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Abstract: As an invasive plant species, kudzu has been spreading rapidly in the Southeastern United
States in recent years. Accurate mapping of kudzu is critical for effective invasion control and manage-
ment. However, the remote detection of kudzu distribution using multispectral images is challenging
because of the mixed reflectance and potential misclassification with other vegetation. We propose
a three-step classification process to map kudzu in Knox County, Tennessee, using multispectral
Sentinel-2 images and the integration of spectral unmixing analysis and phenological characteristics.
This classification includes an initial linear unmixing process to produce an overestimated kudzu
map, a phenological-based masking to reduce misclassification, and a nonlinear unmixing process
to refine the classification. The initial linear unmixing provides high producer’s accuracy (PA) but
low user’s accuracy (UA) due to misclassification with grasslands. The phenological-based masking
increases the accuracy of the kudzu classification and reduces the domain for further processing.
The nonlinear unmixing further refines the kudzu classification via the selection of an appropriate
nonlinear model. The final kudzu classification for Knox County reaches relatively high accuracy,
with UA, PA, Jaccard, and Kappa index values of 0.858, 0.907, 0.789, and 0.725, respectively. Our
proposed method has potential for continuous monitoring of kudzu in large areas.

Keywords: kudzu; linear spectral unmixing; nonlinear spectral unmixing; phenology; Sentinel-2

1. Introduction

The invasion of nonnative plant species has become a global threat to ecosystems due
to their competitive advantages in new environments [1]. Invasive plants have dramatic
effects on biodiversity, ecological functions, and ecosystem structures by outcompeting
and reducing the productivity of native plants, changing the dominant vegetation types,
and altering soil properties [2,3]. From these perspectives, invasive plants have been
recognized as a major non-climatic driver of global change [4,5]. At the same time, invasive
plants have caused billions of dollars of economic losses each year by reducing agricultural
production and damaging infrastructure [6]. These economic losses could be much higher
under scenarios involving native species extinction, biodiversity reduction, and ecosystem
function deterioration [7]. Consequently, precise distribution maps are in high demand for
local land managers to control and eradicate invasive plants [8].

Remote sensing has the advantage of allowing continuous monitoring of vegetation
distributions across large areas. The broad spatial and temporal coverage of remote sens-
ing imagery allow for spatially continuous and multitemporal maps of the occurrence of
invasive plants to be generated with lower labor and time costs [9]. The most common
approach to mapping invasive plants is based on the differences in spectral signatures,
usually using hyperspectral imagery [10]. With improved spatial resolutions, textural
features are also extracted for mapping of invasive plants, such as object-based image
analysis (OBIA) [11]. In addition, phenology, such as distinct growth patterns, coloration
times, and flower colors, has been also used in mapping invasive plants [12]. However,
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most existing studies have focused on mapping invasive species over relatively small areas
and a single time period using high-resolution or hyperspectral imagery [2]. The high cost
of these images limits the applications of the developed methods. The newly launched
multispectral satellite, Sentinel-2, having improved spatial and spectral resolutions, pro-
vides a unique opportunity to extract distinct features of invasive plants accurately and
efficiently. Repeated observations of Sentinel-2 images also allow for phenological analysis,
which has not been fully implemented in the mapping of invasive species to date.

Kudzu, also called Japanese arrowroot, is an invasive plant that is widely spreading in
the Southeastern United States. It has been identified as one of the 100 worst bio-invaders
in the world because it climbs to the top of native trees then infests and weakens them by
impeding their photosynthetic activity and reducing carbon fixation [1,3]. It was originally
introduced as an ornamental plant and adopted as fodder crop and for bio-protection
of hillslope erosion [10,13]. With the absence of natural predators and the capability for
rapid growth, kudzu grows over native plants, houses, and local infrastructure, leading
to widespread death of native plants and economic losses [14]. In addition, kudzu also
decreases air quality by emitting chemicals that affect tropospheric ozone levels and de-
creases soybean production by introducing pests [15,16]. Studies have attempted to map
kudzu by machine learning algorithms and object-based classification using hyperspectral
and high-resolution images [15,17,18]. Machine learning algorithms are usually compu-
tationally intensive, making them inapplicable to large areas and datasets. The methods
developed based on hyperspectral and high-resolution images are also limited for long-
term monitoring. It is of critical importance to develop accurate and efficient methods
to generate kudzu presence maps based on widely available multispectral imagery for
invasion control and management.

Remote-sensing-based kudzu mapping has several challenges. The first challenge is
the mixed pixel problem. Kudzu grows on top of the canopy and is not spatially separated
from the invaded community. Reflectance received by remote sensors is, therefore, mixed
from both kudzu and native vegetation, except for the locations where dense kudzu covers
the full scene. The mixed reflectance degrades the classification accuracy in kudzu mapping
when using multispectral images [19]. Spectral unmixing methods have been developed to
address the mixed pixel issue. Another challenge is that kudzu, as a type of vegetation, has
similar spectra than nearby trees and grasslands. Therefore, spectral information alone is
not enough to separate kudzu from surrounding vegetation. Incorporating phenological
characteristics has the potential to separate kudzu and native plants.

In this study, we propose a three-step classification process for kudzu mapping based
on the integration of spectral unmixing analysis and phenological characteristics using
multispectral Sentinel-2 imagery. We demonstrate this classification method in Knox
County, Tennessee, where kudzu is one of the most troublesome weeds to invade native
vegetation [20]. The objectives of this paper are to: (1) describe our proposed classification
method for kudzu mapping; (2) assess the performance of each of the three classification
steps in the kudzu mapping process; (3) generate kudzu presence maps of Knox County.
Our proposed method only requires the multispectral Sentinel-2 images, which are freely
available and can be applied to monitor kudzu invasion at the regional scale.

2. Materials and Methods
2.1. Study Area

Knox County is located in Eastern Tennessee (Figure 1), covering 1316 km2 and with a
population of 470,313 [21]. This area includes a set of parallel ridges and valleys oriented
from northeast to southwest [22]. This area has a humid subtropical climate. The average
high temperature in July is about 31 ◦C and the average low temperature in January is
about −2 ◦C [23]. The annual precipitation is about 1400 mm, occurring throughout the
whole year, with no significant differences between seasons [24,25]. The warm temperature
and high humidity provide a favorable environment for vegetation growth [24]. Forests
and herbaceous areas cover 34.12% and 21.5% of the study area, respectively [15].
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Figure 1. The location of the study area and a true color composite image of Knox County (Sentinel-2
image acquired on 6 September 2020).

2.2. Datasets
2.2.1. Remote Sensing Images and Pre-Processing

Sentinel-2 images were used to map the kudzu distribution. The Sentinel-2 satellites
were launched in 2015 with multispectral instrument (MSI) sensors on board. Sentinel-2
images are freely available and frequently revisited and show improved spatial resolution,
large coverage, and rich spectral information from the visible (VIS) and near-infrared (NIR)
to the short-wave infrared (SWIR) bands, which is necessary for the optimal detection
and mapping of invasive plants [26]. Sentinel-2 images also provide bands with narrow
band widths at the red edge and near-infrared wavelengths that are sensitive to vegetation
variations. Table 1 lists the main technical specifications of the Sentinel-2 image bands.

Table 1. Sentinel-2 band settings [27].

Band Number Central
Wavelength (nm)

Bandwidth
(nm)

Spatial Resolution
(m)

1—Coastal aerosol 443 20 60
2—Blue 490 65 10

3—Green 560 35 10
4—Red 665 30 10

5—Vegetation Red Edge 705 15 20
6—Vegetation Red Edge 740 15 20
7—Vegetation Red Edge 783 20 20

8—Near-Infrared 842 115 10
8b—Narrow Near-Infrared 865 20 20

9—Water Vapor 945 20 60
10—Cirrus 1375 30 60

11—Short-wave Infrared 1610 90 20
12—Short-wave Infrared 2190 180 20
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We downloaded the Level-2A products that are organized as atmospherically and
geometrically corrected bottom-of-atmosphere (BOA) reflectance images (https://scihub.
copernicus.eu, accessed on 12 January 2021). The Level-2A products are composed of
100 km2 tiles in UTM/WGS84 projection. Our study area is fully covered by two adjacent
Sentinel-2 tiles (tile numbers 16SGF and 16SGE). Images acquired at two times were used
based on the kudzu phenology—one acquired in spring (9 May 2020) when kudzu leaves
had not sprouted and the other in fall (6 September 2020) when kudzu leaves are still
green but defoliation of the other vegetation has not started. Both images were clear and
cloud-free across the study area. Kudzu leaves grow in spring and drop in fall, with a
lagging growth period compared with the surrounding vegetation. Given these unique
phenological characteristics, the growth conditions derived from these two times were
used to identify kudzu from other vegetation.

We extracted the images of Knox County using a shapefile boundary and resampled
the bands with 20 m spatial resolution to 10 m resolution. Ten VIS (bands 2–4), red edge
(bands 5–7), NIR (bands 8, 8b), and SWIR (bands 11,12) bands were composited to a
multiband image stack for kudzu classification. Vegetated areas were extracted based on
the classification map provided in the Sentinel-2 Level-2A products. The above image
analyses were performed on ENVI 5.5.3 software.

2.2.2. Reference Data

The reference data were collected from high-resolution imagery in Google Earth. Google
Earth provides a three-dimensional interactive view of the entire study area. It makes data
collection more efficient without any access constraints [28]. The high-resolution imagery
in Google Earth includes Geo-eye and WorldView imagery up to 0.31 m in resolution. We
identified several regions that were fully invaded by kudzu and digitized the boundaries
of kudzu patches in Google Earth. The other vegetation was generally categorized as trees
and grasslands. Patches of typical trees and grasslands in the study area were also digitized
for spectral unmixing analysis. We considered other land covers that were potentially
mixed with kudzu and collected the corresponding patches in Google Earth. These patches,
categorized as “others”, were mainly non-vegetated areas near kudzu invasion sites, since
kudzu usually invade along the forest edges near roads and residential areas, meaning
there may be some non-vegetated areas omitted from vegetation extraction. Therefore, the
reference data were collected in four categories: kudzu, trees, grasslands, and others.

Kudzu is known to have a lagging growth period with a late leaf dropping stage,
which makes it more distinguishable in fall. We, therefore, collected the reference data
in fall, when kudzu is green and detectable. We also double checked the boundaries on
the Sentinel-2 images to make sure pixels within the reference areas were fully covered
by kudzu. A total of 467 polygons of kudzu, trees, grasslands, and others were digitized
in Google Earth (KMZ files) in our study area. The digitized polygons were converted to
shapefiles and georeferenced to the Sentinel-2 images in ArcGIS Pro 2.6.0. The digitized
dataset included 237 polygons (1788 pixels) of kudzu, 45 polygons (14,588 pixels) of trees,
82 polygons (9718 pixels) of grasslands, and 103 polygons (4755 pixels) of others. These
polygons were used as the reference data for unmixing spectra extraction and classification
accuracy assessment.

2.3. Spectral Unmixing and Phenology-Based Kudzu Identification Method

Our proposed spectral unmixing and phenology-based kudzu identification method
consisted of three sequential steps (Figure 2). First, we used the linear unmixing algorithm
to estimate the subpixel abundance of kudzu and the surrounding land features. Then,
we integrated the phenological characteristics of kudzu with the initial linear abundance
estimation to remove misclassified vegetation and to reduce the space domain for further
processes. Finally, we applied the appropriate nonlinear unmixing model on the extracted
areas to improve the accuracy of the kudzu presence map. The kudzu distribution was
mapped using the fall image due to its high greenness at that time.

https://scihub.copernicus.eu
https://scihub.copernicus.eu
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Figure 2. The three steps of the spectral unmixing and phenology-based kudzu identification method.

2.3.1. Initial Estimation by Linear Unmixing

As mentioned earlier, kudzu pixels in the multispectral images are mainly mixed pixels
of kudzu and native plants. Spectral unmixing approaches have been developed to estimate
the fractional coverage (abundance) of each feature (endmember) in a pixel [29]. The linear
spectral unmixing method only considers the direct reflectance from each endmember [30].
It is easy to interpret and has been successfully applied to classify invasive plants [1,31,32].

We first applied the linear unmixing approach on the Sentinel-2 images to estimate
the initial abundance. Linear spectral unmixing assumes that the observed spectrum in
a pixel on the remote sensing images is the linear combination of the spectra of limited
endmembers [33]. The linear coefficient of each endmember represents its abundance,
corresponding to its respective areal proportions within a pixel [19]. The fully constrained
least squares (FCLS) method is one of the most widely used linear unmixing approaches in
urban areas [30]. In the FCLS model, the reflectance r of a pixel is assumed to consist of the
linear combination of p endmembers and noises:

r =
p

∑
i=1

αimi + ε (1)

∀i : αi ≥ 0 (ANC) (2)

p

∑
i=1

αi = 1 (ASC) (3)

where r = (r1, r2, · · · , rd) is the pixel’s reflectance with d spectral bands, p is the number of
endmembers, αi is the coefficient representing the abundance of ith endmember in the pixel,
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mi = (ri,1, ri,2, · · · , ri,d) is the reflectance of pure ith endmember, and ε = (ε1, ε2, · · · , εd)
is the noise caused by the sensor and modeling errors. Two constraints are used in this
model to derive endmember abundances, namely the abundance nonnegativity constraint
(ANC) and abundance sum-to-one constraint (ASC). The ANC constraint requires that all
derived endmember abundances are positive or zero values because it is impossible to
have a negative presence of any endmember in the field of view of a pixel [33]. The ASC
constraint requires the sum of the abundances from all endmembers to equal one [33].

2.3.2. Phenology-Based Potential Kudzu Masking

As a type of vegetation, kudzu has similar spectra with nearby trees and grasslands.
Therefore, spectral information alone is not enough to accurately separate kudzu from
surrounding vegetation. Figure 3 illustrates the averaged spectra of the reference areas
extracted from the Sentinel-2 images. This figure suggests that kudzu, trees, and grasslands
demonstrate identical shapes of the spectra curves and similar reflectance values. It is
especially difficult to separate kudu and grasslands in visible (bands 2–4) and short-wave
infrared (bands 11, 12) bands. Kudzu, trees, and grasslands are more spectrally separable
at red edges to near-infrared bands (bands 6–8a). Therefore, it is difficult to separate kudzu
from the surrounding vegetation using spectral information only.

Figure 3. Remote sensing reflectance of the reference regions extracted from the fall Sentinel-2 image.

Fortunately, kudzu has a different phenology from the native plants. Kudzu leaves
start to sprout late in spring [15] and remain green until the first frost, making it more
distinguishable from other vegetation in the fall and early winter [34]. This unique lagging
growth is one of the crucial attributes used to distinguish kudzu from the surrounding
vegetation [15,17,34]. For example, kudzu had not sprouted in the spring image in this
study area but the surrounding vegetation had already sprouted and their leaves can be
detected in the image (Figure 4a). In the fall image, kudzu and the surrounding vegetation
are all green and detectable (Figure 4b).

We applied two phenology-based rules to improve the kudzu identification. The first
assumption was that the abundance of kudzu increases from spring to fall because kudzu is
more detectable in the fall image. This rule was implemented by calculating the difference
between the initial kudzu abundances estimated by linear unmixing in early spring and
late fall. We, therefore, compared the kudzu abundance maps of the spring and fall images
that were derived from the first step to extract the potential kudzu pixels.
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Figure 4. Kudzu patches (marked by red lines) in Sentinel-2 images in spring (a) and fall (b).

The second assumption was that the greenness of kudzu was higher in the late fall
image than the early spring image, whereas the greenness of other vegetation was higher
in early spring than late fall. We used the normalized difference vegetation index (NDVI)
to measure the greenness of the vegetation [35]. NDVI is defined as:

NDVI =
ρNIR − ρR
ρNIR + ρR

(4)

where ρNIR is reflectance in the near-infrared band and ρR is reflectance in the red band. We
used band 8 and band 4 of the Sentinel-2 images for ρNIR and ρR, respectively. High NDVI
values correspond to more vegetation cover based on their dependency [36]. Figure 5
illustrates the NDVI variations of kudzu and the surrounding vegetation on the spring and
fall images in the reference regions. The NDVI changes in kudzu reference regions were
all positive. In contrast, the NDVI changes from the other three categories were negative,
consistent with our assumptions.

Figure 5. Boxplots of NDVI change from spring to fall in the reference regions. The maximum, 25th
percentile, 75th percentile, and the minimum values are represented by the top short line, top line of
the box, bottom line of the box, and bottom short line, respectively. Median values are represented by
the red line inside the box. Outliers are represented by crosses. The horizontal red line at 0 means no
changes in NDVI values.
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Based on the above two assumptions, we created a kudzu mask based on the differ-
ences in kudzu abundance and NDVI values. Specifically, the pixels where both NDVI
and kudzu abundance increased from spring to fall were marked as kudzu pixels. This
kudzu mask can be used to remove misclassified kudzu pixels and reduce the domain for
further processes.

2.3.3. Nonlinear Unmixing Refinement

Kudzu usually grows on top of the native trees, causing multilayer scattering and
uneven contributions of kudzu and surrounding vegetation to a pixel’s reflectance. The
linear unmixing model we used in the first step does not consider the indirect reflectance
from the interaction among endmembers within a pixel, limiting the accuracy of the
produced abundance map [29]. Unlike the linear unmixing models, nonlinear unmixing
models are designed for complex reflectance surfaces with multi-scattering. They are
especially effective for heterogeneous landscapes consisting of small patches, which is a
more precise description of the kudzu surfaces. However, the nonlinear unmixing models
are usually computationally intensive and are not efficient for regional analysis [37]. We,
therefore, only applied the nonlinear unmixing models on the pixels that were extracted
using the previous steps to refine the kudzu abundance map at a low computation cost.

Another issue is identifying which nonlinear model is suitable for kudzu mapping,
because multiple nonlinear unmixing models exist but no study has been conducted to
examine the performance of these models for kudzu mapping. We evaluated five nonlinear
models, including the bilinear fan model (BFM), post-polynomial nonlinear model (PPNM),
Hapke-based model (HM), generalized bilinear model (GBM), and multi-harmonic post-
nonlinear mixing model (MHPNMM). These nonlinear models were developed for different
reflectance scenarios and radiant transmission assumptions. BFM and GBM are bilinear
models that assume a light ray would interact with two different endmembers before
reaching the sensor, while GBM offers more degrees of freedom than BFM [38]. The physical
assumption of BFM and GBM is that the probability of nonlinear interactions between
endmembers is governed by their abundance. PPNM improves the unmixing process
by including the self-interaction between endmembers [39]. HM is designed for intimate
mixtures where lights interact multiple times with the closely contacted particles on the
ground before reaching the sensor [40]. MHPNMM combines the characteristics of PPNM,
GBM, and HM to simulate the high-order interactions between endmembers [41]. Detailed
descriptions of these models can be found in [38–41]. We compared the performances of
these nonlinear models and selected the most suitable model for the kudzu mapping.

2.3.4. Creating Kudzu Presence Maps

A kudzu presence map is created in each step via endmember abundance estima-
tion and threshold reclassification. Endmember abundances are estimated via spectral
unmixing analysis. We defined four land cover features as endmembers: kudzu, trees,
grasslands, and others. We adopted the four-endmember strategy for spectral unmixing
analysis due to their distinct spectral signatures compared to a binary strategy involving
kudzu and non-kudzu classes, making the abundance estimation more accurate. The
four endmembers were also consistent with the four categories of reference data. Pixels
within the reference polygons were assumed to be pure pixels. The spectral library used in
spectral unmixing analysis contained the average reflectance of the pure pixels extracted
from the reference regions in the fall image. This spectral library was used for both linear
unmixing and nonlinear unmixing analyses. Abundance maps were produced for kudzu,
trees, grasslands, and others in the spectral unmixing analysis.

The threshold continuum reclassification was applied to the abundance maps to
create the classification maps. This approach was designed to discretize the abundance of
invasive plants by characterizing the landscape based on the magnitude of invasion [1].
Specifically, all pixels with abundance values greater than or equal to the threshold value
were aggregated as ‘presence’, whereas the pixels with abundance values lower than the
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threshold were aggregated as ‘absence’ for each endmember. In this way, the landscape
was treated with a gradually changing gradient and isolated pixels and patches were
eliminated [1]. We tested 10 thresholds from 0.1 to 1.0 in each step and used the optimal
threshold to create the kudzu presence maps.

2.4. Accuracy Assessment

We regrouped the classification into two categories: kudzu and non-kudzu (includes
trees, grasslands, and others), focusing mainly on the accuracy of the kudzu classification.
A confusion matrix was generated to evaluate the classification accuracy of the kudzu
presence maps by treating the pixels within the kudzu reference polygons as the ground
truth. We also visually checked the kudzu presence maps against the reference kudzu areas
to interpret the mapping quality.

We derived four indices from the confusion matrix to quantify the classification accuracy:
producer’s accuracy (PA) [42], user’s accuracy (UA) [42], Jaccard index (Jaccard) [43], and
Cohen’s kappa index (Kappa) [44]. PA and UA are primary accuracy measures for individual
classes [42,45]. We only derived the PA and UA values for kudzu. The PA value represents
the number of correctly classified kudzu pixels in the reference polygons divided by the total
number of kudzu reference pixels, representing the probability that a ground kudzu pixel
will be correctly classified [46]. The UA value represents the number of correctly classified
kudzu pixels in the reference polygons divided by total number of pixels classified as kudzu,
representing the probability that a pixel in the kudzu presence map represents kudzu on the
ground [46]. PA and UA provide the omission and commission errors, respectively. The PA
and UA at threshold i are derived using Equations (5) and (6), respectively:

PAi =
TP

TP + FN
(5)

UAi =
TP

TP + FP
(6)

where TP (true positive) is the number of pixels identified as kudzu within kudzu refer-
ence polygons, FN (false negative) is the number of pixels identified as non-kudzu (trees,
grasslands, or others) within kudzu reference polygons, and FP (false positive) is the num-
ber of pixels identified as kudzu within non-kudzu reference polygons (trees, grasslands,
and others).

The Jaccard index is another accuracy measure at the category level. Unlike PA and
UA, the Jaccard index compares the true positive with both false negative and false positive
predictions. The Jaccard index ranges from 0 to 1 and the maximum occurs when there are
only true kudzu presence predictions and no errors [43]. The Jaccard is derived using the
Equation (7) for each threshold i:

Jaccardi =
TP

TP + FN + FP
(7)

Cohen’s kappa index is a widely used accuracy measure for the entire classification
process, showing the proportion of agreement after chance agreement is removed [44]. It is
derived with consideration of both commission and omission errors for all categories [46].
The Kappa at threshold i is derived using Equations (8)–(10):

Kappai =
p0 − pe

1− pe
(8)

p0 =
TP + TN

TP + FN + FP + TN
(9)

pe =
(TP + FP)× (TP + FN) + (FP + TN)× (FN + TN)

(TP + FN + FP + TN)2 (10)
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where TN (true negative) is the number of pixels identified as non-kudzu within non-kudzu
reference polygons (trees, grasslands, and others).

We used the Kappa to evaluate the classification performances on both kudzu and
non-kudzu categories because it assesses the robustness of the classification in identifying
the non-kudzu areas, reducing potential misclassifications caused by insufficient kudzu
reference data. The Kappa values range from 0 to 1, where 1 indicates perfect agreement for
all categories and 0 indicates random agreement [46,47]. We interpreted the Kappa index
according to Cohen’s suggestion: 0–0.20 as none to slight agreement with the reference
data; 0.21–0.40 as fair; 0.41–0.60 as moderate; 0.61–0.80 as substantial; 0.81–1.00 as almost
perfect agreement [47].

3. Results
3.1. Performance of the Initial Linear Unmixing Estimation for Kudzu Mapping

We evaluated the accuracy of kudzu classification maps based on abundance derived
from the linear unmixing method (the first step). Table 2 lists the accuracy measures for
kudzu classification based on the reclassification of different thresholds. All four indices
indicate that the accuracy of the kudzu classification decreased with decreasing thresholds.
This is because lower reclassification thresholds of kudzu abundance indicate that pixels
with higher abundances of other endmembers are classified as kudzu presence, causing
more misclassification. The PA and UA values decreased from 0.989 to 0.616 and from
0.511 to 0.152, respectively, for the thresholds from 1.0 to 0.1. Note that the PA value
was much higher than the UA value for each threshold, indicating that although most
kudzu in the reference areas were classified as kudzu, many surrounding vegetation areas
were misclassified as kudzu. The Jaccard and Kappa index values also decreased from
<0.6 to <0.2 with the decreasing thresholds. The Jaccard values imply that less than half
of kudzu presence predictions were correct (true positive), regardless of the selection of
threshold values. The Kappa values show that the classified kudzu and non-kudzu maps
only had moderate to fair agreement with the reference data. Visual interpretation of the
classification maps suggests that most misclassifications of kudzu were from grasslands.

Table 2. Kudzu classification performance based on linear unmixing of the entire area of Knox County.

Thresholds 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

PA 0.989 0.961 0.919 0.879 0.848 0.808 0.774 0.734 0.676 0.616
UA 0.511 0.475 0.432 0.396 0.367 0.333 0.289 0.245 0.195 0.152

Jaccard 0.508 0.466 0.416 0.376 0.344 0.309 0.266 0.225 0.179 0.138
Kappa 0.560 0.585 0.545 0.503 0.466 0.421 0.364 0.305 0.234 0.170

In summary, the kudzu reference areas were well identified by the linear unmixing
method, although many grassland areas were also misclassified as kudzu. The kudzu
maps created using the linear unmixing method overestimated the kudzu presence in the
study area.

3.2. Performance of Phenology-Based Kudzu Masking

Table 3 lists the accuracy indices of the kudzu classification maps after applying the
phenology-based kudzu mask. The PA, UA, and Jaccard values show similar decreasing
trends with decreasing thresholds, although all values are higher than those in the first step,
especially for the UA and Jaccard values. The PA values are still high, decreasing from 1 to
0.687 for thresholds ranging from 1.0 to 0.1. The UA values are improved by approximately
0.3 compared to the values in the first step, decreasing from 0.802 to 0.506 for thresholds
ranging from 1.0 to 0.1. The Jaccard values are also elevated to 0.802–0.411 for thresholds
ranging from 1.0 to 0.1, indicating that >50% of kudzu presence predictions were correct
for thresholds of >0.3. The improvement of the UA and Jaccard values indicate that the use
of the phenology-based mask can significantly reduce the kudzu misclassification in the
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first step. Visual interpretation also shows that most misclassified grasslands in the first
step were excluded after the phenology-based masking.

Table 3. Kudzu classification performance based on linear unmixing after the phenology-based masking.

Thresholds 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

PA 1.000 0.989 0.976 0.951 0.922 0.884 0.849 0.809 0.748 0.687
UA 0.802 0.801 0.785 0.764 0.738 0.689 0.632 0.572 0.530 0.506

Jaccard 0.802 0.794 0.771 0.734 0.695 0.632 0.568 0.504 0.450 0.411
Kappa 0.000 0.263 0.409 0.489 0.525 0.478 0.414 0.352 0.281 0.236

The Kappa index behaves differently in this step, first increasing then decreasing
with decreasing thresholds. The highest Kappa value, 0.525, occurs at the threshold of 0.6.
The high PA, UA, and Jaccard values for the kudzu class but low Kappa values for both
classes at thresholds ≥ 0.7 suggest that the reclassified maps at thresholds ≥ 0.7 have high
accuracy for kudzu presence but poor accuracy for the non-kudzu presence. This resulted
from the bias of the high true positive (kudzu reference samples) values but low true
negative (non-kudzu reference samples) values in the confusion matrix of high thresholds,
because most pixels with high abundance of non-kudzu categories were excluded from the
phenology-based masking.

3.3. Performance of the Nonlinear Unmixing Refinements for Kudzu Mapping

As listed in Table 4, only 12% of the study area was used for the nonlinear unmixing
analysis (134 km2 out of 1126 km2). The performances of the five nonlinear unmixing
models, namely BFM, GBM, PPNM, HM, and MHPNMM, and the linear unmixing model
used in the first step, FCLS, were assessed for kudzu classification using the UA and
PA values (Figure 6). The PA and UA values for kudzu decreased with the decreasing
thresholds for all nonlinear unmixing models except BFM. FCLS, GBM, and MHPNMM
provided relatively higher PA values, with MHPNMM providing the highest UA values.
We, therefore, selected MHPNMM to estimate the nonlinear abundance and to refine the
kudzu presence maps.

Table 4. Computation areas for linear and nonlinear unmixing models.

Procedure Step Computation Areas for Unmixing Models

Step 1 Linear unmixing Knox County vegetated area, 1126.06 km2

Step 3 Nonlinear unmixing Phenology-based masked kudzu area, 134.19 km2

Figure 6. Kudzu classification performance at different thresholds for nonlinear unmixing models: (a) PA; (b) UA.

Table 5 lists the classification accuracy indices based on the nonlinear model, MHP-
NMM. Both PA and UA values are higher than 0.8 and the Jaccard values are higher than
0.7 at thresholds ≥ 0.4, suggesting that both commission and omission errors are <20%
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for kudzu classification, while correctly classified kudzu areas account for >70% of all
predictions. The Kappa results show similar trends (first increasing then decreasing) to the
results of the second step. The highest Kappa value, 0.725, occurs at the threshold of 0.6,
indicating that the overall classification is in compliance with the reference data for both
kudzu and non-kudzu samples.

Table 5. Kudzu classification performance based on nonlinear unmixing after the phenology-based masking.

Thresholds 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

PA 0.974 0.955 0.944 0.925 0.907 0.880 0.842 0.803 0.756 0.698
UA 0.875 0.872 0.867 0.864 0.858 0.852 0.830 0.790 0.715 0.615

Jaccard 0.855 0.837 0.824 0.807 0.789 0.763 0.718 0.662 0.581 0.486
Kappa 0.126 0.454 0.618 0.698 0.725 0.723 0.690 0.633 0.548 0.433

3.4. Kudzu Presence in Knox County

We selected an optimal threshold to create the kudzu presence maps. The highest PA,
UA, and Jaccard values for kudzu classification occurred at a threshold of 1.0, although
the corresponding Kappa value was low, indicating that the overall classification was not
robust, especially for the non-kudzu vegetation. The highest Kappa values occurred at the
threshold of 0.6 in step 2 and step 3, while the corresponding PA, UA, and Jaccard values
were also high, indicating more robust classification for both kudzu and non-kudzu classes.
We, therefore, used 0.6 as the optimal threshold to create the kudzu presence maps for
all steps.

Figure 7 illustrates the statistics for the kudzu patches identified in the kudzu presence
maps. The initial kudzu presence map from the first step produced the highest number
of kudzu patches, covering the largest areas, with high standard deviation in some areas.
In the second step, the phenology-based masking reduced the number of kudzu patches,
the patch area, and the standard deviation of the area slightly, although the total kudzu
area decreased by >50% from the first step. In the third step, the nonlinear unmixing
models further reduced the kudzu patch area, standard deviation, and total kudzu area by
about 50% from the second step, although the number of kudzu patches increased. These
results confirmed that the linear unmixing model tends to overpredict kudzu presence,
the phenology-based masking reduces the total area of kudzu patches, and the nonlinear
unmixing model predicts more kudzu patches with a smaller area and less variation.

Figure 7. Statistics of kudzu patches identified in each step.
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The kudzu abundance maps estimated from linear and nonlinear unmixing are shown
in Figure 8. Areas with high kudzu abundance are sporadically distributed across the entire
county. The northwestern and southeastern parts in Knox County are heavily invaded by
kudzu. The identified kudzu invasion areas continuously decreased from the first to the
third step. The final refined kudzu presence map identified 1.05% of the vegetated areas
in Knox County as kudzu, with PA, UA, Jaccard, and Kappa values of 0.907, 0.858, 0.789,
and 0.725, respectively. The kudzu presence maps also suggest that kudzu usually invade
forest edges, roads, and vegetation near houses and infrastructure (Figure 9).

Figure 8. Kudzu abundance maps in Knox County: (a) initial kudzu abundance map from linear
unmixing (step 1); (b) refined kudzu abundance map of the extracted areas from nonlinear unmixing
(step 3). Specifically, areas with kudzu abundance ≤ 0.6 are displayed in green and areas with kudzu
abundance > 0.6 are displayed in yellow to red.

Figure 9. An example of kudzu invasion in Knox County. The background image is Sentinel-2 image acquired on
6 September 2020: (a) initial kudzu presence map from step 1; (b) potential kudzu presence map from step 2; (c) refined
kudzu presence map from step 3.

4. Discussion
4.1. Misclassification with the Surrounding Vegetation

A comparison of the accuracy indices for kudzu classification indicated that the PA
values were relatively constant, while the UA and Jaccard values significantly increased
from the first to the third step of the classification (Figure 10). The initial linear unmixing
model was capable of identifying kudzu in the reference regions, although it overpre-
dicted the kudzu presence by misclassifying the surrounding vegetation as kudzu. The
phenology-based masking and nonlinear unmixing approach reduced the misclassification
and increased the UA and Jaccard values from less than 0.5 in the first step to approximately
0.9 in the third step, producing more accurate kudzu maps.
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Figure 10. Classification performances for different thresholds over the three steps: (a) PA; (b) UA; (c) Jaccard.

Here, kudzu was primarily misclassified as grassland. Figure 3 shows that the spectral
curves for kudzu and grassland areas collected from Sentinel-2 images are very close to each
other, which caused misclassification. Figures 11 and 12 provide two examples. The field in
Figure 11 is covered by several large patches of grassland that were misclassified as kudzu
in the first step (Figure 11b,e). The phenology-based masking excluded most grasslands
(Figure 11c,f). The nonlinear unmixing method further reduced the misclassification and
only some edges of forests were identified as kudzu (Figure 11d,g). Figure 12 shows the
residential regions with small grassland patches. The grassland stripes on the western parts
were identified as kudzu in the first step, while the phenology-based masking also failed to
exclude these areas (Figure 12b,c,e,f). These misclassified grasslands were excluded in the
third step, and the remaining patches along the roads and houses were identified as true
kudzu presence based on the validation of our reference data (Figure 12d,g).

4.2. Spectral Unmixing Model Selection for Kudzu Mapping

Spectral unmixing models are designed for specific reflectance scenarios and radiant
transmission processes. Studies have found that unmixing models perform dramatically
differently for various landscapes [12]. Therefore, an appropriate unmixing model for
kudzu mapping and identification should demonstrate reasonable interpretation of the
suitability of the modeling conditions and the invaded surfaces.

Physical interpretation of the spectral unmixing models was investigated in this study
for kudzu surfaces. Linear unmixing models are intuitive and only consider the contribution
of direct endmember reflectance. The linear unmixing models are, therefore, more suitable for
flat surfaces that consist of spatially separated pure materials [40]. The so-called checkerboard
pattern can be compromised at a large spatial scale when the influence of the local topography
is minor. We, therefore, applied the linear unmixing model across the entirety of Knox County
in the first step, which estimated the initial kudzu abundance and presence with small com-
putation expense. However, the interaction of lights between vegetation endmembers in the
vertical structure was highly nonlinear [37]. The nonlinear unmixing approach provides more
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accurate descriptions for complex spectral and geometrical scenarios [48]. Bilinear models,
including BFM, GBM, and PPNM, often describe the scenes acquired over forested areas
where there are many interactions between the ground and canopy [49]. Hapke-based models
are valued for accurate and realistic abundance estimation in distinguishing mineral materials
at small spatial scales, focusing on closely packed particles with different optical characteris-
tics [50]. MHPNMM considers multilayer scattering and internal radiation interactions on
rugged surfaces [41]. MHPNMM is more generalized and robust for various unmixing sce-
narios due to the combination of bilinear and Hapke-based models. The nonlinear unmixing
model for kudzu classification should include both the indirect reflectance between the ground
and vegetation and multiple scatters from the vertical structure of the tree canopy and kudzu
leaves, since kudzu usually invades forests edges and grows on top of trees. MHPNMM
represents the spectral mixing processes of kudzu surfaces properly, making it suitable for
accommodating complex mixed scenes for refined kudzu classification.

Figure 11. Misclassification of large grassland patches over the three steps: (a) true color composite image; (b–d) kudzu
presence identified from steps 1 to 3, respectively; (e–g) kudzu abundance identified from steps 1 to 3, respectively.

Figure 12. Misclassification of small grassland patches over the three steps: (a) true color composite image; (b–d) kudzu
presence identified from steps 1 to 3, respectively; (e–g) kudzu abundance identified from steps 1 to 3, respectively.
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4.3. Future Improvements of the Proposed Kudzu Classification Approach

Our proposed method could be further improved in terms of the spectral unmix-
ing parameters and phenological characteristic collection. First, it can be improved by
incorporating a spectral library collection. A precise spectral library of endmembers is
the foundation for accurate spectral unmixing analysis and abundance estimation. We
collected endmember spectra in Google Earth with the assumption that they contained
“pure” pixels, which may not always be true in practice. A more precise spectral library
could be obtained by collecting spectra in the field using spectrometers to capture more
differences in the spectral signatures [51].

Second, an optimal combination of unmixing bands would reduce the redundant
information and improve the accuracy and efficiency of spectral unmixing. We used
all bands with original resolutions of 10 m and 20 m for Sentinel-2 images, including
visible, red edge, NIR, and SWIR bands. Red and NIR bands are commonly regarded
as the most important bands for spectral unmixing analyses in vegetated regions [52].
However, studies have found that the most important bands for Sentinel-2 images for
vegetation abundance estimations are bands 4 (Red), 8 (NIR), and 12 (SWIR), while the
special red edge bands (bands 5 to 7) have little influence in terms of improving the accuracy
of vegetation abundance estimation due to their high correlation with other bands [53].
Kudzu mapping, therefore, can be improved by investigating the performances of different
band combinations for spectral analysis and selecting the optimal combinations to diminish
the noises caused by redundant bands and increase their computation efficiency.

Third, the numbers and types of endmembers also affect the performance of spectral
unmixing analysis. More specific endmember types would increase the accuracy of spectral
unmixing-based classification [51]. Shade was also reported to play a significant role in
identifying vegetation species in spectral unmixing analyses [31]. We only considered the
general categories of the surrounding vegetation, including trees, grasslands, and others.
Further studies could investigate the effects of specifying native plant species and involving
shade as an endmember in spectral unmixing analyses.

Finally, kudzu phenology was not fully incorporated in the current study. The char-
acteristics of kudzu phenology can be improved by exploring kudzu greenness changes
over a complete growth period and identifying the significant growth time for spectral
unmixing analysis.

5. Conclusions

Spectral unmixing analysis is an effective approach to identify invasive plants, es-
pecially for multispectral remote sensing imagery with medium spatial resolutions. The
integration of phenological characteristics significantly improves the classification accuracy
and computational efficiency for the application of advanced nonlinear unmixing models.
The use of an appropriate nonlinear unmixing model allows for more accurate abundance
estimations and presence mapping. This paper introduces a three-step classification process
that consists of linear unmixing, phenology-based masking, and nonlinear unmixing to
identify the presence of kudzu in Knox County. The major findings of this study include:

1. The spectral unmixing approach is appropriate for kudzu mapping at the county
scale using Sentinel-2 images and allows for continuous monitoring of large areas;

2. Linear unmixing provides high producer’s accuracy but low user’s accuracy due to
the misclassification of grasslands as kudzu;

3. A phenology-based mask can be created based on the differences of kudzu abundance
estimated from linear spectral unmixing and NDVI derived from the Sentinel-2
images. The use of this phenology-based mask improves the kudzu classification
accuracy and decreases the computing expense for nonlinear spectral unmixing;

4. The nonlinear unmixing analysis can refine the kudzu abundance estimation and
presence classification, although an appropriate nonlinear model should be selected
based on the performance assessment on the datasets and the physical interpretation
of the spectral mixing scenarios;
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5. The refined kudzu presence map for Knox County gives user’s accuracy, producer’s
accuracy, Jaccard index, and Kappa index values of 0.858, 0.907, 0.789, and 0.725,
respectively, based on an optimal abundance reclassification threshold of 0.6;

6. Kudzu plants are scattered in small patches along forest edges, roads, and vegetation
tops near houses and infrastructure, especially in the northwestern and southeastern
parts of Knox County.

The classification method introduced in this paper can be used to map kudzu in other
areas. It can be applied to other invasive plants for long-term and large-scale monitoring
using the free Sentinel-2 imagery.
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43. Somodi, I.; Čarni, A.; Ribeiro, D.; Podobnikar, T. Recognition of the invasive species Robinia pseudacacia from combined remote

sensing and GIS sources. Biol. Conserv. 2012, 150, 59–67. [CrossRef]

http://doi.org/10.1111/j.1931-0846.2004.tb00165.x
http://doi.org/10.22621/cfn.v126i1.1292 
http://doi.org/10.3390/rs12040609
http://doi.org/10.3390/su12093544
http://doi.org/10.1117/1.2749266
http://doi.org/10.1080/01431161.2016.1271475
https://www.census.gov/programs--surveys/popest.html
https://en--gb.topographic--map.com
https://www.bestplaces.net/climate/city/tennessee/knoxville
www.plantmaps.com
https://321boat.com/all--about--the--humid--subtropical--climate/
http://doi.org/10.1016/j.pce.2018.12.004
https://sentinel.esa.int/web/sentinel/home
https://sentinel.esa.int/web/sentinel/home
http://doi.org/10.1016/j.rse.2010.07.001
http://doi.org/10.1109/79.974727
http://doi.org/10.1109/36.911111
http://doi.org/10.1016/j.rse.2020.112037
http://doi.org/10.1016/j.jag.2014.01.015
http://doi.org/10.1109/TGRS.2011.2155070
https://www.daf.qld.gov.au/__data/assets/pdf_file/0004/74137/IPA-Kudzu-Risk-Assessment.pdf
https://www.daf.qld.gov.au/__data/assets/pdf_file/0004/74137/IPA-Kudzu-Risk-Assessment.pdf
http://doi.org/10.1155/2017/1353691
http://doi.org/10.1016/S0034-4257(97)00104-1
http://doi.org/10.1016/j.rse.2010.04.003
http://doi.org/10.1080/01431160802558659
http://doi.org/10.1109/TIP.2012.2187668
http://www.ncbi.nlm.nih.gov/pubmed/22345533
http://doi.org/10.1109/JSTARS.2014.2320576
http://doi.org/10.1109/LGRS.2018.2856406
http://doi.org/10.1016/j.biocon.2012.02.014


Remote Sens. 2021, 13, 4551 19 of 19

44. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
45. Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ.

2007, 107, 606–616. [CrossRef]
46. Tung, F.; LeDrew, E. The determination of optimal threshold levels for change detection using various accuracy indexes.

Photogramm. Eng. Remote Sens. 1988, 54, 1449–1454.
47. Schnell, A. What Is Kappa and How Does It Measure Inter–Rater Reliability? Available online: https://www.theanalysisfactor.

com/kappa--measures--inter--rater--reliability/#respond (accessed on 9 October 2021).
48. Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview:

Geometrical, statistical, and sparse regression–based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379.
[CrossRef]

49. Dobigeon, N.; Tourneret, J.-Y.; Richard, C.; Bermudez, J.C.M.; McLaughlin, S.; Hero, A.O. Nonlinear unmixing of hyperspectral
images: Models and algorithms. IEEE Signal Process. Mag. 2013, 31, 82–94. [CrossRef]

50. Shipman, H.; Adams, J.B. Detectability of minerals on desert alluvial fans using reflectance spectra. J. Geophys. Res. Solid Earth
1987, 92, 10391–10402. [CrossRef]

51. Pacheco, A.; McNairn, H. Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping.
Remote Sens. Environ. 2010, 114, 2219–2228. [CrossRef]

52. Horler, D.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [CrossRef]
53. Wang, B.; Jia, K.; Liang, S.; Xie, X.; Wei, X.; Zhao, X.; Yao, Y.; Zhang, X. Assessment of Sentinel-2 MSI spectral band reflectances for

estimating fractional vegetation cover. Remote Sens. 2018, 10, 1927. [CrossRef]

http://doi.org/10.1177/001316446002000104
http://doi.org/10.1016/j.rse.2006.10.010
https://www.theanalysisfactor.com/kappa--measures--inter--rater--reliability/#respond
https://www.theanalysisfactor.com/kappa--measures--inter--rater--reliability/#respond
http://doi.org/10.1109/JSTARS.2012.2194696
http://doi.org/10.1109/MSP.2013.2279274
http://doi.org/10.1029/JB092iB10p10391
http://doi.org/10.1016/j.rse.2010.04.024
http://doi.org/10.1080/01431168308948546
http://doi.org/10.3390/rs10121927

	Introduction 
	Materials and Methods 
	Study Area 
	Datasets 
	Remote Sensing Images and Pre-Processing 
	Reference Data 

	Spectral Unmixing and Phenology-Based Kudzu Identification Method 
	Initial Estimation by Linear Unmixing 
	Phenology-Based Potential Kudzu Masking 
	Nonlinear Unmixing Refinement 
	Creating Kudzu Presence Maps 

	Accuracy Assessment 

	Results 
	Performance of the Initial Linear Unmixing Estimation for Kudzu Mapping 
	Performance of Phenology-Based Kudzu Masking 
	Performance of the Nonlinear Unmixing Refinements for Kudzu Mapping 
	Kudzu Presence in Knox County 

	Discussion 
	Misclassification with the Surrounding Vegetation 
	Spectral Unmixing Model Selection for Kudzu Mapping 
	Future Improvements of the Proposed Kudzu Classification Approach 

	Conclusions 
	References

