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Abstract: As the population has increased and the economy has developed in the Qaidam Basin, the
demand for food and energy in the basin has increased, and the contradiction between economic
development and ecological protection is gradually becoming prominent. In this study, the eco-
environmental quality of the Qaidam Basin from 1986 to 2019 was evaluated and analyzed based on
the Modified Remote Sensing Ecological Index (MRSEI) retrieved by the Google Earth Engine (GEE)
and meteorological and socioeconomic auxiliary data. The results show that (1) the Qaidam Basin
had a lower overall level of eco-environmental quality, with higher eco-environmental quality in the
southeastern part of the basin and lower eco-environmental quality in the central and northwestern
parts of the basin. (2) During the period of 1986 to 2019, the eco-environmental quality of the Qaidam
Basin started to reverse in 2003; it decreased first and then increased, and the overall performance
showed an upward trend over the past 34 years. The most obvious changes were in the northwestern,
northeastern, southwestern and central parts of the basin. The eco-environmental quality continued
to decline in the northwestern and rise in the northeastern and southwestern regions, and in the
central part, it decreased first and then plateaued. (3) The eco-environmental quality of the Qaidam
Basin was affected by both natural and human factors. From 1986 to 2019, the “warm and wet”
climate in the basin promoted the growth of vegetation. Furthermore, the optimization of industrial
structures alleviated the pressure of agriculture and livestock and jointly improved the ecological
environment in the Qaidam Basin.

Keywords: Qaidam Basin; eco-environmental quality; MRSEI; Google Earth Engine (GEE)

1. Introduction

Providing natural resources, space and basic material conditions for human survival,
the ecological environment is a basic guarantee of human survival and is the basis of social
development [1]. In recent decades, the eco-environment in various regions of China has
been increasingly disturbed by global climate change and human activities [2–4]. Located
in the northern part of the Tibetan Plateau, the Qaidam Basin has an inherently fragile and
sensitive ecological environment [5]. According to the Chinese Ministry of Environmental
Protection’s national ecological zoning, the Qaidam Basin is part of the ecological zone of
windbreak and sand fixation and is a critical sand control barrier in China [6,7]. However, in
recent years, with the implementation of the western development drive and the “Qaidam
Circular Economy Experimental Zone”, natural resources, such as natural gas, salt lakes
and nonferrous metals in the basin, have been developed with a high intensity, and the
pressure of eco-environmental protection has been increasing [8–10]. With the continuous
increase in the intensity of human activities, the inherently fragile ecological environment
of the Qaidam Basin will be threatened to varying degrees, influencing the stability of the
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local ecosystem and the sustainable development of the economy [11,12]. Therefore, how
to reliably and quantitatively evaluate the eco-environmental quality of the Qaidam Basin
has become an urgent scientific problem to be solved.

The monitoring of eco-environmental quality is mainly dependent upon means such
as humanistic statistics and ground observations to obtain ground-surface environmental
information in the initial stage of research [13,14]. With the development of remote sensing
technology, scholars have gradually begun to obtain surface information from satellite
images [15–18]. In the past 30 years, many scholars have studied the desertification,
vegetation coverage, climate change, terrestrial water storage, and runoff change in the
Qaidam Basin with the Moderate Resolution Imaging Spectroradiometer (MODIS) and
the NOAA Advanced Very High Resolution Radiometer (AVHRR) [19–22]. However, due
to the restriction of spatial resolutions, ranging from 250 to 8000 m, these products are
incapable of capturing spatial details necessary for monitoring land cover and ecosystem
changes in heterogeneous areas [23,24]. The above studies were aimed at monitoring a
single field of the eco-environment, while the ecological environment is comprehensively
controlled by complex variables. Eco-environmental quality assessment should be based
on a variety of environmental elements, instead of focusing on the direct effects of a
specific stressor [25]. In addition, due to terrain undulation in the Qaidam Basin, slope and
other topographic elements had a certain effect on surface reflectance, leading to spectral
mixing problems such as “different objects with the same spectrum” [26], which make
it more difficult to capture the spatial detail needed for ecosystem change. Currently,
there is still a lack of comprehensive, quantitative, high-resolution and long time-series
eco-environmental quality assessments in the Qaidam Basin.

The modified remote sensing ecological index (MRSEI), using Landsat images as
the data source, can be used to quantitatively and comprehensively evaluate the quality
of the regional eco-environment by performing principal component analysis (PCA) on
four sub-indices closely related to the eco-environment (i.e., greenness, wetness, heat, and
dryness) [27]. Data derived from Landsat sensors can successfully capture the spatial details
and alleviate the spectral mixture issue to some extent [28–30]. This type of index has been
widely used in forests, cities, deserts, oases and other regions [31–35]. However, longer
observation cycles of these satellites and frequent cloud contamination in some regions
limit their application for detecting rapid changes in the ecosystem. As a result, the above
research carries out the inversion of only equal-interval years, resulting in the discontinuity
of time series. Thus, the trend analysis of the MRSEI index provides conclusions via the
difference between equal interval years. The accuracy of these conclusions is closely related
to the selection of interval years. Therefore, there is an error in the influence caused by
human factors.

In this study, the influence of cloudy conditions is overcome, and long time-series
MRSEI indices are calculated based on the advantages of the GEE platform [36] and the
images in the same season in the Qaidam Basin from 1986 to 2019. Sen’s slope and the
Mann–Kendall test are used to analyze the change in the MRSEI index for the first time to
obtain the changing characteristics of ecological environment quality in the Qaidam Basin
and to ensure that the results are not disturbed by human factors. Furthermore, this study
combined grid meteorological and statistical data to discuss the main factors that affect eco-
environmental quality changes, which can provide basic data for the implementation for
further ecological restoration projects. Overall, the objectives of this study are to (1) assess
the eco-environmental quality changes in the Qaidam Basin in recent decades; (2) analyze
the driving mechanisms of ecological and environmental quality changes in the Qaidam Basin.

2. Data Sources and Research Methods
2.1. Overview of the Study Area

The Qaidam Basin is approximately 800 km long from east to west and 300 km long
from north to south, with a total area of approximately 274,800 km2. The altitude ranges
from 2625 to 6824 m. The central part of the basin is at a low altitude, while the surrounding
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area is surrounded by tall mountain systems such as the Arjinshan, Qilian and Kunlun
Mountains, which are at a high altitude, thereby forming a basin–mountain system of
“three mountains and one basin” (Figure 1). It is the highest basin in China. The Qaidam
Basin has a plateau continental climate, with aridity as its main feature. The mountains
around the basin are cold and rainy, while the central part is warm and hot with sparse rain.
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Figure 1. The location map of Qaidam Basin of China.

2.2. Data Source

As this study involves the quantitative inversion calculation of remote sensing indices,
atmospheric correction of the images was required. The Landsat surface reflectance (Land-
sat_SR) dataset provided within the GEE was accurately atmospherically corrected in all
bands using the Land Surface Reflectance Code (LaSRC) [37]. Therefore, Landsat surface
reflectance from the GEE was chosen as the data source for the inversion of the MRSEI
(Table 1).

Table 1. Landsat data source.

Sensor Type Landsat Collections Filter Date Bands

Landsat 5 ETM Collection 1_Surface Reflectance 1985–2011, July(01)~August(31) B(1~7)
Landsat 7 ETM+ Collection 1_Surface Reflectance 1999–2013, July(01)~August(31) B(1~7)

Landsat 8 OLI/TIRS Collection 1_Surface Reflectance 2013–2020, July(01)~August(31) B(2~7,10)

Meteorological data were obtained from the China Meteorological Data Network
(https://data.cma.cn/ accessed on 3 November 2021), including the annual average tem-
perature and annual precipitation of the Qaidam Basin and 9 surrounding meteorolog-
ical stations (Lenghu, Xiaozaohuo, Golmud, Nomuhong, Dulan, Wudaoliang, Maduo,
Qumalai and Subei) from 1986 to 2019. In this study, the ANUSPLIN program [38],
developed based on the thin disk smooth spline function, was selected to interpolate
climate data, and the method introduced elevation factors as covariates, thus improving
the interpolation accuracy. In addition, the data of rivers and lakes in the Qaidam Basin
were obtained from National Cryosphere Desert Data National Cryosphere Desert Data
Center (http://www.ncdc.ac.cn/portal/ accessed on 3 November 2021), Collected on
1 January 2000.

As Haixi Mongolian-Tibetan Autonomous Prefecture covers most of the Qaidam
Basin, this study uses the Haixi Prefecture statistical yearbook to compile statistics on

https://data.cma.cn/
http://www.ncdc.ac.cn/portal/
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GDP, rural per capita income, population and livestock volume within the Qaidam Basin.
The specific data were obtained from the 1986–2019 Qinghai Provincial Statistical Year-
book (http://tjj.qinghai.gov.cn/ accessed on 3 November 2021). In addition, the types of
livestock grazing in the study area are mainly cattle and sheep. In this study, one large
livestock unit was uniformly converted into four sheep, and the number of heads of sheep
in the stock at the end of the year was used to represent the number of livestock in the
study area.

2.3. MRSEI

The MRSEI integrates the four indices of greenness, wetness, dryness, and heat in the
study area by PCA and is expressed as:

MRSEI = f (Greenness, Wetness, Dryness, Heat) (1)

where f refers to the principal component analysis.

2.3.1. Selection and Calculation of Ecological Factor Indices

In this study, the normalized difference vegetation index (NDVI) [39], wetness com-
ponent (WET) obtained by tasseled cap transformation [40–42], normalized difference
soil index (NDSI) [43,44] and land surface temperature (LST) [45] were selected as the
evaluation indices for the four ecological factors: greenness, wetness, dryness and heat [46].
The formulas of these indices mentioned above are listed in Table 2.

Table 2. Indexes of Ecological factors.

Index Formula Explanation

WET
TM : 0.0315ρblue+0.2021ρgreen+0.3102ρred+0.1594ρnir− 0.6806ρswir1− 0.6109ρswir2

ETM+ : 0.2626ρblue+0.2141ρgreen+0.0926ρred+0.0656ρnir− 0.7629ρswir1− 0.5388ρswir2
OLI : 0.1511ρblue+0.1973ρgreen+0.3283ρred+0.3407ρnir− 0.7117ρswir1− 0.4559ρswir2 ρblue, ρgreen,

ρred, ρnir,
ρswir1, ρswir2

represent
Landsat
Surface

Reflectance

NDVI (ρ nir− ρred)/ (ρ nir+ρred)

NDSI

NDSI = (SI + IBI)/2
SI =[(ρswir1+ρred) − (ρnir+ρblue)]/[(ρswir1+ρred) + (ρnir+ρblue)]

IBI =
{

2ρswir1
(ρswir1+ρnir)

−
[

ρnir
(ρnir+ρred)

+
ρgreen

(ρgreen+ρswir1)

]}
/{

2ρswir1
(ρswir1+ρnir)

+

[
ρnir

(ρnir+ρred)
+

ρgreen

(ρgreen+ρswir1)

]}

LST LST = Tb/{1 + [(λT b /ρ )/ ln ε]} − 273.15

Tb : brightness temperature
ε : emissivity

ρ : 1.438× 10−2 mK
λ : the center wavelength of ρTIR

2.3.2. Normalization

Because the dimensions of the NDVI, WET, NDSI and LST are not uniform, it is
necessary to normalize each index and unify their dimensions between 0 and 1, which is
expressed as:

NIi = (Ii−Imin)/(Imax−Imin) (2)

where NIi refers to a normalized index value, Ii refers to the value of an index at pixel i,
Imin refers to the minimum value of the index, and Imax refers to the maximum value of
the index.

2.3.3. PCA

The covariance matrix between the normalized WET, NDVI, NDSI and LST is cal-
culated, the eigenvalues and eigenvectors of the covariance matrix are obtained, and the
principal components PC1, PC2, PC3 and PC4 are calculated according to the eigenvectors.
The MRSEI is derived from the weighted sum of the first three principal components

http://tjj.qinghai.gov.cn/
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(Figure 2), and the weight of the weighted sum is the eigenvalue contribution rate of each
independent component [27], which is expressed as:

MRSEI =
3

∑
i=1

(ei×pci) (3)

where ei refers to the eigenvalue contribution rate corresponding to the ith principal
component and pci refers to the principal component.
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Figure 2. Flowchart of the derivation of the MRSEI.

To enable comparison between MRSEI images from different time periods, the MRSEI
results of each year were normalized. The closer the MRSEI was to 1, the better the eco-
environmental quality was; the closer the index was to 0, the worse the eco-environmental
quality was.

2.4. Landsat_SR Preprocessing in the GEE

To reduce the error caused by phenological changes and ensure the comparability
between MRSEI indices for various years, the images from 1 July to 31 August of the target
year were selected in this study. Due to the high altitude and wide range of the Qaidam
Basin, the images in the region are often covered by clouds, which affects the parameter
inversion calculation. To ensure minimum cloud coverage in each image and fill in missing
areas, the images for the target year of this study were synthesized from images of the
target year and adjacent years of the same season (three years in total). This article took the
image acquisition process in 2018 as an example to describe the image preprocessing in the
GEE (Figure 3).
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2.4.1. Cloud Mask Processing

Landsat 8_ SR data of the Qaidam Basin for 2018 and one year before and after (2017
and 2019) were selected. The cloud content of the Landsat_ SR image in the GEE was
marked in the “CLOUD_COVER” field [47]. This field was used to screen all images with
cloud contents of less than 80% in the study area to obtain most of the remote sensing
images in the study area. The mask function established according to cloud shadow and
cloud attribute fields contained in the quality evaluation band “pixel_qa” in the Landsat_SR
dataset image removed the cloud-containing area in each image. After cloud screening, 80,
84 and 77 images were available in 2017, 2018 and 2019, respectively.

2.4.2. Mask for Water and Snow

Because the wetness component (WET) in the tasseled cap transformation reflects the
wetness of vegetation and soil, the water area in the study area is a large proportion of
the WET, which weakens the advantage of vegetation in the WET against bare soil, rock
and other dry ground features, meaning that the normalized WET cannot truly reflect
the wetness difference between vegetation and soil; moreover, the similarity of the WET
between solid and liquid water bodies is very high, and there is no obvious difference.
Therefore, it was necessary to mask the water and snow in the images.

Based on the snow attribute field in the quality evaluation band “pixel_qa”, a mask
was established to remove the snow in the images; in addition, the MNDWI proposed
by [48] was used to mask the water, and is expressed as:

MNDWI = (ρGreen− ρMIR)/(ρGreen−ρMIR) (4)

where ρGreen and ρMIR are the green band reflectance and mid-infrared band reflectance, respectively.

2.4.3. Image Synthesis Method

All mask-processed images in three years (2017, 2018, and 2019) were overlayed, and
the median function was used to extract the median value of the image to eliminate outliers
and improve the influence of chromatic aberration. This is expressed as:

pix_f = median[f(
n

∑
1

pix)] (5)

where n represents the total number of images contained, pix represents the pixel value of
the ith image, and pix_ f represents the final pixel value after the median is obtained.
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2.5. Average Correlation Model

To test the comprehensive representativeness of the MRSEI, this study calculated the
correlation coefficients among the five indices of the MRSEI, WET, NDVI, NDSI and LST
in the same period and used the average correlation model to test the applicability of the
MRSEI index. The average correlation was calculated based on the absolute value of the
correlation coefficient between one index and the other indices [49]. The closer the result
was to 1, the stronger the comprehensive representativeness of the index was, which is
expressed as:

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i
(
Xi − X

)2
√

∑n
i
(
Yi − Y

)2
(6)

where r represents the Pearson correlation coefficient, Xi and Yi represent the pixel values,
X and Y represent the type of indices, X and Y refer to the average of indices, and i refers to
the number of samples.

rp =

∣∣rq
∣∣+ |rr|+ . . .|rs|

n − 1
(7)

where rp represents the average correlation degree; p, q, r and s refer to the indicators for
the correlation analysis; n represents the number of indicators for the correlation analysis;
and rp, rq, rr and rs represent the Pearson correlation coefficients between the indicators.

2.6. Trend Analysis Method

In this study, the Mann–Kendall (M-K) nonparametric test was used to determine the
trend and significance of the MRSEI, meteorological data (temperature and precipitation)
and socio-economic data, Sen’s slope method was used to analyze the rate of change of
the MRSEI and socio-economic data (Table 3), a T test was used to test the significance
of the correlation between the MRSEI and meteorological data in the same period, and a
nonparametric Pettitt test was used to determine the mutation point.

Table 3. Significance of changing trends.

Trends β(Sen’ Slope) Z(M-K)

Highly significant decrease β < 0 |Z| ≥ 2.58
Significant decrease β < 0 1.96 ≤ |Z| < 2.58

Not significant decrease β < 0 |Z| < 1.96
Not significant increase β > 0 |Z| < 1.96

Significant increase β > 0 1.96 ≤ |Z| < 2.58
Highly significant increase β > 0 |Z| ≥ 2.58

3. Research Results
3.1. Model Test

To test the comprehensive representativeness of the MRSEI index, this study adopts
the method of equal interval extraction and successively selects the data in 1986, 1996,
2006, 2016 and 2019 as test samples for the model test. Based on the principal component
analysis results of the sample years, the sum of the cumulative contribution rates of the
first three principal components, PC1, PC2 and PC3, in 1986, 1996, 2006, 2016 and 2019
were 96.5%, 96.3%, 97.0%, 98.0% and 98.2%, respectively; they were all greater than 85%
(Figure 4 and Table 4), indicating that the MRSEI integrates most of the information of
various ecological indicators. In addition, dryness and greenness contributed the most to
the MRSEI.
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Table 4. The finalized formula of the MRSEI.

Time MRSEI

1986
0.677PC1 + 0.169PC2 + 0.119PC3

0.380WET + 0.351NDVI − 0.460NDSI − 0.147TSL

1996
0.645PC1 + 0.182PC2 + 0.136PC3

0.347WET + 0.353 NDVI − 0.463 NDSI − 0.098TSL

2006
0.663PC1 + 0.175PC2 + 0.132PC3

0.350WET + 0.375NDVI − 0.456NDSI − 0.129TSL

2016
0.633PC1 + 0.203PC2 + 0.144PC3

0.102WET + 0.538NDVI − 0.305NDSI − 0.262TSL

2019
0.676PC1 + 0.181PC2 + 0.126PC3

0.122WET + 0.534NDVI − 0.335NDSI − 0.305TSL

The Pearson correlation coefficient between the MRSEI and various ecological factor
indices in the same period was calculated, and the applicability of the MRSEI was tested
through the average correlation (Figure 5). The results show that the MRSEI was positively
correlated with the WET and NDVI and negatively correlated with the NDSI and LST; in
addition, the average correlation of the MRSEI was the largest, ranging from 0.714 to 0.774;
NDVI and NDSI took second place, ranging from 0.465 to 0.645; and the WET and LST
were the smallest, ranging from 0.433 to 0.524. The average value of the average correlation
within 5 years was 0.748, which was also the largest in the MRSEI, which was 52.033%,
43.846%, 19.872% and 64.396% higher than the WET, NDVI, NDSI and LST, respectively.
This shows that the MRSEI is more representative than any single index and can better
reflect the ecological status.



Remote Sens. 2021, 13, 4543 9 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

correlation within 5 years was 0.748, which was also the largest in the MRSEI, which was 
52.033%, 43.846%, 19.872% and 64.396% higher than the WET, NDVI, NDSI and LST, re-
spectively. This shows that the MRSEI is more representative than any single index and 
can better reflect the ecological status. 

 
Figure 5. Correlation of MRSEI and ecological factors. 

3.2. Annual Mean Value and Spatial Distribution of the MRSEI in the Qaidam Basin 
The range of MRSEI values is 0 to 1. The closer the index is to 1, the better its eco-

environmental quality is. This study shows the spatial distribution of the eco-environmen-
tal quality of the Qaidam Basin through MRSEI images from 2019. The black area in the 
figure represents the masked water, clouds and snow. The areas with higher eco-environ-
mental quality in the Qaidam Basin are mainly concentrated in the southeastern part of 
the basin is mainly located in, extending from the Qilian Mountains in the northeastern 
part of the basin to the Kunlun Mountains in the southern part of the basin in the form of 
circles. The areas with lower ecological environmental quality are mainly distributed in 
the low altitude areas in the middle and northwestern parts of the basin (Figure 6). 

Figure 5. Correlation of MRSEI and ecological factors.

3.2. Annual Mean Value and Spatial Distribution of the MRSEI in the Qaidam Basin

The range of MRSEI values is 0 to 1. The closer the index is to 1, the better its eco-
environmental quality is. This study shows the spatial distribution of the eco-environmental
quality of the Qaidam Basin through MRSEI images from 2019. The black area in the figure
represents the masked water, clouds and snow. The areas with higher eco-environmental
quality in the Qaidam Basin are mainly concentrated in the southeastern part of the basin
is mainly located in, extending from the Qilian Mountains in the northeastern part of the
basin to the Kunlun Mountains in the southern part of the basin in the form of circles.
The areas with lower ecological environmental quality are mainly distributed in the low
altitude areas in the middle and northwestern parts of the basin (Figure 6).
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The annual mean value of 34 successive MRSEI indices is 0.191, indicating that the
overall eco-environmental quality of the Qaidam Basin is low. In addition, the annual
mean value of the MRSEI shows different trends in different periods (Figure 7). From 1986
to 2019, the ecological quality first decreased and then increased, reaching the minimum
value of the MRSEI in the last 34 years by 2000 and the maximum value of the MRSEI in
the last 34 years by 2009. The Pettitt test shows that there is a significant mutation point
in the annual mean value of the MRSEI in 2003 (p < 0.05). Therefore, 2003 is selected as
the inflection point in this study. The study period is divided into an eco-environmental
degradation period from 1986 to 2002 and an eco-environmental restoration period from
2003 to 2019.
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3.3. Trend and Rate of Change in the MRSEI in Different Time Periods

From 1986 to 2019, the MRSEI in the Qaidam Basin showed an overall increasing
trend (Figure 8), with 34.7% of the total area showing a significant and highly significant
increasing trend, with increase rates of 1.62 × 10−3 and 3.18 × 10−3 year−1 (Table 5),
respectively, mainly in the northeastern and southwestern part of the basin, and with 17.34%
of the total area showing a significant and highly significant decreasing trend, mainly in
the northwestern part of the basin. From 1986 to 2002, the MRSEI of the Qaidam Basin
showed an overall decreasing trend, with 45.98% of the total area showing a significant
and highly significant decreasing trend, and the decreasing rates were −4.81 × 10−3 and
−6.68 × 10−3 year−1, respectively, mainly in the northwestern and central regions of the
basin. The image elements with significant and highly significant increasing MRSEI values
accounted for 10.63% of the total area and were mainly distributed in the northeastern
part of the basin. From 2003 to 2019, the MRSEI of the Qaidam Basin showed an overall
increasing trend, with 27.65% of the total area showing a significant and highly significant
increasing trend, with increase rates of 4.51 × 10−3 and 6.55 × 10−3 year−1, respectively,
mainly in the northeastern and southwestern parts of the basin, and with 15.20% of the
total area showing a significant and highly significant decreasing MRSEI trends, mainly in
the northwestern part of the basin.
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Table 5. Trends and rate of MRSEI change in Qaidam Basin from 1986 to 2019.

Periods Parameters
Highly

Significant Significant Not
Significant

Not
Significant Significant Highly

Significant
Decrease Decrease Decrease Increase Increase Increase

1986–2002
Area (km2) 77,661.40 46,937.16 67,653.53 49,919.50 13,624.14 15,188.27

Percentage (%) 28.66 17.32 24.97 18.42 5.03 5.60
rates (year−1) −6.68 −4.81 −2.14 1.86 4.21 7.08

2003–2019
Area (km2) 21,349.61 19,970.51 73,971.14 81,409.64 29,220.53 45,945.41

Percentage (%) 7.85 7.35 27.21 29.94 10.75 16.90
rates (year−1) −5.24 −4.04 −1.97 2.21 4.51 6.55

1986–2019
Area (km2) 25,181.00 21,737.70 70,585.50 60,249.70 20,855.30 73,617.80

Percentage (%) 9.25 7.99 25.93 22.13 7.66 27.04
rates (year−1) −2.57 −1.68 −0.82 0.77 1.62 3.18
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From 1986 to 2019, the ecological environment of the Qaidam Basin first deteriorated
and then improved, and the degree of environmental improvement was greater than
that of deterioration, with the most obvious changes in the northwestern, northeastern,
southwestern and central parts of the basin over the past 34 years, with the quality of the
ecological environment decreasing in the northwestern part, increasing in the northeastern
and southwestern part, and decreasing and then plateauing in the central part.

4. Driving Factors

The MRSEI is the synthesis of greenness, wetness, heat and dryness in the regional en-
vironment. It is positively correlated with wetness and greenness and negatively correlated
with dryness and heat. The four ecological indices are affected by a variety of environ-
mental factors [50–52]. In this study, the reasons for the evolution of eco-environmental
quality in the Qaidam Basin are analyzed in terms of temperature, precipitation, population,
livestock, GDP and rural per capita income under the comprehensive consideration of
natural and human factors.

4.1. Change Characteristics of Climate Factors

From 1986 to 2002, the temperature in the Qaidam Basin showed an increasing trend
(Figure 9), in which the significant and highly significant increase accounted for 26.84%
of the total area (Table 6), while the precipitation showed an increasing trend in the west
and a decreasing trend in the east; the significant and highly significant areas showed
an increasing trend, accounting for only 11.08% of the total area. Therefore, the change
in precipitation during this period is not significant and the climate is dominated by
an increase in temperature. From 2003 to 2019, the temperature and precipitation in the
Qaidam Basin showed an increasing trend. The areas with significant and highly significant
increases accounted for 6.35% and 48.19% of the total area, respectively. The significance
of precipitation was much higher than that from 1986 to 2002, while the significance of
temperature decreased. In general, from 1986 to 2019, both temperature and precipitation
in the basin showed an increasing trend, with areas with significant and high significant
increases accounting for 100% and 12.32% of the total area, respectively, meaning that the
climate of the basin shows a “warm and humid” tendency.

Table 6. Changing trends of the climate factors in Qaidam Basin from 1986 to 2019 (km2, %).

Periods Parameters
Decrease Increase

Highly Significant Not Highly Significant Not
Significant Significant Significant Significant

1986–2019
Temperature 0.00 0.00 0.00 274,879.00 0.00 0.00

0.00 0.00 0.00 100.00 0.00 0.00

Precipitation 0.00 0.00 0.00 182,151.00 44,091.00 48,637.00
0.00 0.00 0.00 66.27 16.04 17.69

1986–2002
Temperature 0.00 0.00 0.00 13,916.00 59,862.00 201,101.00

0.00 0.00 0.00 5.06 21.78 73.16

Precipitation 0.00 0.00 112,405.00 2886.00 27,576.00 132,012.00
0.00 0.00 40.89 1.05 10.03 48.03

2003–2019
Temperature 0.00 0.00 0.00 6958.00 10,499.00 257,422.00

0.00 0.00 0.00 2.53 3.82 93.65

Precipitation 0.00 0.00 0.00 33,529.00 98,935.00 142,415.00
0.00 0.00 0.00 12.20 35.99 51.81
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4.2. Correlation Analysis between the MRSEI and Climatic Factors

From 1986 to 2002, the correlation between MRSEI and climate factors was weak, with
Only 1.12% of the area between the MRSEI and temperature passing the significance test
of p < 0.05 (Table 7), and only 3.17% of the area between the MRSEI and precipitation
passing the significance test of p < 0.05 for MRSEI and precipitation (Figure 10). From 2003
to 2019, 1.36% of the area between the MRSEI and temperature passed the significance
test of p < 0.05, and 23.46% of the area between the MRSEI and precipitation passed the
significance test of p < 0.05. The correlation between MRSEI and precipitation increased
significantly during this period and was mainly distributed in the mountainous areas
surrounding the Qaidam Basin. From 1986 to 2019, 33.37% of the area between the MRSEI
and temperature passed the significance test of p < 0.05 and was predominantly positively
correlated, mainly in the mountainous areas surrounding the basin. Meanwhile, 39.17% of
the area between the MRSEI and precipitation passed the significance test of p < 0.05, still
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predominantly positively correlated, mainly in the mountainous areas of the northeastern
and southwestern parts of the basin (Figure 11). In general, the correlation between
MRSEI and climate factors from 1986 to 2019 shows clear regional differences, with higher
correlations in mountainous areas at higher elevations, and poorer correlations in central
and western regions at lower elevations.

Table 7. The correlation between MRSEI and climate factors in Qaidam Basin from 1986 to 2019 (km2, %).

Periods Parameters
Negative Correlation Positive Correlation

Highly Significant Not Highly Significant Not
Significant Significant Significant Significant

1986–2019
Temperature 3153.00 10,208.00 97,198.00 43,622.00 29,404.00 75,241.00

1.22 3.94 37.55 16.85 11.36 29.07

Precipitation 6123.00 13,967.00 53,245.00 41,199.00 36,517.00 98,607.00
2.45 5.59 21.33 16.50 14.63 39.50

1986–2002
Temperature 107.00 1589.00 170,005.00 137.00 1125.00 91,338.00

0.04 0.60 64.32 0.05 0.43 34.56

Precipitation 811.00 6269.00 140,781.00 65.00 1134.00 112,371.00
0.31 2.40 53.85 0.02 0.43 42.98

2003–2019
Temperature 74.00 763.00 129,081.00 239.00 2498.00 129,465.00

0.03 0.29 49.25 0.09 0.95 49.39

Precipitation 3148.00 9650.00 65,179.00 15,037.00 31,601.00 128,710.00
1.24 3.81 25.73 5.94 12.47 50.81
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4.3. Change Characteristics of Human Activities

From 1986 to 2002, the GDP, population and rural per capita income in the Qaidam
Basin increased significantly (p < 0.01), and the change in livestock was not significant
(p > 0.1). In terms of the rate of change, the GDP growth rates for the three main industries
were RMB 0.16, 2.13, 1.15 and 0.11 billion, and the annual growth rates of rural per capita
income and population were RMB 96.49 and 3300 people (Figure 12). The three major
industries accounted for a relatively small difference in GDP and growth rates during the
period, and the economy developed slowly. From 2003 to 2019, the GDP, population, live-
stock population and rural per capita income of the Qaidam Basin increased significantly
(p < 0.01). The annual growth rates of the three major industries were RMB 2.32, 25.00 and
9.17 billion. The annual growth rate of rural per capita income was RMB 668.15, the annual
growth rate of the population was 4100, and the annual growth rate of livestock was 53,200.
As a result, the rate of economic development within the basin increased significantly after
2003, the industrial structure changed and people’s living standards improved significantly.
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5. Discussion

The Qaidam Basin is a unique ecosystem, wherein elevation gradients, low temper-
ature, and drought lead to slow growth and uneven distribution of natural vegetation.
The vegetation in the basin is mainly located in the higher-altitude mountains, while in
the lower altitude areas, vegetation is sparse [53]. In this study, the eco-environmental
quality of the Qaidam Basin showed a spatial pattern of high in the southeast and low
in the northwest, and the quality was overall low (Figure 6). These results are consistent
with the commonly accepted knowledge in this area of research [54]. During the period of
1986 to 2019, the eco-environmental quality of the Qaidam Basin started to reverse in 2003
(Figure 7); it decreased first and then increased, and the overall performance showed an
upward trend in the past 34 years (Table 5). Changes in eco-environmental quality in the
Qaidam Basin are influenced by a variety of factors.

In the long term, both temperature and precipitation increased significantly in the
Qaidam Basin from 1986 to 2019, and showed a significant positive correlation with the
MRSEI at high altitudes in the southwest and east of the basin (Figures 9–11), Due to the
altitude factor, the climate of this region is already cold and humid [55], and the “warm and
humid” climate tendency promotes the recovery of the vegetation in the area, leading to an
increase in eco-environmental quality. The correlation between MRSEI and temperature
and precipitation is weak in the central and northwestern regions at lower altitudes, where
the topography is closed and surrounded by high mountains, making it difficult for marine
moisture to enter, resulting in scarce precipitation, long sunshine hours, annual evaporation
much higher than annual precipitation, and an innate lack of effective soil moisture [56],
meaning that the background temperature in this region is already at a high level, which
is not conducive to vegetation growth, and previous studies have also confirmed the
poor correlation between climate factors and NDVI in non-vegetation growth areas at
low elevations [57,58]. In general, the recovery of vegetation in the peripheral regions
of the basin due to climate change resulted in better environmental quality, while the
non-vegetated growing areas in the central and northwestern regions were less responsive
to climate change.

In the short term, from 1986 to 2002, the temperature in the basin increased without
significant changes in precipitation (Figure 9), and both correlated poorly with the MRSEI
(Table 7). In addition, the GDP in the basin during this period was dominated by primary
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industry for a long time, and the output of grain and livestock was mostly used to meet
farmers’ own living needs, coupled with a significant increase in population, resulting
in high pressure on agriculture and livestock, and the phenomenon of overgrazing and
excessive reclamation clearing [19,59]. This had a negative impact on the eco-environmental
quality in the basin. From 2003 to 2019, the increasing trend of temperature slowed down
(Figure 9), while precipitation increased significantly and showed a significant positive
correlation with MRSEI in higher-altitude mountainous areas (Figure 10), and the increased
precipitation promoted the growth of vegetation within the mountainous areas around the
basin. In addition, the GDP of secondary and tertiary industries in the basin grew rapidly
during this period, and the industrial structure in the basin changed dramatically, and the
previously decentralized livestock began to move toward industrialization, the type of grain
grown by farmers changed to mainly cash crops, such as wolfberry [60], the agricultural
products and livestock produced during this period were more oriented to the provincial
and overseas markets, and the pressure on agriculture and animal husbandry was reduced,
coupled with the construction of a series of ecological protection projects [61,62], which
played a role in the restoration of the ecological environment.

The Qaidam Basin is a complex ecosystem, and the correlation between MRSEI and
climatic factors (temperature and precipitation) in the central and central-western parts
of the basin is always weak, because the region has exposed bedrock, desert dunes and
deserts as its main feature types [63], which are susceptible to natural factors such as wind
speed and sunlight [64]; therefore, in future studies, the meteorological factors such as
sunshine duration and average wind speed can be added as drivers to facilitate a more
comprehensive analysis of the eco-environmental quality changes in the Qaidam Basin.

6. Conclusions

Based on the GEE platform, this study detected and analyzed the ecological envi-
ronment of the Qaidam Basin from 1986 to 2019. The results show that the ecological
environment quality in the southeastern part of the basin was high and that in the middle
and northwestern parts of the basin was low. The ecological environment of the Qaidam
Basin reversed in 2003, deteriorating and then recovering over the last 34 years, and showed
an overall increasing trend. The change in the ecological quality of the Qaidam Basin is due
to a combination of natural and human factors. From 1986 to 2019, the “warm and humid”
climate in the basin promoted the growth of vegetation in the basin, while the optimization
of the industrial structure eased the pressure on agriculture and animal husbandry, which
together led to the improvement of the ecological environment of the Qaidam Basin.

Among the four ecological factors, dryness and greenness not only contribute the
most to the MRSEI but also have the highest correlation, indicating that vegetation and
precipitation play an important role in the ecology of the Qaidam Basin. In future economic
construction and resource development, the protection of forest and grassland ecosystems
should be strengthened, and water resources should be utilized rationally to promote the
joint success of economic development and ecological protection.

The composition of ecosystems varies from one study area to another, and the natural
characteristics of different ecosystems also vary greatly, meaning that different ecosystems
should select different natural factors to construct an ecological environment evaluation
model. Therefore, we suggest that in evaluating the quality of the ecological environment,
we can combine land-use data and select ecological factors according to the natural char-
acteristics of different land-use types, and build a more diverse ecological environment
evaluation model in order to better analyze the ecological environment.
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