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Abstract: Directly establishing the relationship between satellite data and PM2.5 concentration
through deep learning methods for PM2.5 concentration estimation is an important means for
estimating regional PM2.5 concentration. However, due to the lack of consideration of uncertainty in
deep learning methods, methods based on deep learning have certain overfitting problems in the
process of PM2.5 estimation. In response to this problem, this paper designs a deep Bayesian PM2.5

estimation model that takes into account multiple scales. The model uses a Bayesian neural network
to describe key parameters a priori, provide regularization effects to the neural network, perform
posterior inference through parameters, and take into account the characteristics of data uncertainty,
which is used to alleviate the problem of model overfitting and to improve the generalization ability
of the model. In addition, different-scale Moderate-Resolution Imaging Spectroradiometer (MODIS)
satellite data and ERA5 reanalysis data were used as input to the model to strengthen the model’s
perception of different-scale features of the atmosphere, as well as to further enhance the model’s
PM2.5 estimation accuracy and generalization ability. Experiments with Anhui Province as the
research area showed that the R2 of this method on the independent test set was 0.78, which was
higher than that of the DNN, random forest, and BNN models that do not consider the impact of
the surrounding environment; moreover, the RMSE was 19.45 µg·m−3, which was also lower than
the three compared models. In the experiment of different seasons in 2019, compared with the other
three models, the estimation accuracy was significantly reduced; however, the R2 of the model in this
paper could still reach 0.66 or more. Thus, the model in this paper has a higher accuracy and better
generalization ability.

Keywords: PM2.5; MODIS; deep Bayesian model; multiscale

1. Introduction

With the rapid development of urbanization and industrialization, air pollution has
become a global environmental problem affecting human health [1]. PM2.5 (suspended
particulate matter with an aerodynamic diameter of less than 2.5 µm) has many adverse
effects on human health [2]. Although the accuracy of PM2.5 monitoring at ground stations
is relatively high, due to the uneven distribution of ground stations, the use of remote
sensing methods to estimate PM2.5 concentrations has become an important method for
large-scale PM2.5 monitoring.

The PM2.5 concentration estimation methods based on satellite remote sensing mainly
include the indirect estimation method based on satellite-derived aerosol optical depth
(AOD) and the direct estimation method based on the spectral characteristics of remote
sensing images. Satellite-derived AOD is the overall extinction value of the atmospheric
column, and satellite aerosol products have the advantage of global coverage. Studies have
shown that AOD has a good correlation with PM2.5 concentrations near the surface [3],
and it has been widely used in the estimation of PM2.5 concentrations [4]. The PM2.5
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concentrations can be estimated by establishing a linear or nonlinear relationship between
AOD and PM2.5. The estimation models mainly include physical models [5], statistical
models, and neural network models. Among them, the physical model is limited by aerosol
composition and chemical transport mode [5] meteorological data, which introduce great
uncertainty and computational complexity, and it is difficult to clarify all the interactions
of multiple factors in the air. However, statistical models can quantitatively describe the
quantitative relationship between AOD and PM2.5, such as the semiempirical model [6–9],
multiple linear regression model [10], land-use regression model [11], linear or nonlinear
mixed-effects model [12], generalized linear regression model [13], and geographically
weighted regression model (GWR) [14–16], which are applied to air pollutant estimation
and spatiotemporal analysis, considering the relationship between PM2.5 and single or
multiple impact factors. However, with the increase in influence factors and the amount of
data, the nonlinear relationship between parameters becomes more complicated. Tradi-
tional mathematical expressions cannot express this nonlinear relationship well, and the
ability to describe complex nonlinear relationships is limited. With the proposed neural
network models, such as the artificial neural network (ANN) [17], random forest [18,19],
geographic and time-weighted neural network (GTWNN) [20], generalized regression neu-
ral network (GRNN) [21], extreme gradient boosting (XGBoost) [19], and support vector
machine (SVM) [22], the estimation accuracies of air pollutants have been improved to
a certain extent. However, the PM2.5 concentration estimation models based on neural
networks still have many shortcomings, and the prediction results are not ideal. The main
reasons are as follows: (1) shallow neural networks cannot extract priority features from
complex data; (2) shallow neural networks completely depend on the characteristics of
input samples [23], whereas the PM2.5 concentration is affected by complex relationships
of many factors, which cannot be well described by neural networks. The reliability and
practicability of satellite-derived AOD data are affected by various factors such as estima-
tion accuracy [24], frequency [25], and temporal and spatial resolution [26]. Therefore, the
use of AOD to estimate PM2.5 concentration causes error transmission.

In order to avoid the influence of error transmission caused by AOD, methods
of directly estimating PM2.5 concentration using spectral information have been pro-
posed [27,28]. Shen et al. [29] proposed a deep belief network (DBN) model for PM2.5
estimation based on satellite TOA reflectivity, normalized vegetation index (NDVI), and
meteorological data. This method considers the influence of spectral information and
surface vegetation on PM2.5 concentration and proves the possibility of estimating ground
PM2.5 directly from satellite apparent reflectance. By skipping the intermediate steps of
AOD retrieval, this modeling method can prevent AOD product retrieval errors from
propagating to PM2.5 estimation, and direct estimation using spectral information has a
larger spatial coverage than estimation using derivative AOD. Bai et al. [30] compared and
analyzed the difference in PM2.5 estimation accuracies based on TOA and AOD through
four models, random forest, background gradient lifting regression, xgboost, and support
vector regression (SVR), and they verified the reliability of PM2.5 estimation based on TOA.
In addition, in order to estimate PM2.5 concentration in small areas, [31–33] proposed a
PM2.5 estimation method based on MODIS original band data with 250 m resolution, a
convolution neural network PM2.5 estimation method based on Google images, and a
convolution neural network and random forest coupling model based on the combination
of planetscope commercial satellite and meteorological data. The above methods based
on the direct estimation of spectral information use the feature extraction and data fitting
capabilities of methods such as deep neural networks, random forest models, convolutional
neural networks, and random forest coupled models to achieve better PM2.5 estimation
results. However, since the atmosphere is a continuous and complex system, the concen-
tration and spatial distribution of PM2.5 are affected not only by factors such as surface
coverage and differences in conventional weather but also by uncertain factors such as
ground pollution source emissions and extreme weather. However, due to the lack of
uncertainty measurement in the prediction when using the neural network architecture,
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these methods based on deep learning have certain overfitting problems in the process of
PM2.5 estimation. Although the current neural network architecture has adopted methods
such as regularization and dropout to reduce overfitting, due to the lack of uncertainty
measures in the prediction when using the neural network architecture, many current
PM2.5 estimation methods based on the neural network architecture still cannot adequately
overcome the overfitting problem.

The Bayesian neural network, through a combination of probabilistic modeling and a
neural network, uses a priori described key parameters, provides a regularization effect
for the network, and carries out a posteriori inference through parameters, which can
effectively reduce the overfitting problem of the model and enhance its generalization.
Therefore, this paper uses MODIS Level-1B, NDVI, normalized difference built-up index
(NDBI), and meteorological data as the influencing factors to design a deep Bayesian PM2.5
estimation model that takes into account the influence of the surrounding neighborhood to
achieve PM2.5 concentration estimation, taking Anhui Province as the research area.

2. Study Area and Data
2.1. Study Area

The research area in this paper was Anhui Province, located in the Yangtze River Delta
region of China. The geographical location is between 114◦54′ and 119◦37′ east longitude
and between 29◦41′ and 34◦38′ north latitude (Figure 1). The total area is 144,100 square
kilometers. Anhui Province is in the transitional region between the warm temperate zone
and the subtropical zone, with various terrains such as plains, hills, and mountains [34].
Due to the rapid economic development of the Yangtze River Delta, air pollution has always
been a concern. According to the environmental quality report for the first half of 2020
issued by Anhui Province, the air pollutants in 16 prefecture-level cities showed significant
regional characteristics. The proportions of days with mild, moderate, and severe pollution
are 14.6%, 2.5%, and 1.0%, respectively. The days with PM2.5 as the primary pollutant
are the most frequent. Therefore, it is of great significance to monitor PM2.5 using remote
sensing methods.
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2.2. MODIS Satellite Data

In this study, satellite data from the Moderate-Resolution Imaging Spectroradiometer
(MODIS) mounted on Terra and Aqua satellites were used. The Terra satellite passes
through the equator from north to south at about 10:30 a.m. local time. The Aqua satellite
passes through the equator from south to north at about 1:30 p.m. local time. Their orbits
are 705 km high, and the two satellites cooperate with each other to observe the entire
earth’s surface repeatedly every 1–2 days, featuring a wide spectrum range. The data can
be downloaded from NASA’s official website, including L1A products of MOD02_1 km
and MYD02_1 km, which have 36 medium-resolution levels (0.4–14.4 µm) of spectral bands,
covering the full spectrum from visible light to thermal infrared. The spatial resolution of
two channels is 250 m, that of five channels is 500 m, and that of 29 channels is 1000 m.
We applied the MODIS Conversion Toolkit (MCTK) for geometric correction, radiometric
calibration, atmospheric correction, and other pre-processing operations to obtain MODIS
satellite data for Anhui Province from 2016 to 2019. Then, the NDVI and NDBI, which
were employed as the influencing factors of PM2.5 concentration, were calculated using the
red, near-infrared, and shortwave infrared data in L1A products.

2.3. PM2.5 Measurements from Ground Stations

China’s National Ambient Air Quality Standard (GB3095–2012) stipulates that the
PM2.5 concentrations at ground sites should be measured using the micro-oscillating bal-
ance method and the β-ray method [26]. As of 2020, China’s ground PM2.5 real-time
monitoring network had more than 1700 stations. In this study, the hourly PM2.5 concentra-
tion data of effective sites in Anhui Province throughout the year from 2016 to 2019 were
obtained through the China National Environmental Monitoring Center (CNEMC) website.
The PM2.5 mass concentration unit was µg/m−3. The specific site distribution is shown in
Figure 1.

2.4. Weather Reanalysis Data

In this study, the ERA5 hourly reanalysis dataset from the European Center for
Medium-Range Weather Forecasts (ECMWF) was used. ERA5 is a reanalysis of global
climate and weather data. It uses the laws of physics to combine model data with obser-
vations from all over the world into a global complete and consistent dataset. The spatial
resolution of the ERA5 reanalysis dataset is 0.25◦ × 0.25◦. Studies have shown that wind
speed, temperature, humidity, rainfall, and other factors have a certain impact on PM2.5
concentration [35]. Referring to the existing research [27] and through experiments, this
paper finally selected wind speed, boundary layer height, total amount of ozone column,
boundary layer diffusion, temperature, evaporation, total precipitation, surface pressure,
high-vegetation-cover index, low-vegetation-cover index, and relative humidity as aux-
iliary meteorological factors affecting PM2.5 concentration. The auxiliary meteorological
factors are shown in Table 1.

ERA5 Accuracy Analysis

ECMWF was established in 1975 and is an international organization consisting of
34 countries. As one of the world’s meteorological centers, ECMWF has developed a
global medium-term weather numerical forecast model that is at the forefront of the
world. The ERA5 launched by ECMWF is currently the most powerful global climate
atmospheric reanalysis tool, which provides hourly data and uncertainty estimates of
various atmospheric, land and ocean state parameters. Additionally, it has also been widely
used for atmospheric parameter estimation [36–38]. Existing studies [36,38–40] have shown
the accuracy and applicability of wind speed and temperature in ERA5 data. Hersbach
H et al. [41] as well showed the good performance of ERA5 data. Therefore, it can be
seen from the above research that ERA5 has a good application prospect in atmospheric
parameter estimation.
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Table 1. Selected ERA5 reanalysis data.

Name Unit Definition Description

10 m u-component of wind m/s This parameter is the eastward component of the 10 m wind

Boundary layer height m This parameter calculation is based on the bulk
Richardson number

Total column ozone kg/m2
This parameter is the total amount of ozone in a column of air

extending from the surface of the Earth to the top of
the atmosphere

Boundary layer dissipation J/m2
This parameter is the accumulated conversion of kinetic energy in
the mean flow into heat, over the whole atmospheric column, per

unit area

2 m temperature K This parameter is the temperature of air at 2 m above the surface
of land, sea or inland waters

Evaporation m of water equivalent This parameter is the accumulated amount of water that has
evaporated from the Earth’s surface

10 m v-component of wind m/s This parameter is the northward component of the “neutral
wind”, at a height of 10 m above the surface of the Earth

Total precipitation m This parameter is the accumulated liquid and frozen water,
comprising rain and snow, that falls to the Earth’s surface

Surface pressure Pa This parameter is the pressure (force per unit area) of the
atmosphere at the surface of land, sea and inland water

High vegetation cover Dimensionless This parameter is the fraction of the grid box that is covered with
vegetation that is classified as “high”

Low vegetation cover Dimensionless This parameter is the fraction of the grid box that is covered with
vegetation that is classified as “low”

Relative humidity %

This parameter is the water vapour pressure as a percentage of
the value at which the air becomes saturated (the point at which
water vapour begins to condense into liquid water or deposition

into ice)

2.5. Data Preprocessing

Data pre-processing included MODIS remote sensing image pre-processing, data
cleaning, removal of outliers, resampling, and data matching. We used the MCTK plug-in
to pre-process MOD02/MYD02 km data in MODIS remote sensing image pre-processing,
including radiometric calibration, geometric correction, atmospheric correction, Bowtie
correction, reprojection, coordinate system conversion, and resampling. Then, we removed
invalid data, such as null values, and resampled the meteorological reanalysis data to
the same 1 km resolution as the MODIS remote sensing image. Finally, according to the
latitude, longitude, and time, the MODIS data, the meteorological reanalysis data, and the
PM2.5 mass concentration data of the ground station were matched spatiotemporally.

3. Methods

Figure 2 depicts the flow chart of PM2.5 modeling in Anhui Province used in this
paper. The input of the model included MODIS, ERA5, and ground station data. In order
to obtain data with the same projection and spatiotemporal resolution, the meteorological
reanalysis data and MODIS data were pre-processed. After all the data were prepared,
the deep Bayesian model was trained and verified, and the parameters were adjusted to
obtain the optimal model; then, estimations and analyses were performed. We selected
5 × 5 km, 3 × 3 km, and 1 × 1 km neighborhoods in the surrounding space, before ex-
tracting their environmental characteristics. In order to verify the accuracy of the deep
Bayesian model in this paper, the DNN [31] model, random forest model [28], and Bayesian
neural network (BNN) model, without considering the surrounding impact, were used as
comparison models.
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3.1. Impact Factor Screening

It is known from Robin Genuer, Carolin Strobl et al. [42,43] that the use of random
forest is an effective method for variable selection in the variable selection problem of
classification and regression. They used random forest to obtain the importance of the
variables and sort them, and finally select the variables according to the importance of the
variables. Therefore, in this study, the random forest model is used to select the best impact
factor of ERA5 to reduce the redundancy of impact factors. The performance of the model
is optimized by selecting the optimal permutation and combination of the influencing
factors. On account of the decision tree generated using Boostrap, each tree in the random
forest will not use all data samples in the production process. This part of the sample is
called out-of-bag sample (oob). By using oob to iterate each feature, constantly changing
the number of features, and comparing the oob scores before and after the model under the
unchanged number of features, we are able to judge the importance of different features,
sort the evaluation scores; the higher the score, the more important the feature, then, use
the scores to combine from high to low, observe the changes in scores, and finally select the
best feature combination.

3.2. Bayesian Neural Network

Neural networks have a strong nonlinear fitting ability; thus, they have a wide range
of applications in various fields. For a neural network, the core task is to obtain the
parameters of each layer of the network according to the data of the training set, and then
optimize the parameters such that the loss function reaches a minimum. In reality, there
is usually uncertainty within the data, and there is a certain randomness between x and
y. However, a neural network lacks consideration of the model and uncertainty of the
data; hence, when the amount of data is small, there is a serious overfitting phenomenon,
leading to certain limitations in application. The Bayesian neural network is a type of
neural network model. In a standard neural network, the weight parameter is represented
by a single point, whereas the Bayesian neural network model parameter is not a fixed
value; instead, the parameter is expressed in the form of a probability distribution to
provide an uncertainty estimation. Furthermore, the parameters are expressed in the
form of a prior probability distribution, and the average value is calculated for many
models during training, such that the uncertainty of the model and data can be considered,
and a regularization effect can be provided to the network. In addition, the Bayesian
neural network has the advantage of being able to obtain a more robust model based on
less training data, and it can obtain the distribution of parameters in each layer, thereby
effectively preventing the problem of overfitting. The core of the Bayesian neural network
is the Bayesian equation, presented below.

P(W|X, Y) =
P(W)P(Y|X, W)

P(Y, X)
, (1)
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where (Y, X) are the training data; since the training data are given, P (Y, X) is a constant.
The goal of the Bayesian neural network is to determine P (W|X, Y) ∝ P(W)P (Y|X, W),
where P (W) is the prior probability of W, and P(W|X, Y) is the probability that the neural
network outputs Y under the given parameters W and X.

However, the probability distribution of P(W|X, Y) is complicated and difficult to
solve. Therefore, the Bayesian neural network approximates the P function by establishing
a q function, and then uses a simpler distribution to approximate P(W|X, Y). The average
µ and standard deviation σ parameters of the P function are the parameters that need
to be adjusted by the neural network. Bayesian neural networks generally select two
distributions of KL divergence to judge the effect of the q function approaching the P
function. KL divergence is also called the relative entropy of two distributions, which is
used to measure the distance between two random variables. KL divergence is a measure
of the difference between two probability distributions p and q, and its mathematical
definition is as follows:

KL(q|P) =
n

∑
i=1

q(W)log
q(W)

P(W|X, Y)
. (2)

Further analysis obtains

L(q|P) = Eq

[
log

q(W)

P(W|X, Y)

]
. (3)

It can be obtained that the KL divergence is the log q(W)
P(W|X,Y) expectation about q. The

Adam optimizer can be used to obtain the optimal parameters, minimize the KL divergence,
and obtain the optimal model.

3.3. Deep Bayesian Model

The deep Bayesian model is composed of an input layer, a hidden layer, and an output
layer. This model used MODIS satellite data as the main input, along with meteorological
reanalysis data, NDVI, and NDBI as auxiliary data. The PM2.5 modeling equation was
as follows:

PM2.5 = f (α1, . . . , α38, β1, . . . , β14), (4)

where the dependent variable is PM2.5 concentration, α1, . . . , α38 represent data from the
38 bands of the MODIS satellite, and β1, . . . , β14 represent the 14 auxiliary data.

In addition, in order to better consider the impact of the surrounding environment on
the PM2.5 concentration, the environmental characteristics of the surrounding 5 × 5 km,
3 × 3 km, and 1 × 1 km spaces were extracted. The deep Bayesian model designed in this
paper is shown in Figure 3. In the input layer of the model, the input data were 5 × 5 × 52.
Because the band data of the MODIS satellite and the dimensions of the meteorological
reanalysis data were not uniform, this paper designed a standardization module to stan-
dardize all the data and unify their dimensions to the same order of magnitude. Moreover,
standardization allows avoiding the adverse effects of outliers and extreme values via
centralization. The standardized sample data conform to a standard normal distribution,
i.e., with a mean of 0 and a standard deviation of 1. The standardization equation is
as follows:

X∗ =
X− µ

σ
, (5)

where X∗ is the standardized data, X is the original data, µ is the average of all sample
data, and σ is the standard deviation of all sample data.
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In order to fully consider the influence of the surrounding neighborhood on the PM2.5
concentration, this model performs feature extraction at three different scales of 5 × 5 km,
3 × 3 km, and 1 × 1 km, and then performs feature fusion. As the model is trained and
the depth of the model is deepened, the distribution of the input of the hidden layer
changes or shifts, which causes the model to converge slowly. Therefore, the model in
this paper introduced the batch normalization (BN) method after each hidden layer to
accelerate the process of model training convergence. BN uses a certain standardization
method to forcibly transform the input distribution of each hidden layer back to a standard
normal distribution with a mean of 0 and a standard deviation of 1. As the depth of
the model increases, the number of parameters increases, which causes the problem of
model overfitting. Therefore, the model in this paper introduced a dropout layer after each
hidden layer to reduce the complex connection between neurons, increase the orthogonality
between the features of each layer, and make the learned network model more robust. In
the optimization process, it is also possible to prevent the parameters from oscillating at the
local optimum and improve the performance of the model. Moreover, using the Bayesian
neural network, the uncertainty of the model and data can be considered; therefore, a
more robust model can be obtained on the basis of less data, and the distribution of the
parameters of each layer can be obtained. This allows overcoming the problem of model
overfitting better, thereby not only predicting the result but also effectively predicting its
error. The activation function of each hidden layer used in the model was a linear ReLU
function, and the output layer produced the estimated value of PM2.5 mass concentration.

As the core guide for model optimization learning, the loss function needs to be
minimized during model training. This paper selected the mean square error (MSE), one
of the most commonly used loss functions in regression tasks, which can be expressed
as follows:

MSE =
1
n

n

∑
i=1

(
y′i − y

)2, (6)

where n is the number of samples, y′i is the estimated value of the model, and y is the
observation value of the ground station.



Remote Sens. 2021, 13, 4545 9 of 19

The learning rate is a crucial hyperparameter in deep learning, which determines the
time for the objective function to converge to a minimum and whether it can converge
to a local minimum. Thus, appropriate setting of this rate enables convergence of the
objective function in an appropriate time. With respect to the deep Bayesian model in this
article, learning rate was also used to scale the model weight update range to minimize the
parameters of the model output deviation. Under normal circumstances, if the learning
rate is too small, the process of model convergence becomes very slow, whereas, when it
is too large, the gradient may oscillate around the minimum value and may even inhibit
convergence [27]. After the model parameters were adjusted and tested many times, the
initial learning rate of the deep Bayesian model was set to 0.001. Furthermore, the learning
rate was reduced when the performance of the model was not improved following each
iteration (15 rounds) during the training process. The total number of iterations of the
model was set to 150.

3.4. Model Evaluation

Considering the spatial distribution of ground monitoring sites in Anhui Province,
this paper extracted data from 68 of the 78 ground monitoring sites as a dataset for model
training. The remaining 10 sites did not participate in training; instead, they were used as
an independent testing dataset to evaluate the accuracy of the model. The training dataset
was randomly divided into 80% for model training and 20% for verification. In this paper,
the coefficient of determination (R2) and root mean square error (RMSE) were used to
quantitatively evaluate the performance of the model.

R2 is the ratio of the regression sum of squares to the total deviation of squares. In
model evaluation, a larger ratio denotes a higher accuracy and a more significant effect
of the corresponding model. Generally speaking, the value of R2 lies between 0–1. A
closer value to 1 denotes a better model fit, while a closer value to 0 indicates worse model
fit. RMSE is defined as the square root of the ratio of the model’s estimated value to the
observed value of the site, which is used to describe the degree of dispersion between both
values. The equations for calculating R2 and RMSE are as follows:

R2 =
∑n

i=1(y
′ − y)2

∑n
i=1(yi − y)2 , (7)

RMSE =

√
∑n

i=1(y′ − yi)
2

n
, (8)

where y is the observed value of the site, y is the mean value, and y′ is the estimated value
of the model.

4. Result
4.1. Results of Impact Factor Screening

Figure 4 shows the importance ranking results of the Relative humidity (R), Normal-
ized Difference Building Index(NDBI), Boundary Layer Height(BLH), 10 m v-component of
wind(v10), 2 m temperature(t2m), Evaporation(e), Surface pressure(sp), 10 m u-component
of wind(u10), total column ozone(tco3), Normalized Difference Vegetation Index (NDVI),
Boundary layer dissipation(bld), low vegetation cover(cvl), high vegetation cover(cvh),
total precipitation(tp) reanalysis data used in this model using random forest. It can be
seen from the figure that these parameters play a positive role in the model’s estimation of
PM2.5 concentration. Among them, tco3 and sp also showed high importance. In addition,
Min Shao et al. [44] also analyzed the relationship between O3 and PM2.5 concentration
from the perspective of chemical reactions and demonstrated the interaction between O3
and PM2.5. The influence of tco3 on PM2.5 concentration mainly comes from the influence
of near-ground O3 on PM2.5 concentration. A variety of influencing factors (such as ground
pressure, wind components, boundary layer characteristics, and precipitation) are used as
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input to the model. It mainly considers the comprehensive influence of various influencing
factors on PM2.5 concentration. In summary, R, NDBI, blh, v10, t2m, e, sp, u10, tco3, NDVI,
bld, cvl, cvh, tp as influencing factors play a positive role in the estimation accuracy of the
model. So, we chose these factors as the influence factors of PM2.5 concentration.
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4.2. Comparative Analysis of Model Results
4.2.1. Comparative Analysis of Different Methods

We performed model training on the prepared sample data. Figure 5 shows the
training results of the deep Bayesian model in this article, as well as the results of the DNN,
random forest, and Bayesian neural network models without consideration of the influence
of the surrounding environment. It can be seen from Figure 5 that the deep Bayesian
model showed high accuracy with the training data, with an R2 of 0.97. The DNN, random
forest, and Bayesian neural network models also showed good accuracy with the training
data, with R2 values of 0.92, 0.93, and 0.94, respectively. Among the four models, the deep
Bayesian model had the lowest RMSE with the training data, at only 6.84 µg·m−3. It can be
seen that the deep Bayesian model had the highest training accuracy, whereas the DNN
model that did not consider the influence of the surrounding environment on the PM2.5
concentration had the lowest training accuracy.
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In order to better verify the estimation accuracy of the model in the study area, we
used the deep Bayesian model in this paper, as well as the DNN, random forest, and BNN
models without consideration of the impact of the surrounding environment, to estimate
the PM2.5 concentration in the study area using the data from the 10 sites not participating
in training. Figure 6 shows the accuracies of the four models with the test data. It can be
seen from Figure 6 that the deep Bayesian model in this paper had the highest R2 with the
test data, reaching 0.78, which was 9%, 4%, and 6% higher than the other three models. The
deep Bayesian model in this paper also had the lowest RMSE, at only 19.45 µg·m−3, which
was lower than the other three models by 3.48 µg·m−3, 1.49 µg·m−3, and 2.59 µg·m−3,
respectively. It can be seen from Table 2 that the accuracy of the deep Bayesian model in
this paper was better than that of the other three models for both the training set and the
test set.
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Table 2. Training and testing accuracy of the four models.

Model
Model Training Model Testing

R2 Value RMSE (µg·m−3) R2 Value RMSE (µg·m−3)

Deep Bayesian (this study) 0.97 6.84 0.78 19.45
DNN 0.92 10.93 0.69 22.93

Random Forest 0.93 10.14 0.74 20.94
BNN 0.94 9.33 0.72 22.04

4.2.2. Spatial Scope Impact Analysis

In order to verify the influence of the size of the surrounding space domain, the
accuracies of the models considering different ranges of 5 km × 5 km, 3 km × 3 km, and
1 km × 1 km were compared and analyzed. The results are presented below.

It can be seen from Table 3 that the models considering the different space domains
had different accuracies. The highest accuracy was achieved when all three space domains
were considered simultaneously. Therefore, this paper chose to extract features from
the surrounding 1 km × 1 km, 3 km × 3 km, and 5 km × 5 km spatial domains as the
influencing factors of PM2.5 concentration to construct a deep Bayesian model.
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Table 3. Comparison of the impact of different spatial ranges on model accuracy.

Spatial Range Model Test Accuracy (R2)

1 km × 1 km 0.69
3 km × 3 km 0.74
5 km × 5 km 0.76

1 km × 1 km, 3 km × 3 km 0.75
1 km × 1 km, 3 km × 3 km, 5 km × 5 km 0.78

4.3. PM2.5 Concentration Estimation and Evaluation

The deep Bayesian model of this paper, as well as the DNN, random forest, and
BNN without consideration of the impact of the surrounding environment, was used
to estimate the PM2.5 concentration of Anhui Province with the same spatial resolution
(1 km) for comparative analysis. Figure 7 shows the false-color images of the regional
MODIS satellites in Anhui Province at 1:05 p.m. on 7 March, 11:05 a.m. on 18 August,
11:30 a.m. on 29 October, and 11:10 a.m. on 31 December, Beijing time. Figure 8 shows
the PM2.5 distribution at the four times estimated by the deep Bayesian, DNN, random
forest, and BNN models. The blank areas in the figure denote where the surface water and
clouds were removed from the satellite images. In the estimated PM2.5 distribution map,
dark red denotes a high PM2.5 concentration, whereas dark green denotes a lower PM2.5
concentration. It can be seen from the figure that the results of PM2.5 estimation using the
deep Bayesian model, as well as the DNN, random forest, and BNN models, were roughly
the same in terms of spatial distribution; however, there were subtle differences in the
estimation results of the different models. On 7 March 2019, the concentration in the central
and eastern parts of Anhui Province showed a higher trend. The PM2.5 concentration
estimated using the deep Bayesian model in the southwestern region was lower than the
estimated concentration of the other three models. On 18 August 2019, there was a trend
of lower concentrations in regions except for north-eastern Anhui Province. The PM2.5
concentration estimated by the random forest model was higher than that estimated by the
other three models in the central and western regions. On 29 October 2019, there was a
trend of higher concentrations in north-eastern and central-eastern Anhui Province, along
with lower concentrations in other regions. The PM2.5 concentration estimated using the
DNN model was lower than that estimated by the other three models in north-eastern
Anhui Province. Moreover, the PM2.5 concentration estimated using the random forest
model was higher in north-eastern Anhui Province than that estimated by the other three
models. On 31 December 2019, the concentration in central and eastern Anhui Province
was lower than the remainder of the region. The estimation results of the deep Bayesian
model and the random forest model in central-western Anhui Province were higher than
those of the DNN and BNN models.
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Figure 8. Model estimation results of Anhui Province at four timepoints.
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In order to further verify the estimation accuracy of the model, the observed values of
the independent test sites that did not participate in training at the above four timepoints
were compared with the estimated values of the model. There were six valid sites that
were not blocked by clouds on 7 March, three valid sites that were not blocked by clouds
on 18 August, and eight valid sites that were not blocked by clouds on 29 October and
31 December. Figures 9–12 show the estimation accuracy statistics of the four models for
the valid sites at the four timepoints. The estimation results in terms of R2 of the deep
Bayesian model at the four timepoints were 0.82, 0.77, 0.73, and 0.66, all of which were
higher than the values obtained for the DNN, random forest, and BNN models. The RMSE
values were 3.97, 6.55, 19.15, and 6.39 µg·m−3, all of which were lower than the values
obtained for the DNN, random forest, and BNN models. It can be seen that the accuracy of
the deep Bayesian model in this paper was better than that of the other three models, and its
generalization ability was also better. Figure 13 demonstrates that the values estimated by
the deep Bayesian model for the valid sites at the four timepoints were in good agreement
with the values observed at the ground site.
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5. Discussion

The independent test set of non-training data can be seen from the comparison results
of different methods (Figure 6). Compared with the single-pixel-based DNN model,
random forest model and Bayesian neural network model, the estimation accuracy of
the method proposed in this paper that takes into account spatial multi-scale has been
improved by 9%, 4%, and 6%, respectively. The main reason for this improvement is that
the method in this paper not only combines the characteristics of the Bayesian neural
network to consider uncertainty, but also regards the atmosphere as a complex whole,
and uses multi-scale features as the input of the model. This can provide the model with
uncertainty considerations and perception of features at different scales and strengthen the
model’s ability to extract and integrate features at different scales, thereby improving the
accuracy of the model. Considering the depth Bayesian model of this article to estimate
PM2.5 concentration at four different time points in 2019, from the estimation results
(Figures 9–12), it can be seen that on the effective non-training site, when the accuracy of
other comparison models decreases, the model in this paper still has good accuracy and
the accuracy is higher than that of the comparison model. This fully demonstrates that
the model in this paper combines the characteristics of the Bayesian neural network with
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the consideration of uncertainty, which allows the model in this paper retain better model
generalization capabilities.

In general, the comparative analysis with different methods has fully verified that the
deep Bayesian model proposed in this paper can effectively improve the model estimation
accuracy and the generalization ability of the model under the condition of taking into
account multi-scale features. However, due to the limitation of the time resolution of
MODIS satellites, its Terra satellites and Aqua satellites only transit at around 10:30 am
local time and 1:30 pm local time, respectively. Therefore, the method in this paper still has
the problem that it cannot provide PM2.5 monitoring results with higher time resolution.
We will use high time resolution satellite data in future research to improve the time
resolution of PM2.5 monitoring results.

6. Conclusions

This paper designed a deep Bayesian PM2.5 estimation model taking into account
multiple scales. The model uses a Bayesian neural network to describe key parameters a
priori, provide regularization effects to the neural network, perform posterior inference
through parameters, and take into account the characteristics of data uncertainty. It can
be used to alleviate the problem of model overfitting and to improve the generalization
ability of the model. We used different-scale MODIS satellite MOD02_1 km/MYD02_1
km, NDVI, NDBI, and ERA5 reanalysis data as the input of the model, strengthened the
model’s perception of different-scale features of the surrounding atmosphere, and further
improved the model’s PM2.5 concentration estimation accuracy and model generalization
ability. Experiments in Anhui Province as the research area showed that the R2 and
RMSE of this method on the independent test set were 0.78 and 19.45 µg·m−3, respectively.
Compared with the three models of DNN, random forest, and Bayesian neural network
that did not consider the surrounding environment, the R2 was increased by 9%, 4%,
and 6%, and the RMSE was reduced by 3.48 µg·m−3, 1.49 µg·m−3, and 2.59 µg·m−3,
respectively. In the experiment of different seasons in 2019, compared with the other
three models, the estimation accuracy of PM2.5 was significantly reduced; however, the
R2 of the model in this paper could still reach 0.66 or more. In addition, the estimation
results were in good agreement with the trend of observations at ground stations. Through
experimental comparison and analysis, it can be found that the single-pixel information
estimation method, considering the influence of the surrounding environment on the
PM2.5 concentration, can greatly improve the accuracy of the model. This shows that the
surrounding environment has a great influence on the PM2.5 concentration; thus, taking the
surrounding environment as an influencing factor of the PM2.5 concentration can improve
the estimation accuracy of the model. Combined with the characteristics of the BNN,
considering the uncertainty of the data can improve the generalization ability of the model,
reduce the problem of model overfitting, and further improve the estimation accuracy of
the model.
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