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Abstract: This study presents an automated methodology to generate training data for surface water
mapping from a single Sentinel-2 granule at 10 m (4 band, VIS/NIR) or 20 m (9 band, VIS/NIR/SWIR)
resolution without the need for ancillary training data layers. The 20 m method incorporates an
ensemble of three spectral indexes with optimal band thresholds, whereas the 10 m method achieves
similar results using fewer bands and a single spectral index. A spectrally balanced and randomly
generated set of training data based on the index values and optimal thresholds is used to fit machine
learning classifiers. Statistical validation compares the 20 m ensemble-only method to the 20 m
ensemble method with a random forest classifier. Results show the 20 m ensemble-only method had
an overall accuracy of 89.5% (±1.7%), whereas the ensemble method combined with the random
forest classifier performed better, with a ~4.8% higher overall accuracy: 20 m method (94.3% (±1.3%))
with optimal spectral index and SWIR thresholds of −0.03 and 800, respectively, and 10 m method
(93.4% (±1.5%)) with optimal spectral index and NIR thresholds of −0.01 and 800, respectively.
Comparison of other supervised classifiers trained automatically with the framework typically
resulted in less than 1% accuracy improvement compared with the random forest, suggesting that
training data quality is more important than classifier type. This straightforward framework enables
accurate surface water classification across diverse geographies, making it ideal for development
into a decision support tool for water resource managers.

Keywords: surface water; water index; band ratios; machine learning; random forest; multispectral;
automatic; MNDWI; AWEI; SCL

1. Introduction

Surface water is one of the most important natural resources on earth due to its life
sustaining properties and importance for agriculture, biodiversity, and human society.
Mapping surface water provides essential support for managing this important resource.
Surface water extent is temporally dynamic, impacted by natural and anthropogenic
drivers such as precipitation, evaporation, irrigation, dams, flooding, and glacier melt.
Furthermore, of the total global inland surface water extent detected by Landsat between
1999–2018, only 60% was persistent, while the remaining 40% was ephemeral [1]. In the
year 2000, inland surface water extent was unevenly distributed across the world, with over
70% located in North America and Asia, and less than 10% each in Europe, Africa, South
America, and Oceania [2]. Many freshwater reservoirs, lakes, and other inundated areas
have been experiencing declines in volume and surface water extent over recent decades
across various parts of the world [3,4], with exception to some areas experiencing increases,
such as the Tibetan Plateau [5,6]. Increases in loss of surface water extent have been found
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in parts of the Middle East and Central Asia due to drought, damming, or unsustainable
water withdrawal [7,8]. While recent studies identified some of the most concentrated
losses in these regions, net gains in surface water extent have also been recorded across
all continents except Oceania, largely attributed to reservoir filling and glacier melt from
climate change [5,9,10] Changes in surface water extent, especially losses, impact land use,
water resources management, and ecosystem services. Therefore, mapping support must be
constantly updated to reflect changing conditions and support time-sensitive management
decisions. Automated remote sensing of surface water is ideal for this purpose.

In order to obtain such surface water extent metrics, increasingly robust algorithms
have been developed for mapping surface water extent with coarse resolution sensors such
as the Moderate Resolution Imaging Spectroradiometer (MODIS) [11–13], including studies
with daily temporal resolution [14]. More recently, studies show that moderate resolution
sensors, such as Landsat 8, are able to capture change dynamics of smaller waterbodies.

Landsat-scale water mapping typically applies supervised classification methods that
derive information from the spectral bands, a combination of well-documented spectral
indexes such as the Normalized Difference Water Index (NDWI) or Modified Normalized
Difference Water Index (MNDWI), and digital elevation models (DEM) [1,2,5,15–22]. More
robust indexes such as the Automated Water Extraction Index (AWEI) were developed to
improve classification accuracy in shadow and dark surface areas that are often missed by
the MNDWI [23]. Additional work has been conducted to continually refine the spectral
indexes for higher accuracy in challenging terrain with shadows [24,25]. More recently,
some studies have leveraged deep learning to provide high accuracy output in complex
environments [26–28]. The global availability of 10 m and 20 m Sentinel-2 imagery has
enabled higher spatial and temporal resolution mapping especially within the challenging
heterogeneous and urban landscapes [29–31]. Synthetic Aperture Radar is also used in
conjunction with optical imagery to overcome issues with cloud cover and provide robust
areal estimates [32–37].

While many surface water mapping studies use machine learning to provide more
accurate results than with spectral indexes alone, training data collection remains a tedious
and time-consuming step, or studies may rely on ancillary spatial layers to generate training
data which may propagate errors due to inaccuracy. These layers, such as OpenStreetMap,
often have temporal mismatches with the imagery and may omit small bodies of water
not located near major cities. One recent study used Sentinel-2 imagery overlaid with
OpenStreetMap to automatically extract water pixels [38]. A subsequent study used fuzzy
membership functions, spectral indexes, and color transformations for automated training
data generation [30], whereas unsupervised multidimensional hierarchical clustering with
spectral indexes and individual bands were used to automate classification in France with a
kappa score just below 0.9 [39]. Another study generated automated training and mapping
with Sentinel-2 and Landsat 8 using land–water histograms with multitemporal imagery
and five established water indexes [40]. The automated training data proved to be accurate
in a limited, local study area with overall low root mean square errors in comparison to areal
estimates. Another unsupervised method using mean-shift segmentation and a spectral
index histogram to automatically generate training data found high accuracy in a study site
of Southern Spain with an overall accuracy of 97%, and water user and producer accuracies
of 90.2% and 88.9% [41]. While these methods prove useful and applicable across limited
regions, studies have not yet developed accurate training data generation and automated
mapping methods at the 10 m and 20 m spatial scales for Sentinel-2 imagery applicable
to wide geographic areas, and more importantly, without the need for ancillary training
layers (e.g., OpenStreetMap) to generate the training dataset and automate the workflow.

In this study, we develop two similar methods using 20 m and 10 m imagery to
automate training data generation for mapping surface water extent. The 20 m method
uses an ensemble of three reliable spectral indexes (NDWI, MNDWI, and AWEIsh) and
optimal band thresholds in the SWIR spectrum to exclude false positive water pixels
from the training data. Due to lack of SWIR bands, the 10 m method generates training
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data using the NDWI with optimal band thresholds in the NIR spectrum. The training
data is then applied to a machine learning classifier to map surface water extent at the
Sentinel-2 granule level. On-demand generation of surface water extent for any given
date or location is possible by only requiring a single Sentinel-2 granule for training and
prediction. Additional information and details are discussed in the methodology section.

2. Datasets and Methods
2.1. Objective

While supervised classification is one of the most commonly used methods for map-
ping surface water extent, it requires manual selection and labeling of training data, which
can be costly and time-consuming. Therefore, the main objective of this study was to
develop a simple, efficient, and accurate algorithm for automatically generating surface
water maps with high accuracy across a wide geographic range and in challenging envi-
ronments such as urban areas and mountainous terrain using Sentinel-2 surface reflectance
imagery at a spatial resolution of 10 m or 20 m. The algorithm should be self-contained
without a need for ancillary spatial data layers for training, require no manual training
data collection, and be applicable for automatically training and predicting on individual
Sentinel-2 scenes containing surface water. This independent design would facilitate easy
integration into a decision support tool for water resource managers.

2.2. Sentinel-2 Imagery (10 m and 20 m)

The Sentinel-2 Multispectral Instrument (MSI) imagery is provided by the European
Space Agency [42]. We acquired the Bottom of Atmosphere (BoA) reflectance product,
Level 2A (L2A), directly from the Copernicus Open Access Hub. The L2A product contains
geometrically- and radiometrically-corrected imagery that is ready for analysis. It also
includes a quality assurance layer that contains information on clouds, cloud shadows,
snow, and ice, which we use to mask the input imagery. Sentinel-2 MSI provides a total
of 13 spectral bands at three spatial resolutions (10 m, 20 m, and 60m). The 10 m L2A
dataset contains 4 bands: red, green, blue, and near-infrared. In addition to those bands,
the 20 m L2A product also contains three vegetation red-edge bands and two shortwave
infrared bands [43]. These additional 20 m bands enable a wider array of spectral indexes
for surface water mapping.

2.3. SRTM Digital Elevation Model

The Shuttle Radar Topography Mission (SRTM) DEM was acquired for the mountain-
ous scene over Waterton Park, Canada (Sentinel-2 granule: T11UQQ) for error reduction
in an optional post-processing step. The SRTM DEM is provided at 1 Arc-second (30 m)
with void-filled data at the near-global scale. The dataset is freely available from the USGS
EarthExplorer website. The SRTM dataset was acquired in February of 2000 onboard the
shuttle Endeavour and it is the best available near-global DEM at 30 m spatial resolution.
However, as with most DEMs, the SRTM DEM suffers some artifacts due to terrain shadow,
vegetation canopy, or other dense obstructions [44].

In order to maintain the original resolution of the Sentinel-2 imagery and subsequently
created surface water maps, the SRTM DEM was downscaled to 20 m and 10 m resolution.
To reduce any potential spatial issues due to downscaling from 30 m resolution, we used a
neighborhood window to smooth the downscaled pixels to better represent the underlying
terrain. The downscaled SRTM DEM was then used to remove false positive water pixels
on steep slopes with shadows at the T11UQQ site.

2.4. Software and Programs

For analysis of the satellite datasets we used Esri ArcGIS Pro version 2.5.2. Specifically,
ArcPy functions within Python 3.6.7 were used in conjunction with GDAL, NumPy, and
Scikit-Learn for image clipping, calculating spectral indexes, creating an ensemble of the
three indexes, generating the equalized random points for training, labeling the training



Remote Sens. 2021, 13, 4531 4 of 23

points, training and applying the machine learning classifiers, and calculating accuracy
metrics in batch. Specifically, the ArcPy Spatial Analyst functions were leveraged for much
of the analysis. The ensemble of spectral indexes were created using the “CellStatistics”
function, the equalized random points for automatic training were generated using the
“CreateAccuracyAssessmentPoints” function with the NDWI layer as the stratifying layer,
and “UpdateCursor” was used for iterating the points and applying SQL statements on
the index ensemble and SWIR/NIR bands. Scikit-learn was used for the machine learning
classifier training and prediction. Accuracy metrics were compiled using a combination
of python Pandas library, csv library, and ArcPy functions such as “SearchCursor”, and
“ExtractMultiValuesToPoints”. Python libraries MatPlotLib and Seaborn were primarily
used for graphics and visualization [45].

2.5. Study Sites

For the analysis, we selected 12 study sites of approximately 5000 km2 across diverse
geographies that represent different water types. The sites were selected in order to capture
spectrally diverse types of surface water features, including factors such as turbidity
levels, flow rate, and presence of land cover which could contain confusing non-target
spectra (e.g., impervious surfaces). These included: glaciated water features, clear water,
moderately turbid water, highly turbid/sedimented water, coastal water, and agricultural
water features. The selected study sites are shown in Table 1, where they are labeled
with the corresponding Sentinel-2 granule number. The sites include: Lake Tahoe, USA
(T10SGJ), Waterton Park, Canada (T11UQQ), Mississippi River, USA (T16SBG), Au Sable
River and Lake Michigan, USA (T16TGQ), Indian River Lagoon, USA (T17RNM), The
Bahamas (T17RRH), New River, USA (T17SNB), Madeira River, Brazil (T20LLR), Parana
River, Paraguay (T21JWK), Amsterdam, Netherlands (T31UFU), Sundarbans spanning
both Bangladesh and India (T45QYE), Hanoi, and the Red River Delta, Vietnam (T48QWJ).
Overall, these study sites represent diverse and challenging environments to map with
locations in Asia, Europe, North America, and South America. Since urban environments
are one of the most difficult terrains in which to map surface water due to spectrally similar
non-target shadows and infrastructure [46], 11 of the study sites include cities or small
urban areas. The remaining site includes steep topography and contains shadows, snow,
and ice, which are often falsely classified as water pixels. Moreover, the study sites include
reservoirs, varying sizes of rivers, canals, wetlands, inundated agriculture (e.g., rice fields),
etc. in order to include a variety of spectrally and spatially complex water features that
are difficult to accurately map. Figure 1 contains a representative subset view of each
study area.

Table 1. Overview and description of the study sites and associated Sentinel-2 imagery.

Sentinel-2 Granule Location Date Site Description Water Type

T10SGJ Lake Tahoe (USA) 1 October 2020 Suburban, rivers,
mountain, snow Clear

T11UQQ Waterton Park
(Canada) 3 October 2020 Glaciers, lakes, streams Clear, glacier fed

T16SBG Mississippi & Ohio
River (USA) 26 December 2020 Meandering river Turbid

T16TGQ Au Sable River (USA) 8 November 2020 Great Lakes, urban,
river Turbid, coastal

T17RNM Indian River Lagoon
(USA) 9 December 2020 Wetlands, urban, beach,

ocean Coastal

T17RRH Nassau & Andros Isle
(The Bahamas) 8 January 2020 Ocean, urban, tidal Coastal

T17SNB New River (USA) 7 November 2020 Hilly, meandering river Turbid
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Table 1. Cont.

Sentinel-2 Granule Location Date Site Description Water Type

T20LLR Madeira River (Brazil) 11 August 2020 Highly turbid river Sedimented

T21JWK Parana River
(Paraguay) 21 August 2020 Highly turbid river Sedimented

T31UFU Amsterdam
(Netherlands) 15 April 2020 Dense urban–water

interface Clear

T45QYE Sundarbans
(Bangladesh, India) 27 December 2020 Inland water, streams,

turbid water
Sedimented,
agriculture

T48QWJ Hanoi (Vietnam) 14 November 2020 Urban, rice, turbid
water Turbid, agriculture
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Figure 1. Overview of the twelve study sites shown in red outline. Each granule is visualized with Red, Green, Blue (RGB)
channel bands of: SWIR1, Near-IR, and Red with varied histogram stretches and slightly varied zoom levels. Each study
area is approximately 5000 km2.

2.6. 20 m Framework: Automated Training Data Generation

This method was designed to automatically obtain surface water extent from cloud-
masked or cloud-composited Sentinel-2 20 m BoA imagery as shown in Figure 2. The
analysis was performed at the granule level. A granule is a single Sentinel-2 scene which
is identified by a six-digit alphanumeric code as shown in Figure 1. For each gran-
ule, three established water indexes are calculated: Automated NDWI, MNDWI, and
AWEIsh [23,47,48]. A starting threshold of 0 was preliminarily applied to each spectral
index to separate surface water and non-water pixels, because this value typically balances
omission and commission errors as suggested in the literature [48]. This step provided
preliminary surface water extent maps for generating the ground-truth points used to
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calculate optimal thresholds for the final surface water maps. Next, an index ensemble was
created by combining the three indexes into a single raster with values ranging from 0–3,
with 3 representing all indexes were above the threshold for a given pixel, 2 representing
two indexes above the threshold, 1 for one index above the threshold, and 0 for no in-
dexes above the threshold. Meanwhile, the NDWI raster was reclassified into six quantiles
(3 above zero and 3 below zero) to ensure balanced sampling of land surface features along
the spectrum of potential index values. Then, 8000 points were generated within the six
quantiles of the reclassified NDWI raster using equalized random sampling. This quantity
was necessary in order to minimize noise from erroneous training points. Lastly, values
from the spectral bands and spectral indexes were extracted for each point.
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Figure 2. Methodology for 20 m Sentinel-2 automated training data generation and initial surface water extent map
generation. The preliminary set of maps are generated with a standard zero threshold for the indexes and 850 BoA
reflectance threshold for SWIR1 band. Ground-truth points are generated on this initial set of maps and then used to
determine the Optimal Thresholds (OT) for the spectral indexes and SWIR band. The OTs are used to create the final surface
water maps.

The training dataset was developed by separating the 8000 training points into ‘sur-
face water’ and ‘not surface water’ points. The following were used to determine class
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assignment for a given point: if 0 indexes were above the threshold, the point was marked
as ‘not water’; if 2 or 3 of the indexes were above the threshold, the point was marked
as ‘surface water’; and if only 1 index was above the threshold, the point was deleted, as
it is uncertain as to which class it belongs. Additionally, the shortwave infrared (Band
11) spectrum is highly sensitive to water and was used with a threshold to reduce false
positive water pixels [49], as urban pixels often exhibit index values similar to water [50].
Training data points with SWIR1 BoA reflectance values greater than 850 were marked as
‘not water’. The final training dataset was input into a random forest classifier to predict
separate water/not water outputs for each Sentinel-2 granule/scene [51]. We note that the
training dataset was generated independently for each scene.

2.7. Creation of Ground-Truth Points to Calculate Optimal Thresholds

After generating the initial set of surface water maps for the twelve sites, the ground-
truth points were generated. Ground-truth points were generated on the initial NDWI
threshold maps from the previous section. These points will be used for computing the
optimal thresholds for the spectral index and band thresholds in subsequent analysis. Based
on binomial probability, a total of 2400 points were required, spread evenly across the 12
locations to obtain a 2% margin of error and 95% confidence level [52]. While stratified
random sampling is the standard for most land cover-based accuracy assessments [53],
this method would be unsuitable for binary mapping analysis as it would result in an
insufficient number of water points generated due to the low proportion of water across all
scenes (average = 22%). Instead, this study used an equalized random sample of 100 water
and 100 not water points per site (2400 points per method) separately for both the 10 m
and 20 m datasets (4800 points total). The sample was generated approximately equally
across the six reclassified NDWI quantiles to establish a balanced range of spectral values
for evaluation. Since the points determine the optimal thresholds, we generated additional
points that target the most error-prone regions of the map. Therefore, an additional
20 points for each scene (240 total, 120 water, 120 not water) were generated for areas prone
to higher error, identified as an area where there are no more than two contiguous pixels of
the same class (surface water or non-surface water) since water features tend to be clustered
in large continuous groupings (e.g., rivers, lakes, etc.). The ground-truth was interpreted
for each point based on expert assessment using high-resolution imagery (Worldview-2,
pan-sharpened with nominal resolution of 0.5m) in ArcGIS Pro, and the original Sentinel-2
imagery [52].

2.8. Determination of Optimal Thresholds for Spectral Indexes and Bands

After the first set of intermediate water maps was created using the initial zero
threshold for each spectral index, and the associated ground-truth points had been labeled,
we determined the optimal threshold for the indexes. For the spectral indexes we tested
threshold values ranging from −0.25 to 0.25 at an interval of 0.01, which were considered
to be the possible candidate values. We then generated the water maps for each of the
values using the same methods described in Figure 2. The optimal threshold was selected
by evaluating the overall accuracy with respect to the 2400 ground-truth points.

After the optimal index threshold was determined, we calculated the optimal SWIR
band threshold by iterating the framework separately for each scene using possible SWIR
BoA reflectance thresholds ranging from 50 to 2000 at intervals of 50. The purpose of
the SWIR threshold was to remove false positive water pixels, especially within highly
reflective urban pixels. The outputs for all scenes and all thresholds were compared to the
ground-truth points using a confusion matrix to determine the optimal threshold.

2.9. Sentinel-2 10 m Method for Automated Training Data Generation

Unlike the 20 m Sentinel-2 L2A product, the 10 m product does not contain red-edge
or shortwave infrared bands, which severely restricts the possible water indexes that can
be leveraged. In this case, only the NDWI was used. The 10 m method follows the same



Remote Sens. 2021, 13, 4531 8 of 23

processing and analysis framework as the 20 m, with several small exceptions. Because
only the NDWI was used, an index ensemble cannot be generated and the automation
of the training data selection was instead based on two conditions for a given pixel:
(1) NDWI > threshold = ‘water’, NDWI < threshold = ‘not water’, and (2) near-infrared
band > threshold = ‘not water’. The initial threshold of 0 was used for NDWI and 900 for
near-infrared BoA reflectance in order to generate the 2400 ground-truth points used for
calculation of optimal thresholds. Similar to the SWIR, the NIR threshold helped to exclude
false positive urban pixels from the training data. As with the 20 m dataset, once the
framework was run with the initial values and the initial surface water extent maps were
generated, 2400 new equalized random ground-truth points (1200 surface water, 1200 not
surface water) were then generated and interpreted. The optimal NDWI and NIR BoA
reflectance thresholds were then determined by iterating the framework with thresholds
between −0.25 to 0.25 (NDWI) and 0 to 2000 (NIR) respectively, generating surface water
extent maps at each value. The accuracy of each iteration was calculated from a confusion
matrix using the ground-truth points.

2.10. Optional Post-Processing with SRTM DEM

The SRTM 30m DEM was used to remove false positive water pixels from extremely
steep slopes in mountainous terrain. False positive water pixels commonly occur in steep,
sloping terrain due to the inherently low spectral values when the terrain is obscured
from direct sunlight and thus in a shadow. While it is often standard to include a DEM as
an input for classification, we instead used it as an optional post-processing step so that
this study can be less data intensive, as it is intended for time-sensitive water mapping
applications by end-users. The mountainous scene over Waterton Park, Canada (T11UQQ)
was chosen to test this post-processing method due to the prevalence of shadows in the
steep terrain. We calculated slope for this location, resampled the SRTM DEM to Sentinel-2
resolution, then smoothed the result with a 3 × 3 neighborhood pixel window to prevent
removal of features like steep riverbanks and account for the mismatch in spatial resolution.
Finally, we applied various slope thresholds to mask out false water pixels. We tested
and compared overall accuracy for thresholds ranging from 0 to 30 degrees at 0.5 degree
intervals in order to determine the optimal threshold.

2.11. Accuracy Asssessment

We used the 4800 ground truth points described in Section 2.7 (2400 for the 10 m,
2400 for the 20 m) for evaluating the accuracy of the automated training data generation
frameworks following good practices in accuracy assessment [52]. We used the weighting
from the mapped proportions of each of the two classes and the confusion matrixes of
pixel counts to calculate the unbiased areal estimates for each class [53]. This resulted in
adjustments to the accuracy metrics based on the unbiased areal estimates created from the
user’s accuracies. We also computed 95% confidence intervals based on the same, which
enables comparison among the different maps.

We compared the accuracy resulting from the 2400 points, as well as with the ad-
ditional 200 error prone points. These error prone points, as described in the methods
section, were generated to ensure robust analysis for testing the thresholds in challenging
spectral conditions.

Lastly, we evaluated the Sentinel-2 Scene Classification Layer (SCL) which is provided
with all L2A imagery [43]. The SCL is provided at 20 m and contains masks for specific
layers such as snow, clouds, smoke, vegetation, and surface water calculated using spectral
indexes and thresholds.

2.12. Comparison of Classifiers

Studies often debate about which supervised classifier provides the best performance
for a given application. Some of the most common and robust supervised machine learning
classifiers include the random forest [51], gradient boosted trees (GBT) [54], support vector
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machine (SVM) [55], as well as a majority vote classifier based on these three classifiers.
The random forest uses bootstrap aggregated sampling to build individual decision trees.
Within the structure of a tree, a random sample of the square root of the number of
predictors was chosen for each split as best candidates derived from the entire predictor
set. For the SVM, the optimal hyperplane (dimension = n_features) was selected based
on maximizing the distance between data points of the two classes. The GBT classifier
operates similar to the random forest, but the individual trees are constructed in a series.
These classifiers have different advantages and disadvantages with SVM being generally
better at modeling linear dependencies and working with sparse data. However, while the
GBT classifier also includes an ensemble of decision trees, it constructs each tree one at a
time and uses each tree to improve the weaknesses of the next tree. The decision trees (GBT
and random forest) can better handle non-linear dependencies and are faster to calculate
than an SVM or majority vote classifier. The majority vote classifier combined all of the
classifiers to leverage strengths of each one, but requires increased computation time.

We fed the automated training data into each of these classifiers with mostly default
settings in scikit-learn (except n_estimators = 500, kernel = linear) and evaluated the
accuracies using the ground-truth points. Because our training data was automatically
created and applied individually for each granule without application to other datasets,
model overfitting was not a significant concern. In order to quantify the improvement
produced through the automated training data selection method with supervised classifiers,
we also compared the outputs to the original ensemble of water indexes rasters (20 m only).

3. Results
3.1. Optimal Thresholds

We first calculated the optimal thresholds for the spectral indexes by evaluating
accuracy with respect to the ground-truth points. In this first step, a SWIR threshold (20 m)
or NIR threshold (10 m) was not included; however, we did apply a random forest classifier.
Figure 3 shows the overall accuracy for each granule/scene, as well as the Sentinel-2
granule average accuracy based on changes to the spectral index thresholds. The 10 m
dataset only includes NDWI and the 20 m dataset includes NDWI, MNDWI, and AWEIsh.
Overall, the granule average indicated highest accuracy was achieved with a threshold of
−0.01 for the 10 m dataset and −0.03 for the 20 m dataset. For the 20 m dataset, thresholds
of −0.02, −0.01, and 0 were only 0.1% less accurate lower than the optimal threshold.
Variability of the optimal threshold was observed across the different study sites. The
two sites with a strong urban presence (T31UFU and T48QWJ) had thresholds slightly
above 0 in the 20 m dataset, but thresholds of −0.05 and −0.02 respectively in the 10 m
dataset. One of the granules dominated by shallow water and wetland areas had the
highest threshold for the 20 m dataset (0.2), but not the 10 m dataset (−0.01) (T45QYE). We
attribute some error due to the difficulty in generating ground-truth for this region within
very shallow water agricultural pixels. Interestingly, there was no clear pattern between
the granules/scenes based on water types. For example, T20LLR and T21JWK had the
most turbid water, but the thresholds were not similar for both 10 m and 20 m datasets.
The highest overall accuracy for the 10 m dataset without any NIR threshold was 84.9%,
and for the 20 m dataset without any SWIR threshold was 87.5%.
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We subsequently evaluated the optimal thresholds for the SWIR (20 m) and NIR (10 m)
datasets applied in conjunction with the optimal spectral index threshold and random
forest classifier. The purpose of the SWIR and NIR band threshold was to remove false
positive water pixels typically associated with urban and built-up areas. After evaluating
the confusion matrices for the optimal spectral indexes, we tested the SWIR and NIR
thresholds in conjunction with spectral index thresholds of −0.01 (10 m dataset) to −0.03
(20 m dataset) as determined from the previous section, and fed the training into a random
forest classifier. Figure 4 shows the overall accuracy with respect to the NIR and SWIR
thresholds starting at 50 and ending at 2000 with intervals of 50. Overall, when averaging
across the twelve granules, the ideal NIR and SWIR thresholds were both 800. However,
across the different scenes, the ideal thresholds varied between 550 and 1500 for SWIR20
m and 600 to 1550 for NIR10 m. Relatively similar thresholds and patterns of overall
accuracy were observed between T16SBG, T16TGQ, T17RNM, T17RRH, T20LLR, and
T21JWK. Overall, the accuracy improved significantly when using a NIR or SWIR threshold,
compared to not using one. The accuracies with respect to the ground-truth are described
in a subsequent section.
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Figure 4. Evaluation of the most accurate band threshold for the 10 m and 20 m datasets across the test sites. For the
10 m dataset, the NIR band is used (due to lack of SWIR), and for 20 m dataset, the SWIR1 band is used. Overall accuracy
improves significantly (>90%) when a band threshold is applied as compared with no threshold in the previous figure.

3.2. Removal of False Positive Water Pixels with SRTM DEM

To test the optional post-processing step, the SRTM 30 m DEM was converted into
slope (degrees) and used to mask out steep sloping water pixels after the surface water
map has been generated. The study site T11UQQ was the only one with considerable
mountainous terrain and the DEM was only applied there. We evaluated the optimal
slope threshold by calculating and comparing the overall accuracy with respect to the
ground-truth points at slope thresholds ranging from 0 degrees to 30 degrees at intervals
of 0.5 degrees. The graph of how the overall accuracy changes with the slope threshold is
shown in Figure 5. Without a DEM correction the overall classification accuracy for this
scene was only 75.1% for the 20 m Sentinel-2 framework. The maximum accuracy was
achieved at 17 degrees slope with an overall accuracy of 96.6%, an improvement of over
20% without a DEM. A similar pattern was observed for the 10 m imagery.
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Figure 5. Slope calculated from a Digital Elevation Model (DEM) was applied to the mountainous
granule T11UQQ. Pixels marked as water but with steep slopes were removed. This graph shows
accuracy goes from 76% without a DEM, to as high as 96% with a slope degree threshold of about
17 degrees.

3.3. Sentinel-2 10 m and 20 m Surface Water Maps

Surface water maps were generated for both the 20 m Sentinel-2 framework and the
10 m Sentinel-2 framework using the calculated optimal thresholds from the previous
sections in conjunction with a random forest classifier. The spectral index thresholds of
−0.03 (20 m) and −0.01 (10 m) were used together with NIR (10 m) and SWIR (20 m)
band thresholds of 800. As mentioned in the methods section, the training data points
are automatically generated based on these criteria and the ensemble of indexes and then
fed into a random forest classifier to produce the surface water maps. Figure 6 shows the
results for each of the 12 study sites. At a small scale, the outputs for both the 20 m and
10 m products appear to do very well in comparison to the input imagery. The inundated
agricultural fields and wetlands are captured in T48QWJ and T45QYE along with the turbid
rivers. The small meandering rivers are well captured in T17SNB, and the coastal waters
in T17RRH and T17RNM also are mapped well. In T11UQQ, glacier lakes are detected
and ice-covered mountains and terrain shadow are largely and correctly omitted. Table 2
compares the surface water area mapped in the 10 m and 20 m products. Overall, they
produced similar outputs with only an average difference of 4.3%. However, differences
in excess of 10% were observed at T48QWJ and T20LLR, which are likely attributable to
omission error of paddy rice fields in the 10 m product at T48QWJ, and omission of the
highly turbid portion of the Madeira River in the 10 m product at T20LLR. Otherwise, 6/12
of the study sites had less than 1% difference in surface water area between the 10 m and
20 m maps.
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Table 2. Comparison of the 10 m and 20 m surface water maps showed an average 4.3% difference
in area.

Granule 10 m Water Area
(km2)

20 m Water Area
(km2)

Percent Difference
(%)

T10SGJ 431 430 0.2
T11UQQ 117 116 1.3
T16SBG 98 92 6.1
T16TGQ 211 210 0.6
T17RNM 2748 2754 0.2
T17RRH 4608 4632 0.5
T17SNB 41 45 9.4
T20LLR 136 165 18.7
T21JWK 1357 1354 0.2
T31UFU 2324 2329 0.2
T45QYE 1482 1537 3.7
T48QWJ 288 320 10.4
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3.4. Accuracy Assessment and Analysis of Errors

Figure 7 shows large-scale views of three of the study sites, highlighting some patterns
of errors that were observed. Specifically, in T31UFU, within the city of Amsterdam, the
20 m product has relatively few buildings marked falsely as water, but the classification
does not completely capture the canals and small waterways as designated in the figure.
The 10 m product unsurprisingly does a better job at capturing the small canals, but still
contains some omission error. This improved canal detection comes at the expense of more
commission errors of buildings and shadows. The canal designated on both maps was
difficult to map as it was also partially obstructed by tree cover. The 20 m SCL performed
about the same as the 20 m product. In T48QWJ, close to the city of Hanoi, both the
20 m and 10 m products have minimal commission errors. However, omission errors are
prevalent in the 20 m product along the narrow river and canals as marked in the figure.
The 10 m product detects the canal, but omits some of the inundated paddy rice fields.
The 20 m SCL water mask failed to detect much of the canals, aquaculture and paddy
rice. In T20LLR, this portion of the Madeira River is highly turbid and was not detected
in the 10 m product, but the 20 m product was able to clearly delineate it. A common
thread among these scenes was that the omitted pixels often have spectral index values
significantly below the optimal threshold. For example, in T20LLR, the NDWI across the
omitted portion of the river in the 10 m output was highly negative and not indicative of
water as it ranged from −0.2 to −0.65. In the same scene, the SCL failed to detect several
small water bodies.

The SRTM DEM resulted in an improvement from 75% accuracy to 96% accuracy for
granule T11UQQ. Figure 8 shows an example mountainous area for the 10 m and 20 m
dataset where errors were present in the original result, but were mostly removed after the
DEM was applied. The 20 m SCL water mask does not use a DEM, yet it appeared to have
fewer shadow errors than the 20 m product from this study. However, after applying the
DEM to the 20 m product from this study, it removed most of the shadow that remained in
the SCL water mask.

Overall, the 20 m framework with random forest classifier had the highest accuracy
at 94.3% (±1.3%) with producer’s accuracy of 91.5% and user’s accuracy of 97.4% for
surface water, and producer’s accuracy of 97.4% and user’s accuracy of 91.5% for the not
water class. The 10 m framework with random forest classifier had an overall accuracy
of 93.4% (±1.5%) with producer’s and user’s accuracies of 90.6% and 90.5% for surface
water, and 95.4% and 95.5% for the non-surface water class. We compared the 20 m
ensemble index-only method with the ensemble index method and random forest classifier
in order to quantify the improvement that the automated training data selection with
random forest classification offers. The 20 m ensemble index-only method had an overall
accuracy of 89.5% (±1.7%). This was about 4.8% lower than the automated training method
with random forest classifier, suggesting that the automated training method provides
significant improvement over the standard spectral index ensemble approach.

As expected, the accuracies decrease when using the high error-prone additional
points (AP). The overall accuracy for the 10 m dataset with AP was 91.2% (±1.6%), and for
the 20 m dataset the overall accuracy was 92.5% (±1.5%). This suggests that our APs were
effective at targeting challenging and difficult to map water features as we intended for
optimal threshold selection.
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Figure 7. Example map errors in Amsterdam, Hanoi, and Madeira River. In Amsterdam, the 20 m product has fewer
building commission errors, but has more omission errors of canals and small waterways. The 10 m layer captures more of
the canals, but still has some omission errors. It also has more commission errors of buildings and shadows. The canal
designated on both maps was difficult to capture as it was partially obstructed by tree cover.

The overall accuracies for each of the 12 study sites are shown in Figure 9. The
comparison between the APs and standard accuracy assessment are also shown in this
figure. For the 20 m framework, the lowest accuracy was found in T45QYE, likely due to
the challenging shallow water pixels and water features obstructed by broadleaf forest in
the mangrove swamps. Both the 10 m and 20 m frameworks had relatively low accuracies
(88.6% and 91.7%) at the T16TGQ study site. This site contains several very narrow rivers
that were not effectively captured by either dataset due to mixed water/land pixels that
resulted in the water indexes producing highly negative values. Interestingly, the highest
overall accuracy was observed at the T17RRH site for 10 m framework with 99.5%, while
the highest overall accuracy for the 20 m framework was found in T31UFU with 96.7%.



Remote Sens. 2021, 13, 4531 16 of 23Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 8. Mountainous area in the T11UQQ granule shown with the 10 m and 20 m imagery. Errors were present in the 
original output, but were significantly reduced after the DEM post-processing was applied. 

Overall, the 20 m framework with random forest classifier had the highest accuracy 
at 94.3% (±1.3%) with producer’s accuracy of 91.5% and user’s accuracy of 97.4% for sur-
face water, and producer’s accuracy of 97.4% and user’s accuracy of 91.5% for the not 
water class. The 10 m framework with random forest classifier had an overall accuracy of 
93.4% (±1.5%) with producer’s and user’s accuracies of 90.6% and 90.5% for surface water, 
and 95.4% and 95.5% for the non-surface water class. We compared the 20 m ensemble 
index-only method with the ensemble index method and random forest classifier in order 
to quantify the improvement that the automated training data selection with random for-
est classification offers. The 20 m ensemble index-only method had an overall accuracy of 
89.5% (±1.7%). This was about 4.8% lower than the automated training method with ran-
dom forest classifier, suggesting that the automated training method provides significant 
improvement over the standard spectral index ensemble approach. 

As expected, the accuracies decrease when using the high error-prone additional 
points (AP). The overall accuracy for the 10 m dataset with AP was 91.2% (±1.6%), and for 
the 20 m dataset the overall accuracy was 92.5% (±1.5%). This suggests that our APs were 
effective at targeting challenging and difficult to map water features as we intended for 
optimal threshold selection. 

The overall accuracies for each of the 12 study sites are shown in Figure 9. The com-
parison between the APs and standard accuracy assessment are also shown in this figure. 
For the 20 m framework, the lowest accuracy was found in T45QYE, likely due to the 
challenging shallow water pixels and water features obstructed by broadleaf forest in the 
mangrove swamps. Both the 10 m and 20 m frameworks had relatively low accuracies 
(88.6% and 91.7%) at the T16TGQ study site. This site contains several very narrow rivers 
that were not effectively captured by either dataset due to mixed water/land pixels that 
resulted in the water indexes producing highly negative values. Interestingly, the highest 
overall accuracy was observed at the T17RRH site for 10 m framework with 99.5%, while 
the highest overall accuracy for the 20 m framework was found in T31UFU with 96.7%. 

The 20 m Sentinel-2 SCL water mask provided with all L2A imagery had an overall 
accuracy of only 84.2%, which was about 10.1% less accurate than the automated method 
with random forest from this study. It also had lower accuracy than the ensemble spectral 
index method from this study, which had 89.5% accuracy. Because of this accuracy, it is 

Figure 8. Mountainous area in the T11UQQ granule shown with the 10 m and 20 m imagery. Errors were present in the
original output, but were significantly reduced after the DEM post-processing was applied.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 23 
 

 

recommended for users to avoid relying on the SCL water mask, which performed espe-
cially poor in sites with high turbidity water (e.g., T20LLR Brazil: 71.1% accuracy) and 
with inundated agriculture (e.g., T48QWJ Hanoi: 69.8% accuracy, T45QYE Bangladesh: 
71.1% accuracy). 

 
Figure 9. Overall accuracy for each Sentinel-2 granule and the average for the four different algorithms (ensemble-only, 
20 m ensemble with random forest, 10 m index with random forest, and Sentinel-2 20 m SCL algorithm). The accuracies 
are compared for both a) 100 water and 100 not water points per site stratified in quantiles of NDWI, and b) with 20 
additional points (AP) generated per granule on likely error pixels (isolated 1- or 2-pixel clusters). 

Figure 10 shows the distribution of the errors based on the ground-truth points for 
each of the datasets. Overall, for both the 10 m and 20 m framework the false negative 
water pixels (omission errors) had a median NDWI of −0.045. Whereas the false positive 
water pixels (commission errors) for the 10 m dataset had a median of 0.014, the 20 m 
dataset had a median of −0.03, with a wider distribution of erroneous values. These dis-
tributions of errors could be used to target future improvements to the automation of the 
training data by focusing efforts on these NDWI values. We specifically chose NDWI for 
error analysis because while it may not be the most robust index, it was the common index 
among the 10 m and 20 m datasets due to the band limitations. The errors for the water 
mask from the 20 m SCL are also shown and interestingly the false negative NDWI values 
are much higher than the results from this study. 

Figure 9. Overall accuracy for each Sentinel-2 granule and the average for the four different algorithms (ensemble-only,
20 m ensemble with random forest, 10 m index with random forest, and Sentinel-2 20 m SCL algorithm). The accuracies are
compared for both a) 100 water and 100 not water points per site stratified in quantiles of NDWI, and b) with 20 additional
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Remote Sens. 2021, 13, 4531 17 of 23

The 20 m Sentinel-2 SCL water mask provided with all L2A imagery had an overall
accuracy of only 84.2%, which was about 10.1% less accurate than the automated method
with random forest from this study. It also had lower accuracy than the ensemble spectral
index method from this study, which had 89.5% accuracy. Because of this accuracy, it
is recommended for users to avoid relying on the SCL water mask, which performed
especially poor in sites with high turbidity water (e.g., T20LLR Brazil: 71.1% accuracy) and
with inundated agriculture (e.g., T48QWJ Hanoi: 69.8% accuracy, T45QYE Bangladesh:
71.1% accuracy).

Figure 10 shows the distribution of the errors based on the ground-truth points for
each of the datasets. Overall, for both the 10 m and 20 m framework the false negative water
pixels (omission errors) had a median NDWI of −0.045. Whereas the false positive water
pixels (commission errors) for the 10 m dataset had a median of 0.014, the 20 m dataset had
a median of −0.03, with a wider distribution of erroneous values. These distributions of
errors could be used to target future improvements to the automation of the training data
by focusing efforts on these NDWI values. We specifically chose NDWI for error analysis
because while it may not be the most robust index, it was the common index among the
10 m and 20 m datasets due to the band limitations. The errors for the water mask from
the 20 m SCL are also shown and interestingly the false negative NDWI values are much
higher than the results from this study.
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Figure 10. NDWI error patterns shown for each dataset including the index method with random
forest (10 m), ensemble index method with random forest (20 m), ensemble only method (20 m), and
the water mask from the scene classification layer (SCL 20 m).

3.5. Comparison of Classifiers

We modified the 10 m and 20 m frameworks to run random forest, gradient boosted
trees, and support vector machine classifiers, as well as a majority vote classifier based on
the combination of the three using the AP accuracy points for validation. The results for
the 10 m and 20 m automated frameworks are shown in Table 3. Ultimately, the accuracies
of the 10 m dataset were relatively similar across the different classifiers, with the highest
for the SVM (91.5%) and the lowest for the GBT (91.1%). Whereas, for the 20 m framework
the majority vote classifier had 92.6% accuracy, but was only 0.1% more accurate than just
the random forest classifier alone. The SVM in this case had the lowest accuracy at 91.6%.
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Table 3. Evaluation of classifiers using the automatically generated training data with high error prone ground-truth points
(APs). Values are shown as a percentage (%).

20 m Accuracy with Additional Points (APs)

Overall
Accuracy

Water,
User’s Accuracy

Water,
Producer’s
Accuracy

Not Water,
User’s Accuracy

Not Water,
Producer’s
Accuracy

Majority Vote Classifier 92.6 92.9 93.7 91.3 92.3
Random Forest 92.5 92.7 93.6 91.1 92.2

Gradient Boosted Trees 92.2 92.1 93.7 90.4 92.3
Support Vector Machine 91.6 91.6 93.0 89.8 91.5

10 m Accuracy with Additional Points (APs)

Overall
Accuracy

Water,
User’s Accuracy

Water,
Producer’s
Accuracy

Not Water,
User’s Accuracy

Not Water,
Producer’s
Accuracy

Majority Vote Classifier 91.3 94.3 89.6 87.3 93.8
Random Forest 91.2 94.1 89.5 87.4 93.7

Gradient Boosted Trees 91.1 94.0 89.4 87.3 93.7
Support Vector Machine 91.5 94.2 89.3 87.8 92.7

Ultimately, while the majority vote classifier offers slightly higher accuracy, it was at
the expense of increased computational time required from running the three classifiers.
Overall, the results tend to indicate that the type of supervised classifier did not make a
major difference with respect to the overall accuracy. The quality, size, and completeness of
the training data are likely the most important aspects.

4. Discussion

Our results produced similar accuracy levels compared with existing studies, but
our approach offers a way to generate surface water maps quickly, on-demand, without
manual training data labeling or ancillary training data layers, and evaluated across broad,
international geographic regions using a complex and robust accuracy assessment scheme
with high error prone points. First, we compared our results to surface water maps
produced at the 30m Landsat scale using multiple dates of imagery. In Australia, a study
found an overall accuracy of 97% with water producer’s and user’s accuracies of 93% and
92% respectively [21], as compared with our maximum overall accuracy of 94.3% with
user’s and producer’s accuracies of 97.4% and 91.5% at 20 m across a broader, international
geographic area. Two global surface water studies with more comprehensive analysis
produced similar accuracies [1,5]; the former had user’s and producer’s accuracies of
95.2% and 90.3%, and the latter with 93.7% and 96.0% at a monthly time scale. In [56],
Dynamic Surface Water Extent (DSWE) layers were used to automatically train a random
forest to predict surface water extent in three North American test sites with a median root
mean square error of 0.19 across gage sites. The previously mentioned studies produced
comprehensive analysis and products with robust accuracy. One study that prototyped
the fusion of Sentinel-2 and Sentinel-1 found high 99% overall accuracy, but was limited
to a single region [35]. The accuracy would likely be reduced after application to a more
international study area; however, the promising result suggests it is likely more accurate
than Sentinel-2 only, but at the expense of higher data intensity and manually intensive
training methods. Whereas, our methods achieve similar accuracy with fewer inputs and
without manual training data creation for easy transferability to analysts and quicker map
production. In [29], MNDWI (20 m) and NDWI (10 m) were used across two urban sites
with producer’s accuracies of 87.3% (20 m) and 88.0% (10 m) and user’s accuracies of 88.4%
and 90.8% at the most accurate Yantai site. This result is similar to our 20 m index ensemble-
only method that was applied across international sites. In [38], OpenStreetMap was used
for automated mapping of surface water with Sentinel-2 imagery, which ultimately found
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high producer’s and user’s accuracies ranging from 84% to 99% and 94% to 99% respectively
across several test sites in China. This suggests that the automated training data produced
from this method is accurate. However, in contrast with that study, our study reported
slightly lower accuracy, but did not require OpenStreetMap, which can be a prohibitively
large dataset for even modestly sized study areas. Additionally, OpenStreetMap does
not have a temporal component, and may not match the imagery which varies by season
and year.

Most importantly, because our accuracy assessment included equalized random sam-
pling based on NDWI intervals, it is likely that this method captured more errors and is
more robust than a standard simple random or stratified random sampling approach found
in all of the previously mentioned studies. Therefore, the different accuracies reported
from the mentioned studies are not directly comparable to this study. Moreover, in contrast
to our study, many of the mentioned studies cover one or two test sites, or one country.
Regarding accuracy, it is also important to note that surface water features smaller than the
20 m or 10 m pixel size would not be detected, and this could play a minor role in accuracy
assessment. Recent comprehensive reviews of the results and accuracies of other studies
are available [57,58].

In this study, we selected the NDWI, MNDWI, and AWEIsh for our automated training
data framework. For the 10 m dataset, we were limited to the NDWI due to the lack of
SWIR bands. For the 20 m dataset, we selected these indexes because they are the most
commonly employed water indexes. However, we note that other robust water indexes
have been developed in recent years that could likely be included or substituted such as the
New Water Index (NWI), Tasseled Cap Wetness Index (TCWI), Land Surface Water Index
(LSWI), and several others as described in [59]. More recently, the Sentinel-2 water index
also appears to produce higher accuracy than the NDWI due to the use of the red-edge and
SWIR bands [25]. Similarly, the Weighted Normalized Difference Water Index (WNDWI)
also produced high accuracy in difficult-to-map areas, including terrain shadow and urban
environments [24].

Previous studies have successfully delineated surface water in glacial and river basin
regions using automatically selected thresholds for the spectral indexes based on the Otsu
histogram method [60–63]. However, this method is challenging to apply to surface water
located near or within built-up, urban environments due to confusion between the two
features [29]. Therefore, in our study we determined the optimal thresholds for the spectral
indexes by iterating a range of spectral index and SWIR/NIR band thresholds for 12 study
sites, and evaluating against the ground-truth points.

The 10 m and 20 m frameworks proposed in this study are easy to implement and
require minimal computational capabilities and no additional datasets other than the
Sentinel-2 imagery in order to automatically generate the training data and create the sur-
face water maps (a DEM is optional for post-processing and recommended in mountainous
terrain). Therefore, we suggest that these frameworks would be ideal for transition into
decision support tools for end-users to quickly generate surface water maps for a given
study area or date, without the need to obtain a large global dataset, ancillary datasets, or
manually create training data.

5. Conclusions

This study developed methodologies using Sentinel-2 20 m and 10 m BoA cloud-
masked imagery and a method to automatically generate training data for subsequent
classification of surface water extent using a random forest classifier. The 20 m method
uses an ensemble of three spectral indexes (NDWI, MNDWI, AWEIsh) with optimal index
thresholds calculated from iterating a range of index values. This is combined with an
optimal threshold applied to the SWIR band for removing false positive water pixels.
The 10 m methodology is similar, but only uses NDWI and a NIR band threshold due
to band limitations. The accuracy was computed using equalized random points with
additional, high error-prone ground-truth points for robust comparison of the thresholds.
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Ultimately, after evaluating our comprehensive international ground-truth dataset and
iterating through the possible index values, we found the optimal spectral index thresholds
of −0.01 (10 m NDWI only) and −0.03 (20 m ensemble of indexes) combined with NIR or
SWIR thresholds of 800. A digital elevation model was used to post-process the output
over one mountainous study site (T11UQQ) and resulted in an optimal slope threshold
of 17 degrees and improved the overall accuracy of that granule/scene by about 21%. We
found that the 20 m ensemble method with random forest classifier produced about 4.8%
higher overall accuracy than the 20 m ensemble-only method. The overall accuracy for the
20 m ensemble method with automatic training data and a random forest classifier was
94.3% (±1.3%) as compared with 93.4% (±1.5%) for the 10 m method and random forest
classifier. The two automated methodologies (10 m and 20 m) were applied across the
12 study sites and resulted in similar total mapped areas of surface water, with an average
percent difference of 4.3%. Both methods were effective and accurate, but analysis of the
granule-level results suggested that the 10 m framework struggled on highly turbid water
bodies (e.g., granule T20LLR), and it had more building and building shadow commission
errors (e.g., granule T31UFU). We compared our results with the Sentinel-2 20 m L2A SCL
water mask. The SCL water mask had 84.2% accuracy, which was 10.1% lower than our
automated method with random forest, and about 5% lower than the ensemble spectral
index method, suggesting users should avoid using the water mask that is provided with
all Sentinel-2 L2A imagery. Our comparison of the support vector machine, random forest,
and gradient boosted trees in conjunction with the training data frameworks, indicated
that classifier type did not impact the overall accuracy by more than 1% (with one granule
exception) and is likely less important than having a robust training dataset.

Ultimately, this automated training data and surface water map generation method
presented here is ideal for development into a decision support tool for end-users who
require surface water maps with quick turnaround, using low data intensity, minimal
manual input, and robust performance over a wide variety of international landscapes.

Author Contributions: Conceptualization, K.L.; Methodology and Formal Analysis, K.L.; Validation,
K.L., M.C.M., S.J.B., A.W.H.G. and S.L.L.; Writing–original draft preparation, K.L.; Writing–review
and editing, K.L., M.C.M., S.J.B., A.W.H.G. and S.P.G.; Visualization, K.L.; Supervision, K.L., S.J.B.
and S.P.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the U.S. Army Corps of Engineers, Engineer Research and
Development Center (ERDC), Geospatial Research business area. Permission to publish was granted
by the ERDC Public Affairs Office. Any opinions expressed in this paper are those of the authors,
and are not to be construed as official positions of the funding agency.

Data Availability Statement: The study used free, publicly accessible data including Sentinel-2 L2A
Bottom of Atmosphere reflectance imagery acquired from the European Space Agency’s Open Access
Hub, and elevation data acquired from the USGS EarthExplorer website.

Acknowledgments: The authors thank Nicole Wayant and Jean Nelson for funding procurement
and project management, and Elena Sava for scientific discussion related to the topic. The authors
thank the four anonymous reviewers for their comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and

sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ.
2020, 243, 111792. [CrossRef]

2. Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First
results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2016, 9, 113–133. [CrossRef]

3. Cai, X.; Feng, L.; Hou, X.; Chen, X. Remote sensing of the water storage dynamics of large lakes and reservoirs in the Yangtze
River Basin from 2000 to 2014. Sci. Rep. 2016, 6, 36405. [CrossRef] [PubMed]

http://doi.org/10.1016/j.rse.2020.111792
http://doi.org/10.1080/17538947.2015.1026420
http://doi.org/10.1038/srep36405
http://www.ncbi.nlm.nih.gov/pubmed/27812023


Remote Sens. 2021, 13, 4531 21 of 23

4. Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; Hambright, K.D. Continued decrease of open
surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [CrossRef]

5. Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes.
Nature 2016, 540, 418–422. [CrossRef]

6. Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau’s
lakes to climate changes: Trend, pattern, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [CrossRef]

7. Micklin, P. The future Aral Sea: Hope and despair. Environ. Earth Sci. 2016, 75, 844. [CrossRef]
8. Zafarnejad, F. The contribution of dams to Iran’s desertification. Int. J. Environ. Stud. 2009, 66, 327–341. [CrossRef]
9. Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier

melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [CrossRef]
10. Zhu, J.; Song, C.; Ke, L.; Liu, K.; Chen, T. Remote Sensing Investigation of the Offset Effect between Reservoir Impoundment and

Glacier Meltwater Supply in Tibetan Highland Catchment. Water 2021, 13, 1307. [CrossRef]
11. Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global raster water mask at 250 m resolution.

Int. J. Digit. Earth 2009, 2, 291–308. [CrossRef]
12. Khandelwal, A.; Karpatne, A.; Marlier, M.E.; Kim, J.; Lettenmaier, D.P.; Kumar, V. An approach for global monitoring of surface

water extent variations in reservoirs using MODIS data. Remote Sens. Environ. 2017, 202, 113–128. [CrossRef]
13. Rao, P.; Jiang, W.; Hou, Y.; Chen, Z.; Jia, K. Dynamic change analysis of surface water in the Yangtze River Basin based on MODIS

products. Remote Sens. 2018, 10, 1025. [CrossRef]
14. Ling, F.; Li, X.; Foody, G.M.; Boyd, D.; Ge, Y.; Li, X.; Du, Y. Monitoring surface water area variations of reservoirs using daily

MODIS images by exploring sub-pixel information. ISPRS J. Photogramm. Remote Sens. 2020, 168, 141–152. [CrossRef]
15. Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of machine learning algorithms for surface water extraction in a Landsat 8 scene

of Nepal. Sensors 2019, 19, 2769. [CrossRef]
16. Tulbure, M.G.; Broich, M. Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011.

ISPRS J. Photogramm. Remote Sens. 2013, 79, 44–52. [CrossRef]
17. Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water feature extraction and change detection using multitemporal Landsat imagery.

Remote Sens. 2014, 6, 4173–4189. [CrossRef]
18. Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-term surface water dynamics analysis based on Landsat imagery and the Google

Earth Engine platform: A case study in the middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [CrossRef]
19. Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in water surface area during 1989–2017 in

the Huai River Basin using Landsat data and Google earth engine. Remote Sens. 2019, 11, 1824. [CrossRef]
20. Wang, R.; Xia, H.; Qin, Y.; Niu, W.; Pan, L.; Li, R.; Zhao, X.; Bian, X.; Fu, P. Dynamic Monitoring of Surface Water Area during

1989–2019 in the Hetao Plain Using Landsat Data in Google Earth Engine. Water 2020, 12, 3010. [CrossRef]
21. Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water

observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016,
174, 341–352. [CrossRef]

22. Sui, Y.; Fu, D.; Wang, X.; Su, F. Surface water dynamics in the North America Arctic based on 2000–2016 Landsat data. Water 2018,
10, 824. [CrossRef]

23. Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping
using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [CrossRef]

24. Guo, Q.; Pu, R.; Li, J.; Cheng, J. A weighted normalized difference water index for water extraction using Landsat imagery. Int. J.
Remote Sens. 2017, 38, 5430–5445. [CrossRef]

25. Jiang, W.; Ni, Y.; Pang, Z.; Li, X.; Ju, H.; He, G.; Lv, J.; Yang, K.; Fu, J.; Qin, X. An Effective Water Body Extraction Method with
New Water Index for Sentinel-2 Imagery. Water 2021, 13, 1647. [CrossRef]

26. Isikdogan, F.; Bovik, A.C.; Passalacqua, P. Surface water mapping by deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2017, 10, 4909–4918. [CrossRef]

27. Jiang, W.; He, G.; Long, T.; Ni, Y.; Liu, H.; Peng, Y.; Lv, K.; Wang, G. Multilayer perceptron neural network for surface water
extraction in Landsat 8 OLI satellite images. Remote Sens. 2018, 10, 755. [CrossRef]

28. Chen, Y.; Fan, R.; Yang, X.; Wang, J.; Latif, A. Extraction of urban water bodies from high-resolution remote-sensing imagery
using deep learning. Water 2018, 10, 585. [CrossRef]

29. Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m
resolution via NDWI-based image sharpening. Remote Sens. 2017, 9, 596. [CrossRef]

30. Goffi, A.; Stroppiana, D.; Brivio, P.A.; Bordogna, G.; Boschetti, M. Towards an automated approach to map flooded areas from
Sentinel-2 MSI data and soft integration of water spectral features. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101951. [CrossRef]

31. Li, J.; Peng, B.; Wei, Y.; Ye, H. Accurate extraction of surface water in complex environment based on Google Earth Engine and
Sentinel-2. PLoS ONE 2021, 16, e0253209. [CrossRef] [PubMed]

32. Bai, Y.; Wu, W.; Yang, Z.; Yu, J.; Zhao, B.; Liu, X.; Yang, H.; Mas, E.; Koshimura, S. Enhancement of Detecting Permanent
Water and Temporary Water in Flood Disasters by Fusing Sentinel-1 and Sentinel-2 Imagery Using Deep Learning Algorithms:
Demonstration of Sen1Floods11 Benchmark Datasets. Remote Sens. 2021, 13, 2220. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2017.03.259
http://doi.org/10.1038/nature20584
http://doi.org/10.1016/j.earscirev.2020.103269
http://doi.org/10.1007/s12665-016-5614-5
http://doi.org/10.1080/00207230902798648
http://doi.org/10.1038/nclimate2237
http://doi.org/10.3390/w13091307
http://doi.org/10.1080/17538940902951401
http://doi.org/10.1016/j.rse.2017.05.039
http://doi.org/10.3390/rs10071025
http://doi.org/10.1016/j.isprsjprs.2020.08.008
http://doi.org/10.3390/s19122769
http://doi.org/10.1016/j.isprsjprs.2013.01.010
http://doi.org/10.3390/rs6054173
http://doi.org/10.3390/rs10101635
http://doi.org/10.3390/rs11151824
http://doi.org/10.3390/w12113010
http://doi.org/10.1016/j.rse.2015.11.003
http://doi.org/10.3390/w10070824
http://doi.org/10.1016/j.rse.2013.08.029
http://doi.org/10.1080/01431161.2017.1341667
http://doi.org/10.3390/w13121647
http://doi.org/10.1109/JSTARS.2017.2735443
http://doi.org/10.3390/rs10050755
http://doi.org/10.3390/w10050585
http://doi.org/10.3390/rs9060596
http://doi.org/10.1016/j.jag.2019.101951
http://doi.org/10.1371/journal.pone.0253209
http://www.ncbi.nlm.nih.gov/pubmed/34143822
http://doi.org/10.3390/rs13112220


Remote Sens. 2021, 13, 4531 22 of 23

33. Markert, K.N.; Chishtie, F.; Anderson, E.R.; Saah, D.; Griffin, R.E. On the merging of optical and SAR satellite imagery for surface
water mapping applications. Results Phys. 2018, 9, 275–277. [CrossRef]

34. Ahmad, S.K.; Hossain, F.; Eldardiry, H.; Pavelsky, T.M. A fusion approach for water area classification using visible, near infrared
and synthetic aperture radar for South Asian conditions. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2471–2480. [CrossRef]

35. Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.P. Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and
temporary surface water mapping. Int. J. Remote Sens. 2019, 40, 9026–9049. [CrossRef]

36. DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using
Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [CrossRef]

37. Saghafi, M.; Ahmadi, A.; Bigdeli, B. Sentinel-1 and Sentinel-2 data fusion system for surface water extraction. J. Appl. Remote Sens.
2021, 15, 014521. [CrossRef]

38. Zhang, Z.; Zhang, X.; Jiang, X.; Xin, Q.; Ao, Z.; Zuo, Q.; Chen, L. Automated surface water extraction combining Sentinel-2
imagery and OpenStreetMap using presence and background learning (PBL) algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2019, 12, 3784–3798. [CrossRef]

39. Cordeiro, M.C.; Martinez, J.M.; Peña-Luque, S. Automatic water detection from multidimensional hierarchical clustering for
Sentinel-2 images and a comparison with Level 2A processors. Remote Sens. Environ. 2021, 253, 112209. [CrossRef]

40. Schwatke, C.; Scherer, D.; Dettmering, D. Automated extraction of consistent time-variable water surfaces of lakes and reservoirs
based on landsat and sentinel-2. Remote Sens. 2019, 11, 1010. [CrossRef]

41. Kordelas, G.A.; Manakos, I.; Aragonés, D.; Díaz-Delgado, R.; Bustamante, J. Fast and automatic data-driven thresholding for
inundation mapping with Sentinel-2 data. Remote Sens. 2018, 10, 910. [CrossRef]

42. Gascon, F.; Cadau, E.; Colin, O.; Hoersch, B.; Isola, C.; Fernández, B.L.; Martimort, P. September Copernicus Sentinel-2 mission:
Products, algorithms and Cal/Val. In Earth Observing Systems XIX; International Society for Optics and Photonics: Washington,
DC, USA, 2014; Volume 9218, p. 92181E.

43. Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V. Calibration and validation plan for the L2A processor and products of the
Sentinel-2 mission. In Proceedings of the International Symposium on Remote Sensing of Environment (ISRSE), Berlin, Germany,
11 May 2015; Volume 40, pp. 1249–1255.

44. Jarihani, A.A.; Callow, J.N.; McVicar, T.R.; Van Niel, T.G.; Larsen, J.R. Satellite-derived Digital Elevation Model (DEM) selection,
preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. J. Hydrol. 2015, 524,
489–506. [CrossRef]

45. Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]
46. Dare, P.M. Shadow analysis in high-resolution satellite imagery of urban areas. Photogramm. Eng. Remote Sens. 2005, 71, 169–177.

[CrossRef]
47. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.

Remote Sens. 1996, 17, 1425–1432. [CrossRef]
48. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.

Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]
49. Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral

mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [CrossRef]
50. Xie, H.; Luo, X.; Xu, X.; Pan, H.; Tong, X. Automated subpixel surface water mapping from heterogeneous urban environments

using Landsat 8 OLI imagery. Remote Sens. 2016, 8, 584. [CrossRef]
51. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
52. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA,

2019.
53. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and

assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]
54. Su, J.; Zhang, H. A fast decision tree learning algorithm. In Proceedings of the 21st national conference on Artificial intelligence,

Boston, MA, USA, 16–20 July 2006; Volume 6, pp. 500–505.
55. Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [CrossRef]
56. DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Huang, W.; Creed, I.F.; Carroll, M.L. Automated quantification of surface water

inundation in wetlands using optical satellite imagery. Remote Sens. 2017, 9, 807. [CrossRef]
57. Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A

review. Rev. Geophys. 2018, 56, 333–360. [CrossRef]
58. Bijeesh, T.V.; Narasimhamurthy, K.N. Surface water detection and delineation using remote sensing images: A review of methods

and algorithms. Sustain. Water Resour. Manag. 2020, 6, 68. [CrossRef]
59. Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping algorithms: A comparison

of water-related spectral indices and sensors. Water 2017, 9, 256. [CrossRef]
60. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
61. Du, Z.; Bin, L.; Ling, F.; Li, W.; Tian, W.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. Estimating surface water area changes using

time-series Landsat data in the Qingjiang River Basin, China. J. Appl. Remote Sens. 2012, 6, 063609. [CrossRef]

http://doi.org/10.1016/j.rinp.2018.02.054
http://doi.org/10.1109/TGRS.2019.2950705
http://doi.org/10.1080/01431161.2019.1624869
http://doi.org/10.1016/j.rse.2020.111664
http://doi.org/10.1117/1.JRS.15.014521
http://doi.org/10.1109/JSTARS.2019.2936406
http://doi.org/10.1016/j.rse.2020.112209
http://doi.org/10.3390/rs11091010
http://doi.org/10.3390/rs10060910
http://doi.org/10.1016/j.jhydrol.2015.02.049
http://doi.org/10.21105/joss.03021
http://doi.org/10.14358/PERS.71.2.169
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1080/01431160600589179
http://doi.org/10.1016/j.rse.2006.09.005
http://doi.org/10.3390/rs8070584
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.rse.2014.02.015
http://doi.org/10.1023/A:1018628609742
http://doi.org/10.3390/rs9080807
http://doi.org/10.1029/2018RG000598
http://doi.org/10.1007/s40899-020-00425-4
http://doi.org/10.3390/w9040256
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1117/1.JRS.6.063609


Remote Sens. 2021, 13, 4531 23 of 23

62. Li, J.; Sheng, Y. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: A
case study in the Himalayas. Int. J. Remote Sens. 2012, 33, 5194–5213. [CrossRef]

63. Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; Van de Giesen, N. A 30 m resolution surface water mask including
estimation of positional and thematic differences using landsat 8, srtm and openstreetmap: A case study in the Murray-Darling
Basin, Australia. Remote Sens. 2016, 8, 386. [CrossRef]

http://doi.org/10.1080/01431161.2012.657370
http://doi.org/10.3390/rs8050386

	Introduction 
	Datasets and Methods 
	Objective 
	Sentinel-2 Imagery (10 m and 20 m) 
	SRTM Digital Elevation Model 
	Software and Programs 
	Study Sites 
	20 m Framework: Automated Training Data Generation 
	Creation of Ground-Truth Points to Calculate Optimal Thresholds 
	Determination of Optimal Thresholds for Spectral Indexes and Bands 
	Sentinel-2 10 m Method for Automated Training Data Generation 
	Optional Post-Processing with SRTM DEM 
	Accuracy Asssessment 
	Comparison of Classifiers 

	Results 
	Optimal Thresholds 
	Removal of False Positive Water Pixels with SRTM DEM 
	Sentinel-2 10 m and 20 m Surface Water Maps 
	Accuracy Assessment and Analysis of Errors 
	Comparison of Classifiers 

	Discussion 
	Conclusions 
	References

