Edge Waveform Summation of CDW
REWD Right Edge Waveform Summation of DDW
REWI Right Edge Waveform Summation of IDW
RF Random Forest
SIC Sea Ice Concentration
SIT Sea Ice Type
SNR Signal-to-Noise Ratio
SP Specular Point
SSMIS Special Sensor Microwave Imager Sounder
SVM Support Vector Machine
TDS-1 TechDemoSat-1

Appendix A

Appendix A presents the results of RF and SVM for OW-sea ice classification using
each month of data as the training set in turn. The RF classifier results are shown in
Figures A1–A5, and the SVM classifier results are presented in Figures A6–A10. In each
figure title, the RF and SVM represent method, then followed by the test data of month,
such Feb, Mar, Apr, Nov, Dec, and OWseaice represents OW-sea ice classification.

Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure A1. RF for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A2. RF for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A3. RF for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A4. RF for OW-sea ice classification using the data in November as the training set. The data in (a) February, (b) 
March, (c) April, and (d) December are used as the test set in turn. 

Figure A1. RF for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) April,
(c) November, and (d) December are used as the test set in turn.

Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure A1. RF for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A2. RF for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A3. RF for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A4. RF for OW-sea ice classification using the data in November as the training set. The data in (a) February, (b) 
March, (c) April, and (d) December are used as the test set in turn. 

Figure A2. RF for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) April,
(c) November, and (d) December are used as the test set in turn.



Remote Sens. 2021, 13, 4577 21 of 27

Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure A1. RF for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A2. RF for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A3. RF for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A4. RF for OW-sea ice classification using the data in November as the training set. The data in (a) February, (b) 
March, (c) April, and (d) December are used as the test set in turn. 

Figure A3. RF for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March,
(c) November, and (d) December are used as the test set in turn.

Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure A1. RF for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A2. RF for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A3. RF for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March, 
(c) November, and (d) December are used as the test set in turn. 

 
Figure A4. RF for OW-sea ice classification using the data in November as the training set. The data in (a) February, (b) 
March, (c) April, and (d) December are used as the test set in turn. 

Figure A4. RF for OW-sea ice classification using the data in November as the training set. The data in (a) February,
(b) March, (c) April, and (d) December are used as the test set in turn.

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 28 
 

 

 
Figure A5. RF for OW-sea ice classification using the data in December as the training set. The data in (a) February, (b) 
March, (c) April, and (d) November are used as the test set in turn. 

 
Figure A6. SVM for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) 
April, (c) November, and (d) December are used as the test set in turn. 

 
Figure A7. SVM for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) 
April, (c) November, and (d) December are used as the test set in turn. 

 
Figure A8. SVM for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March, 
(c) November, and (d) December are used as the test set in turn. 

Figure A5. RF for OW-sea ice classification using the data in December as the training set. The data in (a) February,
(b) March, (c) April, and (d) November are used as the test set in turn.

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 28 
 

 

 
Figure A5. RF for OW-sea ice classification using the data in December as the training set. The data in (a) February, (b) 
March, (c) April, and (d) November are used as the test set in turn. 

 
Figure A6. SVM for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) 
April, (c) November, and (d) December are used as the test set in turn. 

 
Figure A7. SVM for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) 
April, (c) November, and (d) December are used as the test set in turn. 

 
Figure A8. SVM for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March, 
(c) November, and (d) December are used as the test set in turn. 

Figure A6. SVM for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) April,
(c) November, and (d) December are used as the test set in turn.



Remote Sens. 2021, 13, 4577 22 of 27

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 28 
 

 

 
Figure A5. RF for OW-sea ice classification using the data in December as the training set. The data in (a) February, (b) 
March, (c) April, and (d) November are used as the test set in turn. 

 
Figure A6. SVM for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) 
April, (c) November, and (d) December are used as the test set in turn. 

 
Figure A7. SVM for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) 
April, (c) November, and (d) December are used as the test set in turn. 

 
Figure A8. SVM for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March, 
(c) November, and (d) December are used as the test set in turn. 

Figure A7. SVM for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) April,
(c) November, and (d) December are used as the test set in turn.

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 28 
 

 

 
Figure A5. RF for OW-sea ice classification using the data in December as the training set. The data in (a) February, (b) 
March, (c) April, and (d) November are used as the test set in turn. 

 
Figure A6. SVM for OW-sea ice classification using the data in February as the training set. The data in (a) March, (b) 
April, (c) November, and (d) December are used as the test set in turn. 

 
Figure A7. SVM for OW-sea ice classification using the data in March as the training set. The data in (a) February, (b) 
April, (c) November, and (d) December are used as the test set in turn. 

 
Figure A8. SVM for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March, 
(c) November, and (d) December are used as the test set in turn. 

Figure A8. SVM for OW-sea ice classification using the data in April as the training set. The data in (a) February, (b) March,
(c) November, and (d) December are used as the test set in turn.

Remote Sens. 2021, 13, x FOR PEER REVIEW 23 of 28 
 

 

 
Figure A9. SVM for OW-sea ice classification using the data in November as the training set. The data in (a) February, (b) 
March, (c) April, and (d) December are used as the test set in turn. 

 
Figure A10. SVM for OW-sea ice classification using the data in December as the training set. The data in (a) February, (b) 
March, (c) April, and (d) November are used as the test set in turn. 

Appendix B 
Appendix B presents the results of RF and SVM for FYI-MYI classification using each 

month of data as the training set in turn. The RF classifier results are shown in Figures 
A11–A15, and the SVM classifier results are presented in Figures A16–A20. In each figure 
title, the RF and SVM represent method, then followed by the test data of month, such 
Feb, Mar, Apr, Nov, Dec, and FYIMYI represents FYI-MYI classification. 

 
Figure A11. RF for FYI-MYI classification using the data in February as the training set. The data in (a) March, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

Figure A9. SVM for OW-sea ice classification using the data in November as the training set. The data in (a) February,
(b) March, (c) April, and (d) December are used as the test set in turn.

Remote Sens. 2021, 13, x FOR PEER REVIEW 23 of 28 
 

 

 
Figure A9. SVM for OW-sea ice classification using the data in November as the training set. The data in (a) February, (b) 
March, (c) April, and (d) December are used as the test set in turn. 

 
Figure A10. SVM for OW-sea ice classification using the data in December as the training set. The data in (a) February, (b) 
March, (c) April, and (d) November are used as the test set in turn. 

Appendix B 
Appendix B presents the results of RF and SVM for FYI-MYI classification using each 

month of data as the training set in turn. The RF classifier results are shown in Figures 
A11–A15, and the SVM classifier results are presented in Figures A16–A20. In each figure 
title, the RF and SVM represent method, then followed by the test data of month, such 
Feb, Mar, Apr, Nov, Dec, and FYIMYI represents FYI-MYI classification. 

 
Figure A11. RF for FYI-MYI classification using the data in February as the training set. The data in (a) March, (b) April, 
(c) November, and (d) December are used as the test set in turn. 

Figure A10. SVM for OW-sea ice classification using the data in December as the training set. The data in (a) February,
(b) March, (c) April, and (d) November are used as the test set in turn.

Appendix B

Appendix B presents the results of RF and SVM for FYI-MYI classification using
each month of data as the training set in turn. The RF classifier results are shown in
Figures 13, A11, A12, A14 and A15, and the SVM classifier results are presented in
Figures A16–A20. In each figure title, the RF and SVM represent method, then followed by



Remote Sens. 2021, 13, 4577 23 of 27

the test data of month, such February, March, April, November, December, and FYIMYI
represents FYI-MYI classification.
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