
remote sensing  

Article

Seamless Vehicle Positioning by Lidar-GNSS Integration:
Standalone and Multi-Epoch Scenarios

Junjie Zhang 1,*,† , Kourosh Khoshelham 1,† and Amir Khodabandeh 1,†

����������
�������

Citation: Zhang, J.; Khoshelham, K.;

Khodabandeh, A. Seamless Vehicle

Positioning by Lidar-GNSS

Integration: Standalone and

Multi-Epoch Scenarios. Remote Sens.

2021, 13, 4525. https://doi.org/

10.3390/rs13224525

Academic Editor: Pietro Tizzani

Received: 8 October 2021

Accepted: 8 November 2021

Published: 10 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of
Melbourne, Parkville, VIC 3010, Australia; k.khoshelham@unimelb.edu.au (K.K.);
akhodabandeh@unimelb.edu.au (A.K.)
* Correspondence: junjiez@student.unimelb.edu.au
† Current address: Level 6, Building 290, The University of Melbourne, Parkville, VIC 3010, Australia.

Abstract: Accurate and seamless vehicle positioning is fundamental for autonomous driving tasks in
urban environments, requiring the provision of high-end measuring devices. Light Detection and
Ranging (lidar) sensors, together with Global Navigation Satellite Systems (GNSS) receivers, are
therefore commonly found onboard modern vehicles. In this paper, we propose an integration of
lidar and GNSS code measurements at the observation level via a mixed measurement model. An
Extended Kalman-Filter (EKF) is implemented to capture the dynamic of the vehicle movement,
and thus, to incorporate the vehicle velocity parameters into the measurement model. The lidar
positioning component is realized using point cloud registration through a deep neural network,
which is aided by a high definition (HD) map comprising accurately georeferenced scans of the road
environments. Experiments conducted in a densely built-up environment show that, by exploiting
the abundant measurements of GNSS and high accuracy of lidar, the proposed vehicle positioning
approach can maintain centimeter-to meter-level accuracy for the entirety of the driving duration in
urban canyons.

Keywords: autonomous driving; Extended Kalman-Filter; GNSS; lidar; sensor fusion; vehicle positioning

1. Introduction

Accurate and seamless positioning in urban environments is fundamental for au-
tonomous vehicle and driving systems, where minimum human intervention is required
to perform driving tasks [1,2]. The term ‘accurate’ indicates that the positioning solution
should agree with the vehicle’s true position up to a meter to a few centimeter-levels,
while the term ‘seamless’ indicates that delivering such an accurate solution should be
maintained during the period of positioning. The provision of positioning solutions, with
such stringent requirements, demands the utilization of multiple measuring devices. This
is because each device possesses its own distinctive characteristics, thus imposing limita-
tions which need to be overcome through the integration of the device with other devices
offering ‘complementary’ characteristics. For instance, while Global Navigation Satellite
System (GNSS) receivers are capable of positioning the vehicle with respect to a global
reference coordinate frame, they are vulnerable to signal blockages, the Earth’s atmosphere,
and errors caused by multipath effects in urban canyons [3,4]. On the other hand, Light
Detection and Ranging (lidar) sensors are not subject to signal blockages and multipath,
but conventional lidar approaches based on odometry or Simultaneous Localization and
Mapping (SLAM) offer positioning solutions relative to a local coordinate frame [5]. The
present study aims to explore the performance of lidar, in standalone and in combination
with GNSS, for vehicle positioning in deep urban environments. Although we confine our
study here to lidar-GNSS integration, it should be remarked that an autonomous vehicle is
also equipped with further positioning devices such as Inertial Measurement Unit (IMU)
and vision-based (camera) sensors. They allow one to time-predict the vehicle’s position
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through its previously determined solution and the dynamic of the vehicle’s movement.
Such methods do, however, suffer from accumulated errors or drifts over time [6].

As a crucial positioning method, GNSS has recently benefited from the large number of
satellites provided by multiple constellations such as the Global Positioning System (GPS),
GLONASS, Beidou and Galileo [7,8]. When augmented by a ground-based positioning
infrastructure (e.g., a network of reference stations), a single GNSS receiver can deliver
carrier-phase-based relative positioning solutions at the centimeter-level [9]. Using a
network of eight reference stations, Humphreys et al. [10] have in fact demonstrated the
success of such high-precision positioning performance in deep urban areas. However,
carrier-phase-based relative positioning requires the provision of a dense reference network
which cannot be universally guaranteed for most cities. One is therefore often left with
the far less precise GNSS pseudorange (code) measurements. The code measurements
form the basis of GNSS Standard Point Positioning (SPP), since they can deliver standalone
positioning solutions without the need for a nearby reference station. This advantage
comes at the expense of several modeling errors such as code multipath effect in urban
canyons, degrading the accuracy of these measurements exponentially more than that of
their carrier-phase counterparts [11].

Lidar, on the other hand, is gaining increasing popularity as a perception sensor
which, in contrast to vision-based devices, is not severely affected by weather or lighting
conditions [12]. Lidar is the primary technology for the generation of highly detailed 3D
maps of road environments, often referred to as high definition (HD) maps, which in turn
can be used for positioning the lidar sensors onboard vehicles [13]. The first HD map, with
detailed and georeferenced road information, was developed and tested by Mercedes-Benz
in 2013 [13]. HD maps can take various forms. For instance, curb maps [14], extended
line maps [15] and guard rail reflector maps [16] have been proposed, all of which require
comprehensive site surveys and pre-processing of the data for map creation that can be
time-consuming. In this study, we define the HD map as a set of georeferenced lidar scans.
A drift-free positioning solution can be obtained by registering data captured by the lidar
sensor to the HD map, provided that the latter is accurately georeferenced. In this respect,
several point cloud registration algorithms, ranging from traditional algorithms, such
as the Iterative Closest Point (ICP), to more recent deep learning methods that compute
feature vectors for estimating transformations, have been developed [17,18].

Typical lidar positioning methods, aided by HD maps, utilize inertial measurements
and/or multi-epoch filters, since lidar measurements are not always available owing
to occasional failure of feature matching or point cloud registration. As an alternative,
the integration of lidar with GNSS has been previously presented to realize seamless
positioning. A framework provided by Mueller et al. [19] draws lidar measurements
by matching successive scans, which can be affected by accumulated errors. Based on
the number of visible GNSS satellites, the EKF measurement-update switches between
lidar and GNSS. Li et al. [20] utilized a similar switching strategy, but added detection of
building entrances to change to lidar from GNSS for indoor spaces. Despite the difference
in their underlying strategies, these methods only combine the lidar and GNSS sensors
at the solution level. In other words, when the number of measurements for one sensor is
insufficient for enabling a standalone solution, they cannot be exploited in the integration.
There are also other lidar-GNSS methods in which lidar has been used to improve the
precision of GNSS measurements with the help of HD maps. Wen et al. [4] decreased SPP
errors from 42.15 m to 26.70 m by detecting and correcting non-line-of-sight pseudoranges
based on the building height information and satellite ephemeris. Qian et al. [21] attempted
matching repetitive landmarks with lidar to obtain successful ambiguity resolution and
accomplished centimeter-level accuracy for single-frequency, single-epoch GPS+Beidou
Real-time Kinematic (RTK) positioning. However, these methods do not explicitly make
use of lidar measurements in the positioning process as observations.

In this paper, we propose an integration of lidar and GNSS at the observation level. In
contrast to most existing research that loosely couple the two sensors at the solution level,
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which is sensitive to lacks of measurements from either input, we provide a formulation
that integrate their observables directly via a mixed measurement model in a constant-
velocity EKF to continuously achieve meter- to submeter-level seamless positioning in
deep urban environments. Lidar position estimates are obtained by registering lidar
scans captured by the vehicle (rover) with the georeferenced lidar scans of the HD map
(reference). The lidar measurements are then combined with their GNSS code counterparts
through a multi-epoch EKF formulation. We construct the EKF time-update solely on the
basis of the assumption that the vehicle operates at a constant velocity in East-North-Up
(ENU) directions. Accordingly, the uncertainty of the vehicle’s assumes that the zero-
mean random acceleration vector is modeled by three distinct spectral densities in the
ENU directions. We experimentally evaluate the proposed method in terms of availability
(proportion of epochs with small errors) and accuracy (magnitude of offsets from the
ground truth). In summary, the main contributions of this research are the following:
(1) GNSS code measurements and lidar measurements are combined at the observation
level in a constant-velocity EKF; (2) the availability of low-error positioning solutions is
improved comparing with standalone positioning methods, even when lidar registration
fails frequently.

The remainder of this paper proceeds as follows. In Section 2, we present the definition
of the HD map and the lidar positioning approach. The underlying lidar observation
equations after point cloud registration is discussed. Section 3 is devoted to our proposed
EKF formulation. It is shown how the lidar and GNSS code observation equations are
integrated at the observation level, delivering single- and multi-epoch positioning solutions.
In Section 4, we evaluate the experimental setup and the performance of our integration
strategy. Finally, we discuss the results and findings in Section 5 that are followed by
concluding remarks in Section 6.

2. Lidar Positioning by Point Cloud Registration

Positioning a vehicle with lidar is performed through registering the rover (online)
scan to a selected reference (offline) scan from a pre-defined HD map. A deep learning
method is used to identify corresponding keypoints from both point clouds to serve as
measurements in the positioning approaches. In the following, several coordinate frames
are used for different types of measurements. The geocentric WGS84 frame is used for
GNSS measurements and the positioning solutions, referred to as the e-frame. The lidar
measurements are collected in the so-called l-frame with the laser scanner at its center.
Lastly, the body frame b-frame has the center of the vehicle at its origin and is used to align
local measurements.

2.1. HD Map Definition

Point cloud registration is the process of finding a rigid transformation to align one
point cloud to another [18]. Assuming that an HD map of the road environment exists,
lidar scans captured by the vehicle can be registered to it to compute the position of the
vehicle. While various representations for HD maps have been proposed [13], in this paper
we define the HD map as a set of accurately georeferenced lidar point clouds of the road
environment captured from a previous time. Meanwhile, a distance spacer is specified
between every two consecutive reference scans in the HD map in order to reduce the
storage requirement. Each reference scan is in the original l-frame and is accompanied
by a transformation matrix to transform the point cloud from l-frame to e-frame. Hence,
rover scans can be registered with overlapping reference scans to resolve the position of
the vehicle.

2.2. Deep Learning Model Training and Inference

The proposed method is based on identifying and matching keypoints across the
rover and reference scans. Traditional approaches for solving the point cloud registration
problem have questionable robustness to complex environments. For example, the well-
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known ICP method requires initial values sufficiently close to the desired parameters for
successful registration and can be time-consuming, whereas data-driven deep learning
methods do not suffer from such drawbacks by learning and computing point-based
feature vectors [18]. For keypoint extraction we use MS-SVConv, a multi-scale deep neural
network that outputs feature vectors from point clouds for 3D registration. Experimental
analysis has shown that MS-SVConv can obtain state-of-the-art registration accuracy while
retaining real-time speed as compared to other deep learning methods [22]. Keypoints
in two overlapping point clouds are matched based on their features computed by the
network, which are then used for point cloud registration using RANSAC [23]. The model
needs to be trained with an extensive set of scans with ground truth alignment first. Since
ground points that exist in mobile lidar scans provide weaker constraints for lateral position
estimation and do not help with accurate registration, they are segmented and removed
by extracting ground lines based on their slopes before keypoint matching between the
rover and reference scans using the method proposed by Himmelsbach et al. [24]. The
MS-SVConv network exhibits a transferability performance that the trained model can be
applied to data captured in different environments or different cities as we will show later
in Section 4.2.

In the inference stage, a reference scan needs to be identified for the rover scan
collected by the lidar sensor, which is ideally the nearest match from the HD map. Firstly,
the approximate position of the vehicle, or the origin of the rover scan is obtained as the
less precise code solution from the low-cost GNSS receiver. We compute and rank the
Euclidean distances between this and the ground truth coordinates of all the reference scans.
A threshold nin f is set to select a few nearest reference scans for inference in ascending
order of the distances in order to reduce computation time. RANSAC [23] is used to find
corresponding keypoints based on the feature vectors by estimating the transformation [22].
Figure 1 presents an example of keypoints matched through RANSAC between a rover
scan and a selected reference scan. If a successful registration cannot be achieved, it is
assumed that there is no overlap between the pair, and the next nearest reference scan is
used to repeat the procedure. When nin f is reached without a match, lidar positioning will
be considered unsuccessful and will not contribute to the integrated solutions, which will
be discussed later. Due to the low accuracy of the approximate positions of the vehicle, the
identified reference scans might not be closest to the rover scan, which can cause such a
failure. It is worth mentioning that this process is entirely conducted in the original l-frame.

2.3. Estimating Vehicle Position

Provided that corresponding keypoints between the rover scan and the identified
reference scan are successfully obtained through RANSAC, the position of the vehicle
in e-frame can be computed as the translational component of the transformation from
the rover scan (in b-frame) to the reference scan, since the origins of the point clouds are
equivalent to the vehicle position. For a corresponding pair of keypoints Pj in the rover
scan, the following transformation can be constructed:xj,e

yj,e
zj,e

 =

r11 r12 r13
r21 r22 r23
r31 r32 r33


xj,b − exj

yj,b − eyj

zj,b − ezj

+

x
y
z

, (1)

where the 3× 1 vector [xj,e, yj,e, zj,e]
> denotes the coordinates of Pj in e-frame from the

reference scan, while the measured vector [xj,b, yj,b, zj,b]
> denotes the coordinates of Pj in

b-frame from the rover scan. The corresponding measurement residual vector is denoted
by [exj , eyj , ezj ]

>. The rotational parameters are given by rpq (p, q = 1, 2, 3), with [x, y, z]>

being the vector of translational parameters, thus the vehicle position in e-frame. Here and
in the following, the superscript (·)> indicates the ‘transpose’ of a vector/matrix. Vectors
and matrices are distinguished from scalars by bold-italic lowercase and uppercase letters,
respectively. Thus x is a scalar, x is a vector, and X is a matrix. The vehicle position can
be resolved by, for instance, a Weighted Least-Squares (WLS) method with at least four
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matched keypoints. The weights of measurements, denoted by Wj, can be determined
using the mean-squared residual distance between the corresponding keypoints matched
through RANSAC as follows

Wj =
1
σ2 I3, j = 1, 2, . . . , n, (2)

with the mean-squared residual distance σ2 = (∑n
k=1 v2

k)/n, where vk is the residual
distance between the transformed Pk and its matched keypoint from the reference scan. I3
is the identity matrix of order 3. The total number of corresponded keypoints is denoted
by n.
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Figure 1. Example of matched keypoints.

3. EKF Formulation via a Mixed Measurement Model

The lidar positioning solutions can be absent when there is a lack of matched keypoints.
This can happen when the HD map is not up-to-date as it is collected from a previous time
and does not reflect changes in the road environments captured in the rover scans. To
avoid such a lack of solution, we propose to combine lidar measurements with GNSS code
measurements at the observation level. This integrated approach aims to take advantage
of the two complimentary sensors, so that when the numbers of measurements from either
or both sensors are insufficient for standalone positioning, they could still enable the
integration. In this section, we discuss our strategy for combining the lidar and GNSS code
measurements so as to deliver seamless positioning solutions. Both single- and multi-epoch
positioning solutions are considered. The term ‘single-epoch’ refers to the solutions for
which use is made of only one epoch of measurements, whereas the term ‘multi-epoch’
refers to the solutions for which an EKF formulation is employed to incorporate the time-
behavior of the vehicle motion into the model, thus benefiting from the measurements of
previous epochs.

3.1. Lidar and GNSS Observation Equations

To set up our EKF formulation, we first commence with the observation equations
on which the positioning solution is based. With reference to (1), the lidar observation
equations of keypoint Pj take the following vectorial form:

Lidar : xt + [(y>j − e>j )⊗ I3] xr − cj = 0, j = 1, 2, . . . , n, (3)
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in which the unknown vectors xt = [x, y, z]> and xr = [r11, r21, . . . , r33]
> are to be esti-

mated through the measurement vectors yj = [xj,b, yj,b, zj,b]
> and the known coordinates

cj = [xj,e, yj,e, zj,e]
> (j = 1, 2, . . . , n). 0 is a vector of zeros. The symbol ⊗ denotes the matrix

Kronecker product [25]. Next to the above lidar observation equations, the observation
equation of the single-frequency GNSS SPP model reads [26]:

GNSS : ||xt − xs||+ dt− (ps − es) = 0, s = 1, 2, . . . , m, (4)

where ps denotes the GNSS code measurement of satellite s that has already been corrected
for the effect of satellite clock offsets. The ionospheric and tropospheric delays are also
partially removed from the code measurement ps using atmospheric corrections from
Klobuchar and Saastamoinen models, respectively [27]. The code measurement residuals
are denoted by es. The known position vector of satellite s is denoted by xs that is available
in GNSS broadcast orbit files. Next to the vehicle position xt, the unknown receiver
clock offset dt (expressed in meters rather than in seconds) is to be estimated through the
measurements ps (s = 1, 2, . . . , m), where m is the number of visible GNSS satellites. Note
that the coordinates used in (4) are in e-frame. As with the lidar measurement weights
(2), an appropriate choice of weights is required to weight the GNSS code measurements.
These weights, denoted by w̄s, can be given by

w̄s =
sin θs

σ2 , s = 1, 2, . . . , m, (5)

where σ denotes the GNSS User Equivalent Range Error (UERE) which varies between 0.5
and 6 m. Accordingly, the weights are increasing functions of the satellite elevation θs. The
larger the satellite elevation, the more precise the GNSS measurement is assumed, thus the
higher the weight of the measurement becomes.

3.2. Filter Setup

The comparison of the system of lidar observation Equation (3) with its GNSS version
(4) shows that both have the unknown vehicle position vector xt in common. One can
therefore combine these two systems of equations so as to obtain a solution for xt in
an optimal manner. We use the least-squares principle as the optimality criterion [28].
Accordingly, the two systems of Equations (3) and (4) can be expressed in a more compact
form as follows:

f (x, y− e) = 0 linearized
=⇒ w− B>e + A∆x = 0, (6)

where the unknown parameter vector x contains the vehicle position vector xt (i.e., the
lidar translational parameters), the GNSS receiver clock offset dt, and the lidar rotational
parameters xr. Thus, x = [x>t , dt, x>r ]>. The measurement vector y contains the lidar
measurements yj (j = 1, 2, . . . , n) and GNSS code measurements ps (s = 1, 2, . . . , m),
with e being the corresponding residual vector which contains ej (j = 1, 2, . . . , n) and es
(s = 1, 2, . . . , m). The entries of the vector function f (x, y− e) are formed by the observation
Equations (3) and (4). The linearized form, on the right-hand side of (6), follows as the
first-order Taylor expansion of f (x, y− e) about the point (x0, y), where x0 indicates the
approximate version of the parameter vector x, leading to the unknown increment vector
∆x = x − x0. Thus, w = f (x0, y). The known matrices A and B> are the Jacobian
matrices of f (x, y− e) with respect to x and y, respectively. Their explicit structures are
presented in Appendix A. Defining the block diagonal matrix operator as blkdiag(·),
which aligns input matrices along the diagonal of a square matrix, the weight matrix is
constructed as W = blkdiag(W1, . . . , Wn, w̄1, . . . , w̄m) (i.e., W is identical to the inverse of
the measurements’ variance matrix). Hence, an application of the WLS principle to (6)
gives [28]:
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e>We 7→ minimum =⇒
{

∆x̂ = −(A>MA)−1 A>Mw
Qx̂ = (A>MA)−1,

(7)

with M = (B>W−1B)−1. This gives the WLS solution for the unknown parameter vector
x as x̂ = x0 + ∆x̂. The above procedure is iteratively repeated by replacing the solution
x̂ with the approximate vector x̂ 7→ x0 until the solution convergence is declared by, for
example, having the magnitude of the increment vector ∆x̂ smaller than a threshold. Matrix
Qx̂ would represent the error-variance matrix of the solution x̂ if the weight matrix W is
the inverse of the measurements’ variance matrix. The solution x̂ can be regarded as the
‘single-epoch’ solution as it does not use any information about the time-behavior of the
vehicle motion. This solution can be used to initialize the EKF.

3.3. Filter Time-Update

Let us now assume that the acceleration of the vehicle motion can be modeled by a
zero-mean white-noise vector with three distinct spectral densities in ENU-directions. In
other words, the vehicle motion is assumed to obey a ‘constant-velocity’ model on average.
Now let x̂t,k−1 be the solution of the vehicle position at epoch k − 1. According to the
constant-velocity model, the position of the vehicle and its velocity at the forthcoming
epoch k can be predicted (or time-updated) as [29]:[

x̂t,k
ˆ̇xt,k

]
=

[
x̂t,k−1 + δ ˆ̇xt,k−1

ˆ̇xt,k−1

]
, k = 2, 3, . . . (8)

where x̂t,k and ˆ̇xt,k denote the solutions of the vehicle position and velocity vectors at epoch
k, respectively. The measurement sampling rate is given by δ. Given the error-variance
matrix of the previous solution [x̂>t,k−1, ˆ̇x>t,k−1]

>, say Qk−1, the error-variance matrix of the
time-updated solution [x̂>t,k, ˆ̇x>t,k]

> can be computed as [29]:

Qk = Φk,k−1 Qk−1Φ>
k,k−1

+ Sk, (9)

in which the transition matrix Φk,k−1 and matrix Sk are given by:

Φk,k−1 =

[
I3 δI3
0 I3

]
, Sk =

[
δ3

3 RSR> δ2

2 RSR>

δ2

2 RSR> δRSR>.

]
(10)

The rotation matrix R makes the ENU-direction parallel to the e-frame. The diago-
nal matrix S = diag(σ2

Ë, σ2
N̈ , σ2

Ü) is formed by the ENU spectral densities of the vehicle
acceleration vector. The stated spectral densities are σ2

Ë (for East), σ2
N̈ (for North) and σ2

Ü
(for Up). In this study, the spectral densities are specified as σ2

Ë = σ2
N̈ = 0.05 m2/s3 and

σ2
Ü = 0.005 m2/s3.

3.4. Filter Measurement-Update

In the event that no lidar nor GNSS measurements are available, the time-update
solution can serve as a solution for the vehicle position and velocity. In the presence
of measurements, however, the time-update Equation (8) can be augmented with our
earlier system of observation, Equation (6), to deliver the so-called measurement-update
solution [29]. Since this solution benefits from the information of the time-update (8), and
therefore that of the previous epochs, we also refer to this solution as the ‘multi-epoch’
solution. Thus the measurement-update of our EKF formulation can be computed in an
analogous way to that of the WLS solution (7), with a difference, in that the system of
observations (6) is replaced by:



Remote Sens. 2021, 13, 4525 8 of 18

{
f (x, y− e) = 0
fTU(x, yTU − eTU) = 0

linearized
=⇒

{
w− B>e + A∆x = 0

wTU − B>
TU

eTU + ATU ∆x = 0.
(11)

The structure of the vector function fTU(x, yTU − eTU), together with those of yTU , wTU ,
ATU and B>

TU
, is given in Appendix A. Therefore, in order to obtain the measurement-update

solution for x, one should replace y by [y>, y>
TU
]>, A by [A>, A>

TU
]>, B by ‘blkdiag(B, BTU)’,

and w> by [w>, w>
TU
]>. Likewise, the weight matrix W should be replaced by

‘blkdiag(W , Q−1
k )’. In the next section, the numerical performance of our proposed EKF

formulation is assessed under several scenarios.

4. Experimental Setup and Results

In Sections 2 and 3, we provided the lidar positioning model and the EKF formulation.
In this section we present experiments of three positioning methods derived accordingly,
including two single-epoch methods: (1) GNSS SPP uses single-frequency GNSS code
measurements from the Beidou constellation; and (2) Lidar-only uses only lidar registration
as described in Section 2. They are then combined at the observation level and extended to a
multi-epoch positioning method by enabling the constant-velocity time-update in EKF as
explained in Section 3; namely (3) Integrated.

In order to evaluate the performance of the proposed positioning approaches, we
make the following definitions:

• Lidar keypoint matching success rate is defined as the proportion of the epochs with suc-
cessfully identified corresponding keypoints which contribute to lidar measurements;

• Availability is defined as the proportion of the epochs with positioning solutions under
a specified error threshold;

• Accuracy is measured by the Root Mean Squared Error (RMSE) of the offsets of the
positioning solutions from the ground truth.

4.1. Experimental Setup

The proposed methods are evaluated on a Hong Kong drive from the UrbanNav [30]
dataset as shown in Figure 2, which is captured in a densely built-up urban environ-
ment, where GNSS is deprived. The vehicle used for data collection is equipped with the
following sensors:

• Velodyne HDL-32E lidar sensor;
• Xsens Mti 10 IMU;
• U-blox M8T GNSS receiver;
• RGB Camera;
• SPAN-CPT GNSS-RTK/INS integrated system.

The SPAN-CPT system provides the ground truth data including accurate 3D coordi-
nates of the vehicle and relative roll, pitch and yaw angles, which operates at 1 Hz, as well
as the low-cost U-blox M8T receiver that collects Beidou single-frequency observations.
The lidar sensor operates at 10 Hz, and the collected point clouds are synchronized with
the GNSS sensors for the experiments. Each captured point cloud contains approximately
65,000 3D points and occupies 5 MB of storage [30]. The remaining two sensors, namely
the IMU and camera, are not used in the experiments since they are not required by the
proposed method.
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Epochs with ground truth and reference scan

Epochs with ground truth and rover scan

Legend

HK20200314 Route, UrbanNav

    EPSG: 4326
    Basemap source: OpenStreetMap

Figure 2. HK20200314 route in UrbanNav [30].

In order to obtain the georeferencing transformation matrix for a reference scan,
each point in the scan is transformed from l-frame to b-frame, then to e-frame. For the ith
(i = 1, 2, . . . , n) point cloud in a sequence, the first transformation matrix T i,b

i,l is pre-
calibrated and provided in the dataset. All the point clouds in the sequence are first
transformed to the b-frame of the first one using the roll, pitch, yaw angles and the differ-
ences between their ground truth coordinates, producing T1,b

i,b (i = 2, 3, . . . , n). As a result,
with the coordinates of the origin for each scan in both e-frame and b-frame of the first
point cloud, Te

1,b for the whole sequence can be estimated in a similar way as depicted in
Section 2.3. As a short form, the three transformations can be combined as:

Te
i,l = Te

1,b · T
1,b
i,b · T

i,b
i,l . (12)

In total, ground truth data are recorded for 300 epochs. By specifying at least 10 m
between every two consecutive reference scans, 47 point clouds are used as reference scans
(HD map), the remaining 253 point clouds are used as rover scans for positioning. Note
that the vehicle makes two laps along the trajectory shown in Figure 2.

4.2. Positioning Results under Ideal Lidar Conditions

In order to test the transferability of MS-SVConv [22], the model pre-trained with ETH
dataset [31] is used. In the inference stage, nin f is chosen as 5 to identify the reference scan
for each rover scan. While estimating the transformation to align the two point clouds
with RANSAC, 3000 random keypoints and their feature vectors are used after ground
removal. As a result, all rover scans are successfully matched with the HD map and the
mean RMSE of residual distances of the corresponding keypoints matched with RANSAC
is approximately 0.07 m. This shows that reference scans can be found for 100% of the
rover scans under ideal circumstances (i.e., lidar keypoint matching success rate is 100%),
which we consider an acceptable transferability for our experiment. Note that this high
keypoint matching success rate is made possible by the fact that the reference and rover
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scans are from the same dataset, which was collected within minutes, meaning that the
temporal changes of the road environment are minimal.

To demonstrate the availability and accuracy of the three positioning methods, we
compute the position estimation errors with respect to the ground truth. Table 1 presents
the 2D, or horizontal RMSE and 3D RMSE of all tested methods. We first draw attention
to the more accurate Lidar-only and Integrated results, whose 3D RMSE are 1.716 m and
1.445 m respectively for the 253 epochs with successfully matched keypoints, achieving
accuracy within 2 m. This shows that when lidar keypoint matching success rate is 100%
under ideal lidar conditions, positioning with only lidar input can already provide accurate
solutions, and the integration with the less accurate GNSS code measurements offers
little improvement.

Table 1. Two-dimensional (2D), 3D RMSE and minimum, maximum 3D errors of the solutions
from GNSS SPP, Lidar-only and Integrated positioning methods with 100% lidar keypoint matching
success rate.

Lidar Keypoint Matching Success Rate = 100%

2D RMSE [m] 3D RMSE [m] Min. 3D Error [m] Max. 3D Error [m]

GNSS SPP 4.888 23.197 3.770 53.685
Lidar-only 1.671 1.716 0.011 10.444
Integrated 1.423 1.445 0.014 8.831

However, we recognize that the 100% lidar keypoint matching success rate is optimistic
and unrealistic. In reality, with the HD map consisting of reference scans collected from
a previous time, the environmental changes and moving objects such as pedestrians
and vehicles can cause disturbance for point cloud registration and lead to failure of
keypoint matching. Since RANSAC picks random points and their feature vectors to find
correspondence such as static objects, it can handle differences between two point clouds
to a certain extent [32]. Therefore, to emphasize the accuracy improvement brought by
the proposed integration, we have simulated different lidar keypoint matching success
rates between 20% and 90% by disabling lidar measurements for randomly selected epochs
to compare Lidar-only and Integrated. For any epoch that fails keypoint matching, the
positioning solution from the last-available epoch is used. Figure 3 shows the 3D RMSE of
the positioning errors using these two methods. As previously discussed, the accuracy of
Integrated is only 0.271 m better than Lidar-only at 100%. However, as the lidar keypoint
matching success rate decreases, the margin between the two increases dramatically, with
Integrated having consistently higher accuracy than Lidar-only. In the worst case scenario
where only 20% of the epochs have lidar contribution, the 3D RMSE of Lidar-only reaches
20.95 m whereas Integrated can still keep it below 10 m at 4.89 m. In the remainder of
this section, we will set the lidar keypoint matching success rate as 80% to present the
positioning performance of the proposed method in practical urban environments.

4.3. Positioning Results in Realistic Environments

We now evaluate the three positioning methods on practical urban roads by simulating
the lidar keypoint matching success rate as 80%. The RMSE, minimum and maximum
errors of the positioning solutions are presented in Table 2. For the Lidar-only method,
the 2D and 3D RMSE of the positioning solutions are 5.024 m and 5.050 m, respectively.
Figure 4 compares all tested positioning methods in terms of the availabilities of solutions
under different 3D error thresholds. The error thresholds are chosen between 0.5 m, which
has been suggested as the required accuracy for lane-level positioning [2], and 15 m which
is approximately the largest error of the Integrated positioning solutions (see Table 2). It
is shown that for Lidar-only, 76.3% of the solutions have 3D errors smaller than or equal
to 2 m, while the minimum is 0.019 m and the maximum is 22.748 m, as illustrated in
Figure 5 that shows the 3D errors per epoch. Figure 6 presents the horizontal trajectories
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of solutions from all tested methods comparing with the ground truth. It is evident that
Lidar-only solutions correspond with the ground truth well, except for epochs missing lidar
measurements that are left with the last-available solutions.
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Figure 3. RMSE of 3D errors of Lidar-only and Integrated solutions at various simulated lidar keypoint
matching success rates.

Table 2. Two-dimensional (2D), 3D RMSE and minimum, maximum 3D errors of the solutions
from GNSS SPP, Lidar-only and Integrated positioning methods with 80% lidar keypoint matching
success rate.

Lidar Keypoint Matching Success Rate = 80%

2D RMSE [m] 3D RMSE [m] Min. 3D Error [m] Max. 3D Error [m]

GNSS SPP 4.888 23.197 3.770 53.685
Lidar-only 5.024 5.050 0.019 22.748
Integrated 2.168 2.187 0.019 14.359
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Figure 4. Availabilities of solutions under different 3D error thresholds for GNSS SPP, Lidar-only and
Integrated positioning methods.
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Figure 5. 3D offsets from ground truth for GNSS SPP, Lidar-only and Integrated solutions.
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Figure 6. The 2D trajectories of solutions from GNSS SPP, Lidar-only and Integrated positioning
methods [33].

In comparison, by specifying the elevation cutoff angle of 10°, GNSS SPP solutions are
computed. Consequently, the 2D and 3D RMSE from given ground truth are 4.888 m and
23.197 m, respectively, while solutions are obtained for all epochs thanks to the abundant
Beidou satellites (Table 2). However, Figure 4 suggests that the availability of GNSS SPP
solutions is significantly lower than those of Lidar-only at all error thresholds and the
maximum 3D error is 53.685 m (Figure 5). Moreover, Figure 6 shows that the GNSS SPP
positioning results consistently contain the largest errors for the whole trajectory.

We now show the availability and accuracy of the integrated multi-epoch positioning
approach using the same data. By using the constant-velocity time-update in the EKF,
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positioning solutions are obtained for 100% of the tested epochs for the Integrated method.
The 2D and 3D RMSE of its solutions can be found in Table 2. Notably, the accuracy
of Integrated is the highest among all three, with the 3D RMSE being 2.187 m, and the
minimum and maximum 3D errors being 0.019 m and 14.359 m (Figure 5). In terms of
availability, Figure 4 suggests that all epochs are with errors smaller than or equal to
15 m for Integrated, while it outperforms the other two methods at every error threshold.
Lastly, Figure 6 presents that the trajectories of Lidar-only and Integrated results have similar
and the higher agreement with the ground truth, yet Integrated has fewer epochs with
large errors.

Figure 7 illustrates the cumulative distributions of 2D (horizontal) and 3D errors for
all methods. It can be seen that the positioning methods involving lidar measurements,
namely Lidar-only and Integrated, both outperform GNSS SPP, which only takes the less
accurate GNSS code observations as measurements, especially in the vertical component.
Integrated is clearly the most accurate among all three.
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Figure 7. Cumulative distributions of 2D and 3D offsets from ground truth for all methods. (a) Cumulative distributions of
2D offsets from ground truth for all methods. (b) Cumulative distributions of 3D offsets from ground truth for all methods.

5. Discussion
5.1. Significant GNSS Code Errors

It is evident from Figure 4 and Table 2 that the errors of the GNSS SPP method are
considerably larger than the others, especially in the Up component. Apart from the low
precision of the GNSS code measurements and the use of only single-frequency data, an
important reason for this behavior is the significant multipath effect. The tested drive
took place in Hong Kong, which is a city with dense buildings. Wen et al. [4] performed
experiments with a similar setup and concluded that approximately 2 to 7 satellites can
be blocked or reflected to produce non-line-of-sight signals for each epoch. This implies
that solely SPP with code measurements is inappropriate for vehicle positioning in urban
canyons. To this end, our results have shown that the addition of lidar registration can
greatly improve the accuracy.

5.2. Keypoint Matching Errors and Failure

Although the Lidar-only approach achieves a much higher accuracy than GNSS SPP
when lidar measurements are available, it can still be degraded by different error sources.
First of all, since the lidar positioning approach is relative to the reference scans, the perfor-
mance is greatly affected by the quality of the HD map. For example, Figure 8a presents a
scenario in which the reference scan is poorly georeferenced. As the position of the vehicle
is obtained by registering the rover scan to the reference scan, the resolved vehicle position
is meters away from the ground truth. This behavior is frequently observed around road
intersections where the vehicle is turning and the inertial measurements contributing to
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the ground truth used for georeferencing become less reliable. Secondly, Figure 8b shows
that keypoint matching can also be impacted by the surrounding environment. Wrong reg-
istration might occur when the point clouds contain noise such as vegetation and moving
objects, or when there are environmental changes due to the reference scans being collected
from a previous time, which leads to falsely matched keypoints whose feature vectors are
similar by coincidence.

(a) (b)
Figure 8. Examples of lidar error sources. Red: reference scan from the HD map. Yellow: ground truth point cloud of the
rover scan. Blue: Rover scan registered by MS-SVConv. (a) Example of lidar errors produced by anomalies in the HD map.
(b) Example of lidar errors produced by false matching.

5.3. Accuracy and Availability Improvements Brought by the Integration

It can be seen from Figures 5 and 6 that the results of the Integrated method are
nearly identical to those of Lidar-only when lidar measurements exist. This is due to
the high accuracy of the lidar measurements produced from deep-learning point cloud
registration. In other words, the Integrated method is similar to the Lidar-only method if
the latter can function well. In comparison, when lidar positioning fails due to the lack
of matched keypoints, the Lidar-only method would use the positioning solutions from
the last-available epochs, ignoring the movement of the vehicle. Therefore, in the case of
having no lidar measurements, the positioning errors would be considerably larger. This
motivated the utilization of constant-velocity time-update in EKF, which largely increased
the accuracy of the integration.

To highlight the accuracy and availability improvements brought by the EKF, the
magnitudes of the 3D errors over all epochs for the three single-epoch methods and
Integrated are shown in Figure 5. It is apparent that Integrated consistently achieves the
smallest errors among all, whereas the accuracy of GNSS SPP is significantly worse than
the others. Although Lidar-only can obtain similar accuracy as Integrated for most of the
duration, the addition of the EKF is able to decrease the larger errors caused by the absence
of lidar measurements.

5.4. Keypoint Matching Success Rate Simulation and Comparison

Section 4.2 suggests that, under ideal circumstances, Lidar-only and Integrated can both
obtain metre-level accuracy. However, when the lidar keypoint matching success rate
is lower, which is more realistic for large-scale HD map products, the advantage of the
integration becomes more noticeable, as shown in Figure 3. Therefore, although positioning
by lidar registration has a high accuracy, it can be dramatically degraded by possible failure
of keypoint matching, whereas the less accurate GNSS code can be complimentary due
to the abundance of GNSS satellites and the modeling of the vehicle dynamics using the
constant-velocity time-update to consistently retain metre-level accuracy. In contrast, the
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accuracy of lidar positioning quickly deteriorates. In other words, the addition of GNSS
code measurements and EKF to the lidar registration positioning can greatly decrease the
positioning errors when the lidar keypoint matching success rate is low.

5.5. Runtime Efficiency

The implementation of the proposed integrated positioning method is divided into
two stages: keypoint matching stage and positioning stage, with the former employing
the PyTorch [34] implementation of MS-SVConv [22] and the latter computing the mea-
surements and positioning solutions in MATLAB [35]. On a platform consisting of AMD
Ryzen 3800XT CPU (4.4 GHz) and NVIDIA RTX 3070 GPU, the keypoint matching stage
and the positioning stage consume approximately 0.85 s and 0.05 s, respectively, per epoch.
Therefore, the proposed approach is capable of real-time positioning.

6. Conclusions

In this paper, we proposed an integration of lidar and GNSS code measurements at the
observation level in a constant-velocity Extended Kalman-Filter. A deep learning mechanism
named MS-SVConv was used to match rover scans with reference scans from a pre-built
HD map that contains georeferenced point clouds of segments of the road environments.
Lidar measurements were generated from the corresponding keypoints between the two
point clouds, and combined with single-frequency GNSS code measurements via a mixed
measurement model. To capture the dynamics of the vehicle movement, we made use
of a constant velocity model in ENU directions with distinct spectral densities for the
corresponding vehicle acceleration vector.

Experimental results showed that the proposed method can achieve centimeter- to
meter-level accuracy for vehicle positioning in urban canyons for the entire duration, and
can also greatly increase the availability of low-error positioning solutions compared with
standalone methods, as the RMSE, minimum and maximum values of the 3D errors were
2.187 m, 0.019 m and 14.359 m, respectively at an 80% lidar keypoint matching success rate.
The main contributions of this study are summarized as follows:

• Lidar measurements are generated using a deep learning mechanism through point
cloud registration with a pre-built HD map for positioning purposes;

• The systems of lidar and GNSS observation equations can be cast into a mixed mea-
surement model (see (6) and (11)), allowing one to apply an EKF through modeling
the dynamic of the vehicle movement;

• It was demonstrated that the proposed positioning approach (Integrated) can achieve
centimeter- to meter-level 3D accuracy for the entirety of the driving duration in
densely built-up urban environments, where the accuracy of GNSS code measure-
ments is low and standalone lidar positioning may not always be available;

• When the keypoint matching success rate is low, as can be expected for a realistic sce-
nario, the proposed Integrated approach provides the best accuracy while maintaining
100% availability of positioning solutions.

While the proposed method achieves meter- to submeter-level seamless positioning
by exploiting the complimentary properties of GNSS code and lidar measurements, future
research can explore increasing the accuracy by extending the integration using other types
of measurements such as GNSS carrier phase observations and inertial measurements
from IMU.
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Abbreviations
The following abbreviations are used in this manuscript:

EKF Extended Kalman-Filter
GNSS Global Navigation Satellite System
GPS Global Positioning System
HD High definition
ICP Iterative Closest Point
IMU Inertial Measurement Unit
Lidar Light detection and ranging
RANSAC Random Sample Consensus
RMSE Root Mean Squared Error
RTK Real-time Kinematic
SLAM Simultaneous Localization and Mapping
SPP Standard Point Positioning
UERE User Equivalent Range Error
WLS Weighted Least-Squares

Appendix A. Jacobian Matrices of the Mixed Models (6) and (11)

The structures of the Jacobian matrices A and B>, in the mixed model (6), are given by

A =

[
1n×1 ⊗ I3, 03n×1, L

G, 1m×1, 0m×9

]
, B> =

[
In ⊗ X, 03n×m
0m×3n, −Im

]
(A1)

in which the rows of the m× 3 sub-matrix G are the satellite-to-receiver direction (unit)
vectors [ ∂ps

∂x , ∂ps
∂y , ∂ps

∂y ]
> (s = 1, 2, . . . , m). The matrices of zeros and ones are, respectively,

denoted by 0 and 1, where their dimension is specified by a subscript. The 3n× 9 sub-matrix
L and the 3× 3 rotation matrix X read

L =

 y>1 ⊗ I3
...

y>n ⊗ I3

, X =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (A2)

As for the ‘multi-epoch’ version (11), the time-updated solution yTU = [x̂>t,k, ˆ̇x>t,k]
>

plays the role of extra measurements, while the parameter vector x is augmented with
the vehicle velocity vector ẋt, that is, [x>, ẋ>t ]

>. Thus matrix A, in (A1), is extended as
A 7→ [A, 0(3n+m)×3]. Likewise, the corresponding vector function reads

fTU(x, yTU − eTU) = [x>t , ẋ>t ]
> − (yTU − eTU) (A3)
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from which the Jacobian matrices ATU and B>
TU

follow as

ATU =

[
I3, 03×10, 03×3

03×3, 03×10, I3

]
, B>

TU
= −I6 (A4)

Finally, the vector wTU is evaluated as fTU(x0, yTU).

References
1. Rödel, C.; Stadler, S.; Meschtscherjakov, A.; Tscheligi, M. Towards autonomous cars: The effect of autonomy levels on acceptance

and user experience. In Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular
Applications, Seattle, DC, USA, 17–19 September 2014; pp. 1–8.

2. Joubert, N.; Reid, T.G.; Noble, F. Developments in modern GNSS and its impact on autonomous vehicle architectures. In Proceed-
ings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 2029–2036.

3. Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS: Global Navigation Satellite Systems: GPS, Glonass, Galileo, and More;
Springer: New York, NY, USA, 2008.

4. Wen, W.; Zhang, G.; Hsu, L.T. Correcting NLOS by 3D LiDAR and building height to improve GNSS single point positioning.
Navigation 2019, 66, 705–718. [CrossRef]

5. Ghallabi, F.; Nashashibi, F.; El-Haj-Shhade, G.; Mittet, M.A. LIDAR-based lane marking detection for vehicle positioning in an
HD map. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA,
4–7 November 2018; pp. 2209–2214.

6. Ramezani, M.; Khoshelham, K. Vehicle positioning in GNSS-deprived urban areas by stereo visual-inertial odometry. IEEE Trans.
Intell. Veh. 2018, 3, 208–217. [CrossRef]

7. Nadarajah, N.; Khodabandeh, A.; Wang, K.; Choudhury, M.; Teunissen, P.J.G. Multi-GNSS PPP-RTK: From large-to small-scale
networks. Sensors 2018, 18, 1078. [CrossRef] [PubMed]

8. Khodabandeh, A.; Zaminpardaz, S.; Nadarajah, N. A study on multi-GNSS phase-only positioning. Meas. Sci. Technol. 2021,
32, 095005. [CrossRef]

9. Teunissen, P.J.G.; de Jonge, P.J.; Tiberius, C.C.J.M. The least-squares ambiguity decorrelation adjustment: Its performance on
short GPS baselines and short observation spans. J. Geod. 1997, 71, 589–602. [CrossRef]

10. Humphreys, T.E.; Murrian, M.J.; Narula, L. Deep-Urban Unaided Precise Global Navigation Satellite System Vehicle Positioning.
IEEE Intell. Transp. Syst. Mag. 2020, 12, 109–122. [CrossRef]

11. Braasch, M.S. Multipath. In Springer Handbook of Global Navigation Satellite Systems; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 443–468.

12. Maaref, M.; Khalife, J.; Kassas, Z.M. Lane-level localization and mapping in GNSS-challenged environments by fusing lidar data
and cellular pseudoranges. IEEE Trans. Intell. Veh. 2018, 4, 73–89. [CrossRef]

13. Liu, R.; Wang, J.; Zhang, B. High definition map for automated driving: Overview and analysis. J. Navig. 2020, 73, 324–341.
[CrossRef]

14. Wang, L.; Zhang, Y.; Wang, J. Map-based localization method for autonomous vehicles using 3D-LIDAR. IFAC-PapersOnLine
2017, 50, 276–281. [CrossRef]

15. Im, J.H.; Im, S.H.; Jee, G.I. Extended line map-based precise vehicle localization using 3D LIDAR. Sensors 2018, 18, 3179.
[CrossRef] [PubMed]

16. Ghallabi, F.; El-Haj-Shhade, G.; Mittet, M.A.; Nashashibi, F. LIDAR-Based road signs detection For Vehicle Localization in an HD
Map. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1484–1490.

17. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D
Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152. [CrossRef]

18. Zhang, Z.; Dai, Y.; Sun, J. Deep learning based point cloud registration: An overview. Virtual Real. Intell. Hardw. 2020, 2, 222–246.
[CrossRef]

19. Mueller, K.; Atman, J.; Kronenwett, N.; Trommer, G.F. A Multi-Sensor Navigation System for Outdoor and Indoor Environments.
In Proceedings of the 2020 International Technical Meeting of The Institute of Navigation, San Diego, CA, USA, 21–24 January 2020;
pp. 612–625.

20. Li, N.; Guan, L.; Gao, Y.; Du, S.; Wu, M.; Guang, X.; Cong, X. Indoor and Outdoor Low-Cost Seamless Integrated Navigation
System Based on the Integration of INS/GNSS/LIDAR System. Remote Sens. 2020, 12, 3271. [CrossRef]

21. Qian, C.; Zhang, H.; Li, W.; Shu, B.; Tang, J.; Li, B.; Chen, Z.; Liu, H. A LiDAR aiding ambiguity resolution method using fuzzy
one-to-many feature matching. J. Geod. 2020, 94, 98. [CrossRef]

22. Horache, S.; Deschaud, J.E.; Goulette, F. 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised
Fine-tuning. arXiv 2021, arXiv:2103.14533.

23. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

24. Himmelsbach, M.; Hundelshausen, F.V.; Wuensche, H.J. Fast segmentation of 3D point clouds for ground vehicles. In Proceedings
of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010; pp. 560–565.

http://doi.org/10.1002/navi.335
http://dx.doi.org/10.1109/TIV.2018.2804168
http://dx.doi.org/10.3390/s18041078
http://www.ncbi.nlm.nih.gov/pubmed/29614040
http://dx.doi.org/10.1088/1361-6501/abeced
http://dx.doi.org/10.1007/s001900050127
http://dx.doi.org/10.1109/MITS.2020.2994121
http://dx.doi.org/10.1109/TIV.2018.2886688
http://dx.doi.org/10.1017/S0373463319000638
http://dx.doi.org/10.1016/j.ifacol.2017.08.046
http://dx.doi.org/10.3390/s18103179
http://www.ncbi.nlm.nih.gov/pubmed/30241363
http://dx.doi.org/10.1109/IM.2001.924423.
http://dx.doi.org/10.1016/j.vrih.2020.05.002
http://dx.doi.org/10.3390/rs12193271
http://dx.doi.org/10.1007/s00190-020-01426-z
http://dx.doi.org/10.1145/358669.358692


Remote Sens. 2021, 13, 4525 18 of 18

25. Henderson, H.V.; Pukelsheim, F.; Searle, S.R. On the History of the Kronecker Product. Linear Multilinear Algebra 1983, 14, 113–120.
[CrossRef]

26. Langley, R.B.; Teunissen, P.J.; Montenbruck, O. Introduction to GNSS. In Springer Handbook of Global Navigation Satellite Systems;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–23.

27. Hobiger, T.; Jakowski, N. Atmospheric signal propagation. In Springer Handbook of Global Navigation Satellite Systems; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 165–193.

28. Teunissen, P.J.G. Adjustment Theory: An Introduction; Series on Mathematical Geodesy and Positioning; Delft University Press:
Delft, The Netherlands, 2000.

29. Teunissen, P. Dynamic Data Processing; Recursive Least Squares; VSSD: Delft, The Netherlands, 2001.
30. Wen, W.; Bai, X.; Hsu, L.T.; Pfeifer, T. GNSS/LiDAR Integration Aided by Self-adaptive Gaussian Mixture Models in Urban

Scenarios: An Approach Robust to Non-Gaussian Noise. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation
Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 647–654.

31. Pomerleau, F.; Liu, M.; Colas, F.; Siegwart, R. Challenging data sets for point cloud registration algorithms. Int. J. Robot. Res.
2012, 31, 1705–1711. [CrossRef]

32. Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A modern library for 3D data processing. arXiv 2018, arXiv:1801.09847.
33. Grinsted, A. Subaxis-Subplot. 2021. Available online: https://au.mathworks.com/matlabcentral/fileexchange/3696-subaxis-

subplot (accessed on 1 March 2021).
34. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Nice, France, 2019;
pp. 8024–8035.

35. MATLAB. 9.10.0.1710957 (R2021a); The MathWorks Inc.: Natick, MA, USA, 2021.

http://dx.doi.org/10.1080/03081088308817548
http://dx.doi.org/10.1177/0278364912458814
https://au.mathworks.com/matlabcentral/fileexchange/3696-subaxis-subplot
https://au.mathworks.com/matlabcentral/fileexchange/3696-subaxis-subplot

	Introduction
	Lidar Positioning by Point Cloud Registration
	HD Map Definition
	Deep Learning Model Training and Inference
	Estimating Vehicle Position

	EKF Formulation via a Mixed Measurement Model
	Lidar and GNSS Observation Equations
	Filter Setup
	Filter Time-Update
	Filter Measurement-Update

	Experimental Setup and Results
	Experimental Setup
	Positioning Results under Ideal Lidar Conditions
	Positioning Results in Realistic Environments

	Discussion
	Significant GNSS Code Errors
	Keypoint Matching Errors and Failure
	Accuracy and Availability Improvements Brought by the Integration
	Keypoint Matching Success Rate Simulation and Comparison
	Runtime Efficiency

	Conclusions
	Jacobian Matrices of the Mixed Models (6) and (11)
	References

