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Abstract: Due to device limitations, small networks are necessary for some real-world scenarios,
such as satellites and micro-robots. Therefore, the development of a network with both good
performance and small size is an important area of research. Deep networks can learn well from large
amounts of data, while manifold networks have outstanding feature representation at small sizes.
In this paper, we propose an approach that exploits the advantages of deep networks and shallow
Grassmannian manifold networks. Inspired by knowledge distillation, we use the information
learned from convolutional neural networks to guide the training of the manifold networks. Our
approach leads to a reduction in model size, which addresses the problem of deploying deep learning
on resource-limited embedded devices. Finally, a series of experiments were conducted on four
remote sensing scene classification datasets. The method in this paper improved the classification
accuracy by 2.31% and 1.73% on the UC Merced Land Use and SIRIWHU datasets, respectively, and
the experimental results demonstrate the effectiveness of our approach.

Keywords: knowledge distillation; Grassmann manifold; neural network

1. Introduction

In recent years, high-resolution remote sensing (HRRS) images have become more
accessible with the development of satellite and remote sensing technologies, which pro-
vide detailed information on the land surface. Therefore, many remote sensing image
tasks are also developing rapidly, such as semantic segmentation [1,2], object detection [3]
and scene classification. Remote sensing image semantic segmentation has been widely
used in various applications, such as natural resource protection, change detection [4]
and other applications [5,6]. Objects in high-resolution remote sensing images have rich
details, such as geometry and structure, which bring more challenges to land use classifi-
cation. The scene classification of optical remote sensing images can be divided into two
categories, namely, methods based on artificially designed features and methods based
on deep features. The hand-crafted features used for optical remote sensing image scene
classification can be broadly classified into three categories, namely, spectral features, tex-
ture features, and structural features. Commonly used spectral features include image
gray value, gray value mean, and gray value variance. Literature [7] directly uses image
gray value as a classification feature, while literature [8,9] takes gray mean and variance as
classification features. Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix
(GLCM) are typical texture features. Scale-invariant feature transform (SIFT) is an effective
structural feature [8–10], in addition to the line segment [11], wavelet transform [9] and
Gabor transform [12]. However, the methods of hand-crafted features have the limitations
of poor data adaptability and low feature utilization. The effectiveness of deep learning
in remote sensing images has recently received a lot of attention. Methods based on fus-
ing deep features [13–15] increase the information content of the features by fusing one
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or more CNN features from different layers and improve the classification performance.
Cheng et al. [14] proposed the bag of convolutional features for optical remote sensing
image scene classification based on the idea of the BoVW model. Xu et al. [16] proposed
a GLDBS model to learn global and local information from the original image and the
key location. A two-stream feature aggregation deep neural network (TFADNN) [17] was
developed to obtain reasonable descriptions of HSR images, which contains the stream
of discriminative features and the stream of general features. Xu et al. [18] developed a
deep feature aggregation framework driven by graph convolutional network (DFAGCN),
and it employs a pretrained CNN to obtain multilayer features and utilizes a graph convo-
lutional network-based model to reveal patch-to-patch correlations between the feature
maps. Bi et al. [19] presented a local semantic enhanced ConvNet(LSE-Net) and a context-
aware class peak response (CACPR) measurement to mimic the top-down human vision
perception. Li et al. [20] designed a discriminative learning of adaptive match network
(DLA-MatchNet) for few-shot remote sensing scene images, and it employs the channel
attention and spatial attention modules to learn discriminative feature representation.
Deng et al. [21] propoed a joint network combined CNNs and vision transformer(CTNet),
and a joint loss function is designed to optimize the network.

The framework of the deep network can be divided into three parts: feature extrac-
tion module, quantization module, and optimization strategy. The quantization module
mainly includes spatial quantization, amplitude quantization, and evaluation quantization.
A typical spatial quantization is pooling, which can reduce the number of parameters and
mitigate the impact of overfitting problems. Some activation functions, such as sigmoid and
ReLU [22], are examples of amplitude quantization. It maps real values to a specific range
in a nonlinear manner. Evaluation quantization is used to output data in a desirable form,
such as softmax. A large number of optimization strategies, such as stochastic gradient
descent (SGD) and Adam [23], have been proposed to speed up network convergence and
improve the stability of training. Convolutional neural networks greatly reduce the number
of parameters by sharing convolutional kernels, and multiple convolutional kernels can
extract different types of features. The convolution kernel slides over the feature map and
performs cross-correlation operations with the corresponding regions on the feature map,
so the convolution is linear. We can discuss neural networks and classification from the
perspective of spatial transformations. Classification can be seen as performing certain
spatial transformations on the data, changing the distribution of the data so that eventually
a hyperplane can be found to separate the different classes of data. However, the data
characterization capability of a linear transformation is limited. Subfigure A in Figure 1
shows the original data distribution, the second subfigure shows the distribution of the
data after linear transformation, the subfigure C and subfigure D are the distribution of
the data after nonlinear transformation. It’s obvious that the nonlinear transformation
makes the data more separable. Therefore, it is necessary to add an activation function
after the convolution layer, which acts as a nonlinear transform. A simple and effective
activation function is the Rectified Linear Unit (ReLU). To make the data more separable, it
is necessary to deepen the network to enhance its transformation capabilities. The pooling
layer reduces the dimensionality of the representation and prevents overfitting. The fully
connected layer can map the feature space to the label space, where some evaluation
quantization is utilized to achieve better classification.

A manifold is a general term for geometric objects, including curves and surfaces
of various dimensions. According to the manifold hypothesis, data in high-dimensional
space exist on or near a low-dimensional manifold, which determines the invariance of
the data, and the coordinates on the manifold correspond to the core variables of the
data. From the perspective of manifold, the classification algorithm aims to separate
a bunch of manifolds. The purpose of manifold learning is to determine the internal
mapping between the original high-dimensional data and the actual low-dimensional
manifold structure. As long as we can learn the manifolds correctly, we can accomplish
a complete knowledge of the data and thus derive the nature of the whole data from the
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partial sample rules. Thus, manifold learning can be seen as a method of dimensionality
reduction. Traditional manifold learning can be divided into global learning methods and
local learning methods. Global manifold methods consider the structural relationships
between all data pairs as equally important for the determination of manifold embeddings
and attempt to maintain the global structure of the original space in the low-dimensional
manifold space. Typical global methods include multidimensional scaling (MDS) [24] and
Isometric feature mapping (ISOMAP) [25]. The local manifold method considers that the
key to manifold embedding is the structure information of the local region, so the focus
of manifold learning is on the accurate modeling of the local structure, which reduces
the computational effort to some extent. Locally linear embedding (LLE) [26] is a typical
local method. It assumes that a manifold can be considered as a linear Euclidean space in
its local neighborhood, and the local geometric description of the original data space is
also valid in the low-dimensional manifold space. Other local methods include Laplacian
eigenmaps (LE) [27]. Manifold learning is a nonlinear transformation, so it has a natural
superiority over convolution in space transformation.

(A) (B)

(C) (D)

Figure 1. Comparison of the effectiveness of linear and nonlinear transformations for data classi-
fication. The first figure (A) shows the original data distribution, the second figure (B) shows the
distribution of the data after linear transformation, and the last two figures (C,D) are the distribution
of the data after nonlinear transformation.

Convolutional neural networks cannot handle input data samples that reside on
Riemannian manifolds, such as the manifolds of symmetric positive definite (SPD) matrices
and the Grassmannian, so some work has focused on deep neural networks with points
on the manifold as input. In [28], the authors propose a two-layer deep manifold network
called GrNet, containing three innovative blocks. The input data of GrNet are points
located on the Grassmann manifolds. In [29], a deep network architecture for input data
residing on the manifold of symmetric positive definite matrices is introduced. In [30]
the weighted Fréchet mean (wFM) [31] is used as an analog of convolution operation of
manifold-valued data. However, the convexity constraint for wFM limits the value range
of wFM, resulting in the limitation of the generalization ability of the model.

Although convolutional neural networks and deep manifold networks are both data-
based, there are differences between them. In addition to the input data format, the size of
the network also varies greatly. The convolution is a linear transformation, which leads to



Remote Sens. 2021, 13, 4537 4 of 21

a relatively weak data characterization ability. Therefore, convolutional neural networks
are stacked by many layers to achieve better performance. However, the computation of
curved manifolds lies in non-Euclidean space, which has a more powerful characterization
than convolution due to its nonlinearity. Consequently, manifold networks can have
relatively excellent performance with fewer layers than convolutional neural networks.

In some practical scenarios, such as satellites, drones, and micro-robots, huge deep net-
works are not feasible. A smaller model has a smaller number of parameters but inevitably
leads to a decrease in accuracy. Common approaches to model compression include
pruning, quantization, hand-designed networks, and knowledge distillation. Manifold
networks are small in size and can be used for the deployment of resource-limited devices.
However, its generalization ability is not as good as large convolutional neural networks.
Therefore, we propose to transfer the knowledge learned from convolutional neural net-
works to manifold networks using knowledge distillation. Most of the existing knowledge
distillation methods are used between convolutional neural networks and thus will fail to
overcome the drawbacks of convolution. On the other hand, current manifold networks are
not mature enough to stack many layers like convolutional neural networks, so there is still
a performance gap compared with convolutional neural networks. The CNNs can learn
knowledge from large amounts of data, while the curve manifold learning has a better
characterization of the nature of the data. Therefore, we expect to combine the advantages
of deep learning and manifold learning through knowledge distillation.

To the above problems, this paper proposes a knowledge distillation-based method to
train the Grassmann manifold network for remote sensing scene classification. The deep
convolutional neural networks are used to guide the training process of shallow manifold
networks, thus enabling the small manifold networks to acquire knowledge learned from
large amounts of data. In the meantime, the size of the final network is small due to the
effective characterization of the curve manifold.

Our contributions in this paper are as follows:

1 Through knowledge distillation, deep convolutional neural networks are allowed to
train shallow manifold networks to seek better classification mappings at a smaller
network size. In this way, the shallow manifold network learns information from a
large amount of data while maintaining its excellent data characterization capability.

2 We first realize the flow and transmission of information between the manifold net-
work and convolutional neural network. Since the input data of the two networks are
located in different spaces, convolutional neural networks and manifold networks
are inherently incompatible. For the first time, we have broken down the isolation
between them, enabling the flow of information between the two networks and
providing direction for communication between the other networks.

3 Experiments are carried out on three common standard datasets, namely UC Merced
Land Use, SIRI-WHU, and RSSCN7 datasets. The accuracy of each dataset can be
effectively improved, and the effectiveness of our method is verified.

The content of this paper is arranged as follows: Section 2 begins with a brief review of
Grassmann networks and knowledge distillation, followed by a detailed description of our
methodology. The experimental results and analysis are described in Section 3. In Section 4,
we discuss the experimental results and the influence of the parameters on the experiment.
Finally, the conclusion of this paper is given in Section 5.

2. Materials and Methods

In this section, a brief introduction to Grassman Network (GrNet) and knowledge
distillation is given first. Then we will describe the proposed method in detail.

2.1. Grassmann Network (GrNet)

GrNet [28] is a Grassmann manifold network. The input of GrNet is Grassmannian
data, which lies on the Grassmann manifold. A Grassmann manifold Gr(q, n) is a compact
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Riemannian manifold, which is the set of all q-dimensional linear subspaces of Rn that can
be spanned by an orthonormal basis matrix X ∈ Rn×q. Therefore we have:

Gr(q, n) = {X ∈ Rn×qXTX = Iq} (1)

where Iq is the identity matrix of size q× q. The operations in Euclidean space are no longer
feasible in Non-Euclidean space, so Riemannian calculations [32] and matrix backpropaga-
tion [33] on Grassmannian data are adopted to train the manifold network.

Features are extracted from successive frames of the face video and then processed so
that they form a linear subspace [34,35], which is the Grassmannian manifold data. The Pro-
jection block consists of full rank mapping (FRMap) layers and re-orthonormalization
(ReOrth) layers, which transform the input Grassmannian manifold data into a more dis-
criminative and compact Grassmannian representation for better classification. The Pooling
block is composed of projection mapping (ProjMap) layers, projection pooling (ProjPooling)
layers, and orthonormal mapping (OrthMap) layers, which serves to reduce the compu-
tational effort and avoid overfitting. The Output block contains the ProjMap layer, fully
connected layer, and softmax layer. Figure 2 is an illustration of the structure of GrNet.
Table 1 lists the mapping functions of each layer in GrNet and the corresponding layers
between the convolutional neural network and GrNet.

Figure 2. Illustration of GrNet structure. (I): Projection Block. (II): Pooling Block. (III): Output Block.

Table 1. Mapping function of each layer in GrNet and the corresponding layer in CNN.

CNN Layer GrNet Layer f k

Convolutional Layer FRMap Layer Xk = f (k)f r (Xk−1; Wk) = WkXk−1

Nonlinear Activation Function Reorth Layer Xk = f (k)ro (Xk−1) = Xk−1R−1
k−1 = Qk−1, Xk−1 = Qk−1Rk−1

Average Pooling Layer

ProjMap Layer Xk = f (k)pm Xk−1 = Xk−1XT
k−1

ProjPooling Layer Xk = f (k)pp ({X̂1
k−1, X̂2

k−1, . . . , X̂n
k−1}) =

1
n

n
∑

i=1
X̂i

k−1

OrthMap Layer Xk = f k
om(Xk−1) = Uk−1,1:a, Xk−1 = Uk−1Σk−1UT

k−1

2.2. Knowledge Distillation

In a classification problem, the model maps the input features to a point in the label
space, and in deep neural networks, this is mostly achieved by a fully connected layer. If all
samples of a class are mapped to the same point in the label space, information about intra-
class variance and inter-class distances will be lost. Furthermore, although incorrect labels
have different probability distributions, they are ignored when the true labels are selected.
Hinton et al. [36] proposed the knowledge distillation that can distill the knowledge in an
ensemble into a small model by using “soft targets”. The soft targets are the probabilities
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of different classes in the cumbersome models that can provide more information than the
traditional ground truth (also known as hard target). The soft targets obtained from the
large size teacher network (TNet) are applied to train the small size student network (SNet)
through knowledge distillation to preserve the probability distribution between different
incorrect labels. Therefore, the SNet imitates the training process of the TNet through
knowledge distillation to adjust the network weights and achieves better performance than
by training SNet only.

The softmax layer can convert the logit, zi, into the probability of ith class, qi, as the
following way:

qi =
exp(zi)

∑j exp(zj)
(2)

The knowledge distillation introduces a temperature parameter, t, to the softmax layer,
which controls probability distribution between different classes. The probability differ-
ences between classes tend to be smaller with higher temperatures. As the temperature
tends to infinity, the probability of each class tends to be equal. Through the adjustment
of parameter t, the mapping curve of the softmax layer is smoother. The soft target qti is
computed as below:

qti =
exp(zi/t)

∑j exp(zj/t)
(3)

Obviously, when t is equal to 1, the soft target qti equals qi. Instead of letting qi fit
to hard target only, the knowledge distillation enables the student networks to get the
knowledge that the teacher networks have already obtained by narrowing the difference
between the soft targets of A and B. From a teaching perspective, a hard target is like a
standard answer and a soft target is like the teacher’s experience. With the help of the
teacher, students can acquire knowledge faster and better. As a result, the small network
can obtain higher accuracy by using both soft targets and hard targets.

At present, there are two ideas for knowledge distillation. One is to perform knowl-
edge distillation at the output end of the network, which is also called goal-driven knowl-
edge distillation. The classic example of this is the distillation framework in [36], and an-
other extension to it is ProjectionNet [37]. The other is to perform knowledge distillation in
the middle layer of the network, which is also called feature matching knowledge distilla-
tion. FitNets [38] defines the hint layer and guided layer in the middle layer of TNet and
SNet, respectively. The guided layer learns from the hint layer by adding a mean square
loss between them in training. In [39], the authors use the attention maps of the middle
layers of TNet and SNet to calculate the loss. Similar to this is the use of Gram matrices
rather than the attention maps in [40]. Heo et al. [41] propose a new designed margin ReLU
activation and a new distillation feature position. Other recent methods of knowledge
distillation include [42–45], etc.

To sum up, the key of knowledge distillation is to break up the original supervision
information compressed to one point, which is a simple way to make up for the insuffi-
cient supervision signal of the classification problem. It increases the prior knowledge
obtained through soft targets, reduces the search space of the network, so as to obtain better
generalization ability and accelerate the convergence speed of the network.

2.3. Overview of the Proposed Method

Figure 3 illustrates the way that our proposed method works. Our method consists of
two flows. One is the training of traditional convolutional neural networks, and the other
is the processing of the manifold network.

The remote sensing images are fed into the convolutional neural network which is
called the teacher network first. The teacher network can get knowledge from a mass of
data and store the knowledge in the soft targets that we use later. The input images require
preprocessing because the manifold network has a special input format. In this paper,
an effective approach is proposed to transform the original remote sensing images into the
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points in the Grassmann manifold, which is the input space of the manifold network. Then
the manifold data is fed into the manifold network. Both soft targets and hard targets are
used as supervisory information for training the manifold network. Finally, the resulting
model can converge faster and predict more accurately than the model trained without
knowledge distillation.

Figure 3. The overview of the proposed method. On the one hand, the images are fed into a
convolutional neural network to obtain soft targets. On the other hand, they are also transformed
into manifold data. The manifold network is trained with manifold data as input and soft target and
hard target as supervised information.

2.4. Training Manifold Network by Knowledge Distillation

Knowledge distillation can transfer the learning ability of a large network to a small
network. The condition for distillation is that the partial structure of the student net-
work (SNet) corresponds functionally to that of the teacher network (TNet). However,
the manifold networks are structurally incompatible with the convolutional neural net-
works, leading to the difficulty of distillation between them. The output layers of the two
networks are both fully connected layers, hence we choose to distill the knowledge on the
top of networks.

First, the teacher network is trained with the original image as input, at which time t is
equal to 1. The trained teacher network is cumbersome, but it has a good generalization of
data. Then t is changed to be greater than 1 and we can obtain a soft target for each original
image, which contains more information about the input image. In the meantime, the orig-
inal images are transformed into Grassmannian data. The approach of transformation
will be introduced later. Then we input the Grassmannian data into the student network.
During training, the student network has two softmax layers with different temperatures,
one with t equal to 1 and the other with t greater than 1. Therefore, the network has two
outputs, a soft target and a hard target, and correspondingly two loss functions. We write
the expression for soft target and hard target in the form of a vector as follows:

yso f t(z) =
ez/t

(ez/t)′ · 1
(4)

yhard(z) =
ez

(ez)′ · 1
(5)

where z is the column vector of logit, ()′ is transposition of vector, 1 is column vector
with all elements of 1, yso f t and yhard are soft target and hard target respectively. Then we
substitute the logit z with specific network structures as follows:

zS = ManiNet(Trans(x)) (6)

zT = ConvNet(x) (7)
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where Trans represents the preprocessing of the input data, the ManiNet and ConvNet
represent the manifold networks and convolutional neural networks respectively, x is
the original input, and the superscripts S and T refer to student networks and teacher
networks respectively.

The first loss function is the standard cross entropy between the soft targets of two
networks, as follows:

Lso f t = C(yT
so f t, yS

so f t) (8)

where yT
so f t and yS

so f t are the soft targets of the teacher network and student network
respectively, C is the standard cross entropy.

Another loss function is the standard cross entropy between the ground truth and
hard target, as follows:

Lhard = C(yS
hard, y) (9)

where the yS
hard is hard target of the student network.

These two loss functions form the final loss function through a weighting coefficient α.
As a result, the student network can learn weights by the ground truth, and meanwhile,
the knowledge learned from the teacher networks can correct the learning direction and
improve the accuracy of the small model. The effect of the true labels and the teacher
network on the final training results can be controlled by the α. The final loss function L is
formulated as follows:

L = α ∗ Lso f t + (1− α) ∗ Lhard (10)

The convolution is a linear operation, so the activation function is used to add non-
linear fitting capability. The convolutional neural network is very deep to obtain good
data generalization ability, leading to the cumbersome model. However, the manifold
network is defined in the non-Euclidean space, including its inputs and internal opera-
tions. The nonlinearity of the operations on the curve manifold leads to better spatial
transformation capability and data fitting ability, meaning that the manifold network can
achieve better results with fewer layers. With the help of knowledge distillation, we further
enhance the performance of the manifold network by transferring the information in the
soft targets of the cumbersome model.

Data Preprocessing

We choose GrNet as the manifold network in this paper. The GrNet is designed
for Grassmannian data, so the images must be preprocessed before they are fed into the
network. In face video recognition, a series of consecutive frames are sampled from the
video, and the human face is extracted from the original video frame by using some face
extraction algorithm. Therefore, these human face frames have similar patterns. A fixed
number of images can be modeled as a linear subspace by extracting features from images,
putting them together and then orthogonalizing them. However, there is a difference
between human face videos and remote sensing scene images. The face images that belong
to a person are very similar because they are consecutive frames extracted from the video.
However, there may be a big difference for remote sensing scene images in a category.
In general, for classification problems, our task is to label each image rather than classify
a group of images into a category. Therefore, the above method is no longer applicable.
In this paper, we propose a new method to represent a single image as a linear subspace
as follows:
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(1) Crop and Stack. An image is randomly cut into m subgraphs first. Then we extract a
feature of fixed dimension for each subgraph. The m feature vectors are stacked to
form a feature matrix. This process is shown in Figure 4. In this paper, the feature
extraction method is the neural network. In our experiment, we set the dimension of
the feature to 512 and m to 10. As a result, each image can generate a feature matrix
whose shape is 512× 10.

(2) Divide the datasets. To ensure that the overall distribution of the training sets and test
sets is consistent, each category in the datasets is divided into training sets and test
sets in a fixed proportion.

(3) PCA dimensionality reduction. Firstly, PCA dimension reduction is carried out on
the training data, and the eigenvectors corresponding to k features with the largest
eigenvalues are selected to form the eigenmatrix P. Then the eigenmatrix P obtained
from the training set is used to reduce the dimension of the data of the training set
and the test set. The dimension is reduced to 400 in our experiment, so the shape of
the feature matrix becomes 400× 10.

(4) Generate linear subspace. The feature matrix obtained in (3) is transformed into the
orthogonal matrix by singular value decomposition(SVD). An orthogonal matrix is a
linear subspace that is a point in the Grassmann manifold and also the input to GrNet.

Figure 4. The illustration of first step for preprocessing. A single image is “cropped-extracted-stacked”
to produce a feature matrix.

2.5. The Flow of Proposed Method

The entire algorithm flowchart is shown in Figure 5. First, input the original optical
remote sensing images into a trained teacher network with a distillation temperature greater
than 1 to get the soft targets. At meanwhile, each image is preprocessed as mentioned
above to generate the manifold data. The processed data is entered into the manifold
network which has two softmax layers. The first softmax layer with a temperature greater
than 1 outputs the soft targets, which calculates the cross-entropy loss with the above soft
targets. The second softmax layer with temperature equals 1 outputs logits, and the cross-
entropy loss between the ground truth and these hard targets is computed. The final loss
function is composed of these two losses and we train the network with a backpropagation
algorithm. At inference, the processed images are input into the manifold network with
the temperature equals 1, and the prediction results are output according to the obtained
probability of each class.
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Figure 5. The flow chart of our proposed method.

3. Results

In this section, we first introduce three datasets used for the experiments. And then,
some parameters in the experiments are discussed in detail here. Finally, we perform our
method on these three remote sensing image datasets and the experimental results will be
displayed. In addition, we discuss the effects of α and distillation temperature T.

3.1. DataSet

We choose four remote sensing scene classification datasets, namely UC Merced
Land Use [46] (UCM for short), SIRI-WHU [8,47], RSSCN7 [48] and Aerial Image Dataset
(AID) [49]. The number of categories in the four datasets is different, from 7 to 30, which
can make the method in this paper more universal. They have rich image information
and features, and complex texture structures, which bring a great challenge to classifica-
tion tasks.

3.1.1. UC Merced Land Use Dataset

The images of the UC Merced Land Use dataset are selected from the USGS National
Map Urban Area Imagery collection and cover areas across the United States. The UC
Merced Land Use dataset includes 21 categories, and each aerial scene contains 100 images,
whose size is 256 × 256 pixels. They have a resolution of 1 foot per pixel. Figure 6 shows
some examples of different categories.



Remote Sens. 2021, 13, 4537 11 of 21

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 6. Example images in 21 categories in the UC Merced Land Use dataset. (a–u) Agricultural,
airplane, baseballdiamond, beach, buildings, chaparral, denseresidential, forest, freeway, golfcourse,
harbor, intersection, mediumresidential, mobilehomepark, overpass, parkinglot, river, runway,
sparseresidential, storagetanks and tenniscourt, respectively.

3.1.2. SIRI-WHU Dataset

The SIRI-WHU dataset comes from Google Earth, mainly covering urban areas in
China, and was designed by RS_IDEA Group of Wuhan University. It is composed of
12 scenes classes, and each category contains 200 images. The 12 scene classes include
agriculture, commercial, harbor, idle land, industrial, meadow, overpass, park, pond,
residential, river and water as Figure 7. The spatial resolution is 2 meters, and images have
a size of 200 × 200 pixels.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7. Example images in 12 categories in the SIRI-WHU dataset. (a–l) Agriculture, commercial,
harbor, idle land, industrial, meadow, overpass, park, pond, residential, river and water, respectively.

3.1.3. RSSCN7 Dataset

The RSSCN7 dataset is quite challenging because of the diversity of scene images
captured in different seasons and different weather, and sampled at different scales. There
are 2800 remote sensing images from 7 different typical scenes, namely grass, field, industry,
river&lake, forest, resident and parking. For each category, 400 images were taken from
Google Earth, sampled on four different scales, 100 images per scale. The size of each
image is 400 × 400 pixels. The samples from the seven categories are shown in Figure 8.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 8. Example images in 7 categories in the RSSCN7 dataset. (a–g) Grass, field, industry,
river&lake, forest, resident and parking. respectively.

3.1.4. Aerial Image Dataset

The AID is a remote sensing image dataset containing 30 categories of scene images,
each with approximately 220–420 images. The entire dataset consists of 10,000 images with
a pixel size of 600 × 600. The samples in AID have different spatial resolutions, which is
more challenging for scene classification.

For the first three datasets, we randomly choose 20% of each class as the test set so
that the training set and test set can have the same distribution. And for the AID dataset,
20% and 50% of the data are used as the training sets respectively. Table 2 shows the
number of images in the test set and the training set in the four remote sensing scene
classification datasets.

Table 2. The number of images in the test set and the training set in the three datasets.

UCM SIRI-WHU RSSCN7 AID

Training 1680 1920 2240 2000/5000
Test 420 480 560 8000/5000
Total 2100 2400 2800 10,000

3.2. Experiment Setup

In this experiment, GrNet2B [28] is selected as student net due to its outstanding
performance. GrNet2B is composed of two Projection blocks, two Pooling blocks and one
Output block. According to the research [50], the modified GrNet without Pooling Block
can achieve higher accuracy, but it’s significant to maintain the complete structure to reveal
Grassmann manifold and helpful for feature work based on vanilla GrNet. The sizes of
GrNet-2B weights are set to 400× 300 and 150× 100 to fit with the datasets and our method.
The ResNet34 is chosen as the teacher network. A softmax layer with the temperature
mentioned above is added to the end of ResNet34, which can generate soft targets so as to
fit knowledge distillation. We set the mini-batch size to 32 and the optimization algorithm
is Stochastic Gradient Descent (SGD). The momentum and weight decay are set to 0 by
default. The learning rate is important and we set it to 5 for the student network, 0.05 for
the teacher network and 1 for the distillation process. The learning rate of GrNet is halved
at the 5th, 10th, and 35th epoch. All experiments are run on two NVIDIA TITAN X (Pascal)
GPUs with 12Gb of memory.

We use overall accuracy and the confusion matrix to evaluate the results of scene
classification. The default temperature T of knowledge distillation is set to 4, and the
default weighted coefficient α is set to 0.4. To ensure the reliability of the experimental
results, the experiments were repeated 10 times for the first three datasets and three times
for the AID dataset. The mean value is taken as the final result, and the mean square
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deviation is also reported. As for more details about knowledge distillation, we will discuss
it below.

3.3. Experimental Analysis and Results

In order to illustrate the effectiveness of our method, the experiments are carried on
four remote sensing scene datasets, namely UC Merced Land Use, SIRI-WHU, RSSCN7
and AID datasets.

3.3.1. Results on UC Merced Land Use Dataset

In order to figure out the effect of different networks on knowledge distillation, we add
the experiment of ResNet50 on this dataset. The experimental results on the UC Merced
Land Use dataset are listed in Table 3. As can be seen from the table, the GrNet2B trained
by knowledge distillation with the ResNet34 improves the accuracy by 1.09% compared
with the GrNet2B trained by the ground truth alone. Although ResNet34 is more accurate
than GrNet2B, the results are still excellent considering the size difference between the
two models. With a 92.96% reduction in model size, there was only a 7.37% reduction in
model accuracy, which can solve the problem of deep learning deployment on resource-
limited embedded devices. GrNet2B has only 0.02G of Mac computation, which is much
less than 3.15G and 3.52G of that of ResNet. The significant reduction in calculations is
due to the format of the manifold data, which lies on the curved manifold. Also because
of the special input data, the Grassmann manifold network is mostly based on matrix
operations, resulting in less computational effort. When ResNet50 is selected as the teacher
network, knowledge distillation can achieve a 2.31% improvement in accuracy. Therefore,
the selection of the teacher networks allows for a wider range of possibilities.

Table 3. The accuracy of ResNet34 and ResNet50 on UC Merced Land Use datasets.

TNet #Param/Mac TNet Acc SNet #Param/Mac SNet Acc Distillation Result

ResNet34 21.30 M/3.15 G 98.67 ± 0.55 GrNet2B 1.50 M/0.02 G 90.31 ± 1.00 91.40 ± 0.98

ResNet50 23.55 M/3.52 G 98.10 ± 0.19 GrNet2B 1.50 M/0.02 G 90.31 ± 1.00 92.62 ± 0.39

Furthermore, the training process using knowledge distillation is greatly accelerated.
We can see from Figure 9 that with plain training, the model needs more than 10 epochs
to converge to high accuracy. However, using knowledge distillation, the model only
needs 5 epochs to reach a high accuracy, which benefits from the prior knowledge from the
teacher network.

Figure 9. Convergence rate comparison between GrNet and Distilled GrNet.
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3.3.2. Results on SIRI-WHU, RSSCN7 and AID Dataset

The knowledge distillation is also performed on the SIRI-WHU, RSSCN7 and AID
datasets. The classification results of vanilla GrNet and distilled manifold network on
the three remote sensing scene datasets are shown in Table 4. On the SIRI-WHU dataset,
distilled GeNet2B can achieve 1.73% accuracy improvement compared with the vanilla
GrNet2B. Compared with ResNet34, the accuracy of the distilled model is reduced by only
9.10% when the model size is reduced by 93.80%. On the RSSCN7 dataset, the accuracy of
the proposed method is improved by 0.95% compared with the vanilla GrNet2B. Compared
to ResNet34, the accuracy of distilled GrNet2B is only reduced by 9.03% with a 94.27%
reduction in model size. On the AID dataset, the proposed method improved the accuracy
by 0.37% over vanilla GrNet2B. The distilled GrNet2B has 11.43% lower accuracy than
ResNet34, but its model size has been reduced by 92.11%. Model size and accuracy are
paradoxical, so we need to find a trade-off between the two. With such a large drop in
model size, the accuracy of our method remains competitive.

We list some of the misclassified images, as shown in Figure 10. These images are so
similar that humans can make a mistake in distinguishing between them. The confusion
matrixes obtained by testing on the UCM, SIRI-WHU and RSSCN7 datasets respectively
are shown in the left column of Figure 11. It can be seen that most images are correctly
classified. The reason for misclassification is that images have similarities in the different
classes, and images may have a large difference in the same class.

The right column of Figure 11 is the results of ten random repeat experiments on UC
Merced Land Use, SIRI-WHU and RSSCN7 datasets, respectively. The blue line represents
the accuracy of the vanilla GrNet and the green line represents the accuracy of the distilled
GrNet. As is shown in Figure 11, the green lines are almost always above the blue lines in
all three figures. Therefore, the method proposed in this paper has good robustness.

Table 4. The accuracy on SIRI-WHU, RSSCN7 and AID datasets.

Dataset ResNet34 (TNet) # Params GrNet2B (SNet) # Params Distillation Result

SIRI-WHU 96.90 ± 0.62 21.29 M 86.35 ± 0.96 1.32 M 88.08 ± 1.14

RSSCN7 95.77 ± 1.14 21.29 M 86.18 ± 1.10 1.22 M 87.12 ± 1.14

AID 91.42 ± 0.02 21.29 M 80.60 ± 0.00 1.68 M 80.97 ± 0.01

denseresidential mediumresidential grass field

harbor water industry parking

Figure 10. Some examples of misclassified images.They are denseresidential and mediumresidential,
grass and field, harbor and water, industry and parking respectively.
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Confusion matrix on the UCM dataset. Ten experimental results on UCM dataset.

Confusion matrix on the SIRI-WHU dataset. Ten experimental results on SIRI-WHU dataset.

Confusion matrix on the RSSCN7 dataset. Ten experimental results on RSSCN7 dataset.

Figure 11. The confusion matrices and ten experimental results of model trained on the UCM, SIRI-WHU and
RSSCN7 datasets.
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3.3.3. Comparison Experiments with Shallow CNNs

We also conduct a comparison experiment using a small CNN. The small CNN
consists of two convolutional layers and a fully connected layer. Each convolutional layer
is followed by an activation function and a max pooling layer. The structure of this simple
CNN is similar to that of GrNet2B, and the number of parameters in the CNN is also on
the same order of magnitude as it. The simple CNN is trained on the four datasets and
the experimental results are listed in Table 5. Obviously, the shallow CNN has very poor
classification capabilities. Although the shallow CNN is slightly larger than GrNet2B,
the classification accuracy of this CNN is significantly lower than that of GrNet. As a result,
our model has excellent performance at the same size level.

Table 5. Comparison experiments with shallow CNNs on the four datasets.

Dataset Shallow CNN #Params GrNet #Params

UCM 53.81 3.51 M 92.62 1.5 M

SIRI-WHU 58.33 2.07 M 88.08 1.32 M

RSSCN7 66.96 1.27 M 87.12 1.22 M

AID 42.76 4.95 M 80.97 1.68 M

3.3.4. Effect of Parameters

Property of Parameter T. As mentioned above, the parameter T, i.e., distillation tem-
perature, is important for the experiment because it determines the level of information
utilization in negative labels. Therefore, we test different temperatures T and repeat all
experiments at a series of values, that is, from 2 to 10 in intervals of 2. And the results are
listed in Table 6. The vanilla GrNet is used as the baseline. The visualization of the data
above is presented in Figure 12, and the ordinate is the difference between the accuracy
of the model with temperature x and the baseline. As we can see in Figure 12, as the
temperature rises, the accuracy first rises and then falls in general. The best performance of
the knowledge distillation appears at different temperatures on the three remote sensing
datasets. On the UCM and RSSCN7 datasets, the accuracy is highest when T is 4. As for the
SIRI-WHU dataset, the model with a temperature of 6 achieves the best performance. There
are many differences in texture structures and image features among the three datasets, so
it’s reasonable that different datasets have different optimal temperatures. When we draw
them in a line chart, it’s easy to find that the optimal temperature is approximately concen-
trated from 4 to 6. Therefore, the other experiments will be conducted at a temperature of
4. When the temperature is so low that it approaches 1, the softmax layers become naive,
and the difference between positive and negative labels is too large. When the temperature
is very high, we can see from the softmax formula with the temperature that the difference
between all labels, including positive labels and negative labels, is very small, so the ability
to distinguish between different categories is reduced.

Table 6. The experimental results at different temperature on the three datasets.

T 2 4 6 8 10

UCM 90.976 91.4046 91.2619 91.3096 90.9994

SIRI-WHU 86.9166 88.0833 88.25 88.2292 88.1459

RSSCN7 86.2679 87.1248 86.4999 86.4463 86.0893
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Figure 12. The diagram of influence of temperature T.

Property of Parameter α. The knowledge distillation utilizes the information learned
from the teacher network and student network. The teacher network can learn more
knowledge than the student network from a lot of data and store it in the soft targets, which
is used by the student network. On the other side, the student network gets information
from the ground truth at the same time. As mentioned above, α is the weighted coefficient
between the two loss functions, i.e., Lso f t and Lhard. The Lhard uses the original supervised
information to limit the scope of the solution space, and the Lso f t contains more prior
knowledge learned from the cumbersome teacher model. Therefore, α can manipulate
which of the two types of information is more dominant in guiding the convergence of
the network.

In order to figure out the effect of α, we experiment on three datasets with different α.
The value of α is from 0 to 1 in intervals of 0.1 in all datasets. According to Equation (10),
the vanilla GrNet is the special case of distillation when the α is 0. The results are listed
in Table 7. The Figure 13 shows that the optimal α is approximately between 0.2 and 0.5.
When α is greater than 0.5, the accuracy will decrease as α increases. When the α is equal
to 1, the loss function is only composed of Lso f t, that is, the training process is completely
controlled by the prior knowledge of the teacher network. Due to the lack of supervision of
the ground truth, incorrect knowledge from the teacher network will also be passed to the
student network, which leads to the decline of the accuracy of the model. Consequently,
we get the conclusion that the ground truth plays a more important role in training the
Grassmann manifold network on these three datasets. The soft targets can assist in guiding
the training of the small network and correct the direction of network convergence.

Table 7. The experimental results at different α on the three datasets.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

UCM 89.76 90.476 91.190 91.429 91.429 91.429 91.190 91.190 91.190 90.476 90.952

SIRI-WHU 87.292 88.958 89.167 89.167 88.75 88.542 88.125 88.125 87.917 87.083 86.458

RSSCN7 87.321 88.036 88.214 88.214 88.036 88.036 87.679 87.500 87.143 86.786 86.964
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Figure 13. The diagram of influence of α.

4. Discussion

We have conducted experiments on three different remote sensing datasets and the
experimental results show that the method proposed in this paper is effective. The method
in this paper is not as good as convolutional neural networks, but the lower loss of
accuracy is rewarded with a huge saving in model size. The proposed method is more
feasible and valuable when considering the environment in which the neural network
is deployed. In addition to higher accuracy rates, faster training is also an advantage of
this method. As there are many pre-trained models published by other companies or
institutions, the training cost of our proposed method is acceptable.

There are two hyperparameters in our experiment, namely temperature and α. Tem-
perature controls the relative size of the different labels to each other and thus affects the
utilization of the information they contain. When the temperature is too low, the gap
between the positive and negative labels will cover the gap between the different negative
labels. When the temperature is too high, the gap between all tables becomes quite small,
and there is a great loss of information. Furthermore, Our experiment also gives a conclu-
sion that is consistent with this. The α controls the proportion of the ground truth and the
teacher network’s contributions to training. As can be seen from the experimental results,
when α equals 0 or 1, the accuracy of the model cannot reach the highest, which indicates
that training only by ground truth or soft targets is not enough. In another way, we also
know that the addition of either of these two has a positive effect on the performance of the
model. The optimal value of α is 0.4, so we think that ground truth plays a more important
role than soft targets in the experiments of this paper. This also shows that the innovative
point of the article is valid.

5. Conclusions

In this paper, we introduced a novel method to use knowledge distillation to train
the Grassmann manifold network, which also breaks the isolation between convolutional
neural networks and manifold networks. Our approach is general and applicable to
other convolutional neural networks and manifold networks. The advantages of deep
convolutional neural networks and shallow manifold networks were combined to improve
the accuracy of small networks. The size of the model has been significantly reduced
while maintaining considerable performance, which helps in the deployment of deep
learning models on resource-limited devices such as embedded devices. We propose a
preprocessing method that converts a single image into a point in a Grassmannian manifold.
Our method was performed on three remote sensing scene classification datasets, and the
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results show that our method effectively improves the accuracy. Some details about the
effects of parameters T and α were discussed above. In the future, we will explore the more
general manifold networks to improve the generality of the manifold network and simplify
its structure.

Author Contributions: Methodology, L.T. and Z.W.; software, Z.W.; writing—original draft prepara-
tion, Z.W., B.H. and L.T.; writing—review and editing, Z.W. and C.H.; Project administration, C.H.,
D.W. and D.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (No. 2016YFC0803000) and the National Natural Science Foundation of China (No. 41371342).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
CIFAR Canadian Institute for Advanced Research
SGD Stochastic Gradient Descent
GrNet Grassmann network
SIFT Scale-Invariant Feature Transform
ReLU Rectified Linear Unit
SNet Student network
TNet Teacher network
LLE Locally Linear Embedding
ISOMAP Isometric feature mapping
LE Laplacian Eigenmaps
SPD Symmetric Positive Definite

References
1. Xu, Z.; Zhang, W.; Zhang, T.; Li, J. HRCNet: High-resolution context extraction network for semantic segmentation of remote

sensing images. Remote Sens. 2021, 13, 71. [CrossRef]
2. Ouyang, S.; Li, Y. Combining deep semantic segmentation network and graph convolutional neural network for semantic

segmentation of remote sensing imagery. Remote Sens. 2021, 13, 119. [CrossRef]
3. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.

ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]
4. Yang, K.; Xia, G.S.; Liu, Z.; Du, B.; Yang, W.; Pelillo, M.; Zhang, L. Asymmetric Siamese Networks for Semantic Change Detection

in Aerial Images. IEEE Trans. Geosci. Remote. Sens. 2021, 1–18. [CrossRef]
5. Maxwell, A.E.; Bester, M.S.; Guillen, L.A.; Ramezan, C.A.; Carpinello, D.J.; Fan, Y.; Hartley, F.M.; Maynard, S.M.; Pyron, J.L.

Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps. Remote Sens. 2020,
12, 4145. [CrossRef]

6. Kalajdjieski, J.; Zdravevski, E.; Corizzo, R.; Lameski, P.; Kalajdziski, S.; Pires, I.M.; Garcia, N.M.; Trajkovik, V. Air pollution
prediction with multi-modal data and deep neural networks. Remote Sens. 2020, 12, 4142. [CrossRef]
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