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Abstract: The semantic segmentation of remote sensing images requires distinguishing local regions
of different classes and exploiting a uniform global representation of the same-class instances. Such
requirements make it necessary for the segmentation methods to extract discriminative local features
between different classes and to explore representative features for all instances of a given class. While
common deep convolutional neural networks (DCNNs) can effectively focus on local features, they
are limited by their receptive field to obtain consistent global information. In this paper, we propose
a memory-augmented transformer (MAT) to effectively model both the local and global information.
The feature extraction pipeline of the MAT is split into a memory-based global relationship guidance
module and a local feature extraction module. The local feature extraction module mainly consists
of a transformer, which is used to extract features from the input images. The global relationship
guidance module maintains a memory bank for the consistent encoding of the global information.
Global guidance is performed by memory interaction. Bidirectional information flow between the
global and local branches is conducted by a memory-query module, as well as a memory-update
module, respectively. Experiment results on the ISPRS Potsdam and ISPRS Vaihingen datasets
demonstrated that our method can perform competitively with state-of-the-art methods.

Keywords: semantic segmentation; remote sensing imagery; memory-augmented transformer;
memory mechanism; self-attention

1. Introduction

Semantic segmentation of high-resolution remote sensing images [1–4] is an important
application scenario in remote sensing image interpretation, which is widely used in land
mapping, environmental monitoring, urban construction, etc. Traditional methods [5,6]
mainly depend on low-level features such as color, edge, shape, and spatial locations
and use heuristic methods such as clustering or thresholding to translate the features
into the final segmentation masks. Due to the limited representation power of low-level
features and the overtuned parameters of the clustering methods, the performance of these
methods is far from satisfactory. The emergence of deep convolutional neural networks
(DCNNs) has equipped us with more powerful representation abilities and has boosted
the performance of remote sensing image recognition. DCNNs [7,8] take the remote
sensing image as the input and directly map the input image into the desired output
(class, object boxes, and masks). In the remote sensing image semantic segmentation field,
many works [9,10] using convolutional neural networks have been proposed to tackle the
problem. The segmentation results are better than traditional methods thanks to the deep
layers and the end-to-end training paradigm.
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Most of the segmentation methods follow an encoder–decoder model design, as shown
in Figure 1a. The encoder is used to encode the input image into latent representations,
which may be a single-scale or multiscale representation. The decoder takes the latent rep-
resentations as the input and decodes the representations into the final segmentation masks.

Figure 1. The paradigm of the semantic segmentation pipeline. Most works adopt an encoder–decoder
structure such as (a), where X is the input image and Y is the predicted segmentation mask. In (b),
the model learns to predict the segmentation mask based on both the input image and the memory
m. Memory is used to help encode some contextual information of the dataset and is learned along
with the model parameters. Skip connections between the encoder and decoder are omitted in the
figure for simplicity.

The encoder and decoder are stacked deep convolutional neural networks (DCNN) in
most cases due to their favorable properties such as weight sharing and translation invari-
ance. However, in high-resolution remote sensing images, instances often occupy more
than a hundred pixels. In this case, to construct different class’s overall representations,
the network must have a large receptive field. The local receptive field of convolution
makes DCNNs hard to extend to such large areas and model long-range information. To en-
hance the long-range information modeling ability of DCNNs, many additional modules
have been proposed, such as dilate convolution [11,12], the attention mechanism [13,14],
and deformable convolution [15,16]. In this paper, rather than exploiting these modules
to aggregate global information, we used a transformer [17] to directly model long-range
connections. Unlike DCNNs, the transformer rearranges the spatial dimension of an im-
age into a single dimension, and the rearranged feature unit is called a token or a patch.
Self-attention is proposed in the transformer to calculate the similarity between every
two tokens so every token can attend to all tokens. In this way, the transformer captures
long-range information throughout the segmentation pipeline.

Though the transformer can construct long-range information effectively, the quadratic
computational complexity with respect to the token number is unbearable even for modern
GPUs. Moreover, The overemphasis on global information often leads to the degradation
of the local information extraction ability. To alleviate such problems, the attention scope
is explicitly restricted to a 16× 16 local area and the memory mechanism is proposed
as the global guidance for these local areas. The memory bank is used to store the local
representation of the local areas and then to encode consistent global information via the
memory interaction module.

Besides, instead of solely depending on the image features to update the memory
tokens, prior information can be encoded into the memory tokens’ initial state to help
the local feature extraction process, as shown in Figure 1b. The initial state of memory
tokens is learned with the model parameters using training image–mask pairs. Once
trained, the initial state of the memory tokens is fixed for all the images during inference.
By adopting such an initialization strategy, the memory tokens implicitly learn to encode
prior information needed for the task in an end-to-end manner.

By incorporating the memory mechanism and the transformer, the memory-augmented
transformer (MAT) explicitly divides the feature extraction pipeline into memory-based
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global relationship guidance (global branch) and local feature extraction (local branch).
The two branches are used to encode global information and to extract local features,
respectively. Bidirectional information interaction between the two branches is achieved
by a memory-query module and a memory-update module.

Our main contributions can be summarized as follows:

• We propose a novel model structure for remote sensing semantic segmentation that
utilizes the memory mechanism and the transformer;

• The transformer is adopted to extract features within local areas. The memory mech-
anism is used to encode consistent global information and as a global guidance for
these local areas. Meanwhile, the transformer, as a feature extractor, can be easily
adapted to update the memory tokens based on the image content and the previous
memory tokens;

• Experiment results on the ISPRS Potsdam and ISPRS Vaihingen datasets demonstrated
that MAT can perform competitively with the state-of-the-art models.

2. Related Works

In this section, a brief overview of typical works on high-resolution remote sensing
image semantic segmentation is provided in Section 2.1. Moreover, we introduce previous
studies about the vision transformer in Section 2.2, followed by a short introduction about
the memory mechanism in Section 2.3.

2.1. High-Resolution Remote Sensing Image Semantic Segmentation

Traditional methods [18–20] mainly rely on manual features to segment the input
images. Some prior works first extracted edges, then used thresholding methods as a
postprocessing procedure. Some other works [21,22] used regions as the base extraction
units, which predicted the segmentation mask by growing, merging, and splitting the
small regions. Stepping into the deep learning era, the FCN [23] proposes to segment the
input images by decoding the output feature of the CNN backbones. The U-Net [24] uses a
mirrored encoder–decoder structure to perform medical image segmentation. In remote
sensing image semantic segmentation, deep convolutional neural networks (DCNNs) were
introduced in [25,26], and they all demonstrated exceptional segmentation accuracies.
To better exploit the multilevel information, global contextual information was used in [27]
throughout multiple levels to gain stable results. Attention modules [10,28] were added in
the last stages to better aggregate information for the task. The relation module [9] was
proposed to model the relationship in the spatial dimension and the feature dimension.

2.2. Vision Transformer

The transformer [17,29] is a widely adopted network structure in natural language
processing (NLP) field. Recently, in the natural image field, adopting the transformer in the
vision recognition task has been a hot research area. DETR and deformable DETR [30,31]
formulate the object detection task as a natural language translation, which aims to trans-
late from the source language (input image) to the target language (bounding boxes).
ViT [32] projects the images into 16× 16 patches and directly uses the transformer en-
coder to perform feature extraction and image classification. Furthermore, subsequent
works [33–35] boosted ViT’s performance by adopting the pyramid structure. Some other
works applied the transformer to object tracking [36,37], image generation [38–40], point
cloud segmentation [41,42], etc.

In the remote sensing field, the vision transformer [43–45] has been adopted in remote
sensing image classification. Moreover, MSNet [46] adopts the transformer and DCNN to
perform multistream fusion. The transformer-yolov5 [47] has also been used in underwater
maritime object detection. The transformer has been applied to semantic segmentation for
efficient inference and long-range modeling in previous works [48,49]. Different from these,
MAT starts from the vanilla transformer block and incorporates the memory mechanism to
enhance the representation ability.
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2.3. Memory Mechanism

The memory mechanism aims to add alternative information to enhance the network’s
representation ability. VQ-VAE [50,51] uses a memory back to quantize the latent repre-
sentation of the input image. The memory mechanism was used in [52] to conduct video
representation learning. The memory network was used in [53] to encode information
from the past frames. MemAE [54] tackles anomaly detection in an unsupervised manner
using the memory mechanism, where anomaly samples use the memory representations
to reconstruct the normal samples, and the differences between them are the anomaly
part. The memory mechanism was also deployed in other tasks such as multimodal data
generation [55], meta-learning [56], and image classification [57].

3. Materials and Methods

We first revisit the transformer encoder in Section 3.1, then elaborate on the proposed
memory-augmented transformer (MAT) in the following sections.

3.1. Revisiting the Transformer Encoder

The difference between the transformer and DCNN lies in the network input and
network structure. The CNN takes four-dimensional data IT ∈ RB×H×W×C as the input,
while the transformer’s input is three-dimensional data IT ∈ RB×N×C, where B, C means
the input batch size and input channel dim, H, W are the height and width of the images,
and N refers to the number of image patches.

The transformer encoder consists of stacking the transformer blocks. The transformer
block is depicted in Figure 2a, which has a multi-head attention module and a feedforward
module. Both modules are wrapped with a residual connection and a normalization
function. The multi-head attention module is intended to model the joint distribution
between the patches. Below, we introduce the single-head attention first.

Figure 2. Structure of the transformer encoder. (a) The transformer encoder mainly consists of a
multi-head attention module, a feedforward network (FFN), and two residual connections. (b) The
multi-head attention first projects the input x into three vectors of the same shape, which are called
the query, key, and value. The module then calculates the similarity coefficients between the query
and the key vector. The similarity values are used as attention scores. The attention scores are further
used to calculate the weighted sum of the value vector. (c) The FFN expands the input x into a higher
dim and squeezes it back using an MLP. A nonlinear layer such as GELU [58] is inserted between the
two fully connected layers.
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The single-head attention module in Figure 2b first projects the input feature into
three features with the same shape RB×N×D, which are named the query, key, and value,
denoted as Q, K, V, respectively.

Q = WQ × X

K = Wk × X

V = WV × X

(1)

where WQ, WK, WV are three learnable matrices of shape RD×D and X is the input feature.
Then, the attention score A will be calculated by the query and key,

A = so f tmax(
Q× KT
√

D
) (2)

The product of Q and K is normalized by a factor of
√

D, so the attention has a
similar order of magnitude of V. For every query token, its attention value is calculated
by its dot product to all the key tokens, so the attention value can model the relationships
between any two input tokens. Then, the output feature is calculated by performing matrix
multiplication between the attention score and value tokens.

F = A×V (3)

The output feature of the attention module is a weighted sum of all patches’ features,
which enables the transformer to have a global receptive field.

As a parallel version of the single-head attention module, the multi-head attention
module first splits the channels into several heads, then performs single-head attention in
the split channels. The outputs of these single-head attention modules are concatenated
and projected to the output feature by a matrix W.

Multi− Head(Q, K, V) = Concat(F0, F1 · · · Fn)W (4)

where Fi(i = 0, 1, 2...n) denotes the feature in Equation (3) and W is the projection matrix.
The feedforward network in Figure 2c uses two linear layers to refine the tokens’

features separately.
FFN(x) = f (W1x + b1)W2 + b2 (5)

where W1, b1, W2, b2 stands for the two linear layers’ weights and bias in the feedforward
network. We used the Gaussian error linear units (GELUs) [58] as the nonlinear function f .

By sequentially stacking multi-head attention modules and feedforward networks, the
transformer encoder can sequentially extract global features and refine every token’s feature.

3.2. Overall Architecture

In this study, a workflow is proposed for high-resolution remote sensing image seman-
tic segmentation. Methodologically, the MAT extracts features from the input image and the
learned memory tokens to perform the semantic segmentation of remote sensing images.

As shown in Figure 3, the main structure of the proposed model includes the local
branch and the global branch. The local branch is used to extract hybrid features from the
input images and the global memory tokens, while the global branch is used to encode the
stored local representation into consistent global information.

Besides the two extraction branches, a DCNN encoder and a DCNN decoder are
adopted to encode the image into preliminary features and to decode the features into final
segmentation masks, respectively. The MAT takes the RGB image as the input and uses
the encoder to extract preliminary features. Then, tokenization splits the feature space into
subareas of size 16× 16 as in [32]. The attention scope in the local branch is thus restricted
in the local size of 16× 16. After the extraction of the two branches, the decoder takes both
branches’ output features and fuses them into the final segmentation masks.
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Figure 3. The proposed model for remote sensing segmentation. The MAT mainly consists of a
global branch and a local branch. The global branch refines the memory bank, which is used as
a representation of the prior and global information. The local branch extracts features from the
input images. Bidirectional information flow between the two branches is enforced by the memory-
query and memory-update modules. Then, the two branches’ output representation is fed into the
segmentation head to perform segmentation prediction.

The extraction process is constructed in several stages with different stage settings.
The extraction pipeline of a single stage is shown in Figure 4. The stage first takes the mem-
ory bank Mi−1 and the image feature Ii−1 of the former stage. Memory tokens are queried
down from the Mi−1 and aligned with the image features. The combined representations
are fed into a hybrid module for feature extraction. The image-based features are further
sent into an image module to extract image features Ii, while the memory-based feature is
uploaded to the global branch by the memory update module. The memory tokens are
refined in the global module by interacting with each other using the transformer.

Figure 4. The extraction process of a single stage. Mi, Ii denotes the output memory token and image
features of the i-th stage.

Note that M0 is the proposed input-invariant prior information embeddings, which
are invariant to all the input images during inference.
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3.3. Global Memory Guidance

Vanilla segmentation models map the input image to the final segmentation result
directly. In this way, the model implicitly constructs the dataset’s information by the model
parameter θ, which can be interpreted as y = f (x|θ), where y is the segmentation mask and
x is the input image. However, in the first stage, by instantiating the contextual information
as learnable features, the MAT predicts the segmentation mask under the condition of the
model parameters and the learnable memory tokens m. In such a way, it can be seen as
y = f (x|θ, m).

Besides acting as the prior information in the first stage, the memory tokens are
positionally aware due to the one-to-one mapping relationship between the memory
tokens and the image patches. In the subsequent feature extraction process, the memory
tokens are used as the global contextual information representation, which is involved
in both the global branch and the local branch. In the local branch, the memory token
passes the global information to the local features and aggregates the local patch’s overall
representation from the local features simultaneously.

To construct long-range information, which is essential to cluster the same objects in a
different position, the global memory refinement module is proposed to refine every area’s
representation (the memory token) based on other memory tokens. The memory token
updated from the local aggregation module is a representation of the local patch, so the
interaction between tokens can help the memory gather similar features across the whole
image. The refinement strategy can strengthen the memory tokens’ representation ability
by aggregating the distant instances’ information of the same classes.

The transformer is adopted as the global memory refinement module, which takes
all the memory tokens as the input and extracts global information via the self-attention
module and refines the single memory representation via the feedforward network.

3.4. Local Aggregation Module

The local aggregation module (Figure 5) consists of a transformer encoder and a depth-
wise convolution layer. The transformer encoder is used as the hybrid feature extraction
module, which extracts features from the concatenated memory token and the local area
features. The global receptive field of the transformer enables feature interaction between
local image features and between the memory token and image features. For the image
module, we adopted a single-layer depthwise convolution. The depthwise convolution was
used to align the features concerning the edge point of patches and enforce some relative
position information into the MAT since the transformer encoder is position invariant.

The local branch first groups the image features into several patches. Each group
queries the corresponding memory token down to the link, then aligns the token with the
local patches. After the alignment, these combined tokens are fed into the transformer
encoders separately; all the transformer encoders share the same weight. The output feature
of the transformer is split into the memory token and the image feature. The memory token
is sent back into the memory bank by the memory update module. The image features
are reshaped into an image grid and are further refined by a depthwise convolution to
alleviate the feature misalignment on the edge of adjacent groups.
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Figure 5. Local aggregation module’s structure. The input image features are first to split into
different patches, then the corresponding memory tokens are queried from the global branch and
appended as a token along with the features. All the patches are passed through a transformer
encoder for feature extraction. These features are reshaped back to image grids and fed into a
depthwise convolution layer for local feature alignment. Note that the weight sharing strategy is
used in all transformers for parameter efficiency consideration.

3.5. Memory-Query and Memory-Update

Bidirectional information flow between the global branch and the local branch is
interleaved in every stage. The memory-query downloads the global information from
the memory bank to the local module and concatenates it with the local features at the
beginning of the local branch, while the memory-update passes the local aggregation
information to the memory bank and replaces the original memory tokens in the bank after
the local extraction.

Because of the one-to-one mapping strategy, the memory-query module only needs
to query the corresponding memory token. The memory-update module is also quite
simple and clear since the further refinement between memory tokens is left to the global
refinement module. Both the memory-update module and the memory-query module are
set as a linear layer with the GELU [58] to align the feature dimension.

3.6. Convolutional Embedding and Light Decoding Module

Following recent ViT variants [59,60] in the optical field, we used convolutional
layers as the embedding module rather than directly splitting the image into several
nonoverlapping patches and performing embedding in these patches. The embedding
procedure is performed as,

Femb = Conv2(Conv1(x)) (6)
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where x is the input image of shapeRH×W×3 and Femb is the embedded feature ofRH/4×W/4×C.
Conv1 and Conv2 both have a 3× 3 convolution layer with stride two. The only difference
is that Conv1 is followed by the GELU and batch norm, while Conv2 only has a GELU.

Y = Conv2(Conv1(x)) (7)

Rather than U-Net, which needs a heavy decoder as the encoder to decode the features
into the final segmentation mask, the MAT only uses three convolutional layers to decode
the global features and local features into the final prediction. Due to the resolution-
preserving nature of the transformer, our local aggregation module maintains the resolution
of 128× 128, only four-times downsampling of the original input resolution of 512× 512.
In this way, we only need a light head to perform the final segmentation prediction.

Our segmentation head utilizes both the global branch feature and the local branch
feature. We first resized the global feature into the local feature’s shape, then concatenated
these two features. The combined representation is decoded in the segmentation mask by a
transposed convolutional layer and two convolutional layers.

4. Experiments
4.1. Experimental Details
4.1.1. Datasets

In this paper, we chose the ISPRS Potsdam and ISPRS Vaihingen datasets to evaluate
our results. Below we give a brief introduction to the two datasets.

ISPRS Potsdam (https://www2.isprs.org/commissions/comm2/wg4/benchmark/
2d-sem-label-potsdam/, accessed on 13 August 2021) contains 38 patches (of the same size)
as Figure 6b. The images cover a large area with large variations. Each image patch consists
of a True Orthophoto (TOP) extracted from a larger TOP mosaic. The ground sampling
distance of the TOP is 5 cm. The dataset provides three different channel composition data.
In this work, we used the RGB data to train and evaluate the MAT. We chose 28 images
to train the model and the remaining 18 to test the model’s performance. The test set
contained the 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 5_14, 5_15, 6_13, 6_14, 6_15,
and 7_13 patches, which concurs with previous works [9,28,61].

Figure 6. The detailed image patch location and corresponding number of the Potsdam and Vaihin-
gen datasets.

ISPRS Vaihingen (https://www2.isprs.org/commissions/comm2/wg4/benchmark/
2d-sem-label-vaihingen, accessed on 13 August 2021) is composed of 33 orthorectified
image tiles acquired by a near-infrared (NIR)—green (G)—red (R) aerial camera, over the
town of Vaihingen (Germany). The detailed images’ location and number are shown in
Figure 6a. The average size of the tiles is 20,494 × 20,064 pixels with a spatial resolution

https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-potsdam/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-potsdam/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen
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of 9 cm. The dataset contains 33 patches (of different sizes), each consisting of a true or-
thophoto (TOP) extracted from a larger TOP mosaic. We chose 16 images to train the model
and the remaining 17 to test the model’s performance. The test set contained the 2, 4, 6, 8,
10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, and 38 areas, following previous works [9,28,61].

Both datasets are provided by the International Society for Photogrammetry and
Remote Sensing (ISPRS) and involve the discrimination of six land cover/land use classifi-
cation classes: Impervious surfaces (Imp. surf) (roads, concrete surfaces), Buildings (Build.),
Low vegetation (Low veg), trees, cars, and a class of clutter representing uncategorizable
land covers.

4.1.2. Implementation Details

In both experiments, the number of memory tokens was 64 and the memory tokens’
dim was set to 128, while the dim of the local branch was 256. Three stages were adopted
for feature extraction. The transformer’s depths in the local branch were set to 2, 2, and 1
for the three stages, while the transformer’s depths in the global branch were all set to 1.

For training, the images were first randomly cropped into 512× 512. Such a cropping
strategy resulted in a total of 12,000 training examples for ISPRS Potsdam and 8000 training
examples for ISPRS Vaihingen. For the Potsdam images, we performed a random vertical
flip, horizontal flip, and 90◦ rotation to the input image with a probability of 0.5. Then,
we normalized the augmented image with a mean of (0.5, 0.5, 0.5) and an std of (1.0, 1.0,
1.0). For the Vaihingen images, we added the cutmix [62] and mixup [63] strategy and a
random scale of [0.5, 2.0] due to the limited images.

The Adam optimizer was used with an initial learning rate of 0.0001, and poly-
annealing as Equation (8) was adopted to decay the learning rate in the training process,
where initial_lr is the initial learning rate, iter and max_iter denote the current iteration
and the total iterations of the experiment, and power is a hyperparameter set to 0.5 by
default. We also used warm-up [64] for the first 100 iterations. All experiments only used
the cross-entropy loss without additional loss, such as focal loss or Dice loss.

lr = initial_lr ∗ (1− (
iter

max_iter
)power), where power = 0.5 (8)

For testing, a slide image prediction strategy was adopted, and the metric is reported
concerning the original image size. Normalization was the only augmentation used during
inference. The cropping image size was set to 512, and the cropping stride was set to 200,
which led to 312 overlaps for adjacent image crops.

All experiments were carried out on a single NVIDIA V100 with 4 images every batch
and 100 training epochs.

4.2. Evaluation Metrics

We report the mean Intersection over Union (mIoU) and average F1-score in the
following experiments.

The mIoU score is calculated as follows, which is the average of all class’s IoU:

mIoU =
1
N

N

∑
i=1

TPi
TPi + FNi + FPi

(9)

where N is the total number of the classes and TP, FP, and FN are short for True Posi-
tive, False Positive, and False Negative, respectively. Footnote i denotes the i-th ground
truth class.
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The AF score’s calculation process is as follows.

AF =
1
N

N

∑
i=1

F1i

F1i = 2 ∗ Pi ∗ Ri
(Pi + Ri)

(10)

where P and R are short for Precision and Recall and subscript i denotes the i-th ground
truth class.

4.3. Results

For the experiments, we report the five foreground classes’ F1-score and their average
F1-score and mIoU, as in the previous works [9,10,28]. The results on the Potsdam datasets
are reported in Table 1. The MAT achieved an average F1-score of 91.59 and an mIoU of
84.82, which all outperformed previous DCNN-based works.

Table 1. Comparison with state-of-the-art methods on the Potsdam dataset. Bold type indicates the
best performance.

Model Name Imp. Surf Build. Low veg Tree Car Average F1 mIoU

SCAttNet V1 [28] 82.01 87.26 80.03 76.92 86.49 82.54 70.47
SCNN [65] 88.37 92.32 83.68 80.94 91.17 84.22 77.72

Multi-filter CNN [66] 90.94 96.98 76.32 73.37 88.55 85.23 -
UZ_1 [67] 89.30 95.40 81.80 80.50 86.50 86.70 -
FCN [23] 88.61 93.29 83.29 79.83 93.02 87.61 78.34

SCAttNet V2 [28] 90.04 94.05 84.05 79.75 89.06 87.39 77.94
UFMG_4 [68] 90.80 95.60 84.40 84.30 92.40 89.50 -
S-RA-FCN [9] 91.33 94.70 86.81 83.47 94.52 90.17 82.38

CF-Net (ResNet-18) [10] 90.95 93.19 86.19 84.49 95.53 90.07 82.29
CF-Net (VGG-16) [10] 90.88 94.18 86.51 84.73 95.53 90.37 82.69

MAT 93.48 96.04 86.80 85.35 96.28 91.59 84.82

The results on the Vaihingen datasets are reported in Table 2. The MAT achieved an
88.70 average F1-score on the five foreground classes and a 79.93 mIoU, respectively. Our
performance is still competitive with previous works such as UFMG_4 [69].

Table 2. Comparison with state-of-the-art methods on the Vaihingen dataset. Bold type indicates the
best performance.

Model Name Imp. Surf Build. Low Veg Tree Car Average F1 mIoU

DAFFM+ACAM [69] 80.11 86.57 65.56 76.24 66.64 75.02 -
UZ_1 [67] 89.29 92.50 81.60 86.90 57.30 81.50 -

SCAttNet V1 [28] 87.36 89.54 77.30 79.16 69.86 81.23 68.99
SCAttNet V2 [28] 89.13 90.30 80.04 80.31 70.50 82.52 70.77

FCN [23] 88.67 92.83 76.32 86.67 74.21 83.74 72.69
RoteEqNet [70] 89.50 94.80 77.50 86.50 72.60 84.18 -

SCNN [65] 88.21 91.80 77.17 87.23 78.60 84.40 73.73
U-Net [24] 89.82 92.49 78.86 87.86 80.84 85.97 75.76

SegNet+Distance maps [71] 91.47 94.76 81.91 88.49 74.01 86.12 -
UFMG_4 [68] 91.10 94.50 82.90 88.80 81.30 87.72 -
S-RA-FCN [9] 91.47 94.97 80.63 88.57 87.05 88.54 79.76

MAT 91.89 94.14 83.36 89.03 85.07 88.70 79.93

4.4. Ablation Study

Several ablation experiments were carried out on the architectures to verify the effec-
tiveness of the proposed module.
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4.4.1. Memory Prior

The performance of the memory prior was measured by setting a control experiment.
The memory prior denotes the memory tokens in the first stage where they are learned
to encode beneficial information for the segmentation tasks. Memory tokens were set to
zero compared with the original work. In such a setting, the memory bank only serves as a
global information representation, and it encodes zero input-invariant prior information
due to its zero initialization. Moreover, to see whether the memory encodes the location-
invariant contextual information or location-variant information, the learned memory
priors were visualized using T-SNE [72]. If they encoded location-invariant information,
the visualization result tended to form a single cluster. On the contrary, if they encoded
location-variant information, the visualization result tended to scatter in the whole picture.

4.4.2. Global Branch

As for the global information branch, we verified its effectiveness by comparing the
model’s performance with the global branch and without the global branch. By removing
the global branch, the memory bank was also removed. The MAT only had the local branch,
which consisted of the transformer and the depthwise convolution. The final segmentation
mask was predicted by the image feature only.

4.4.3. Ablation Results

The ablation results are reported in Table 3. Without the memory prior and directly
setting the memory bank to zero at the beginning of the inference, the mIoU and average
F1-score dropped for both datasets. For the Potsdam dataset, the mIoU dropped 2.20 and
the average F1-score dropped 1.35. For the Vaihingen dataset, the mIoU dropped 3.55 and
the average F1-score dropped 2.29. After removing the global branch, the model uses the
transformer and depthwise convolution to extract features and perform the prediction.
The mIoU and average F1-score on the Potsdam dataset dropped 2.24 and 1.38, respectively,
while they dropped 4.62 and 3.04 on the Vaihingen dataset, respectively.

Table 3. Ablation results on the Potsdam and Vaihingen datasets. w/o Mem Prior denotes the model
without the memory prior, and w/o G Module denotes the model without the global branch. Bold
type indicates the best performance.

Method
Potsdam Vaihingen

mIoU Average F1 mIoU Average F1

w/o Mem Prior 82.62 90.24 76.38 86.41
w/o G Module 82.58 90.21 75.31 85.66

MAT 84.82 91.59 79.93 88.70

The T-SNE visualization results are shown in Figure 7, and each point represents a
single memory token in the memory bank. The memory prior tokens are scattered across
the whole plane, which means they provide different prior information at the beginning of
the inference stage.
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Figure 7. The T-SNE results of the memory prior. Different memory tends to encode different features
due to the scattered distribution of the visualization results.

5. Discussion

The experiment results demonstrated that the MAT, which facilitates both the prior
information and the input-based representation, performs well in high-resolution remote
sensing image semantic segmentation tasks. Noted that the MAT only has 7.25M param-
eters, which is comparably smaller than DCNNs, whose encoder backbones are mainly
VGG16 with 14.71M parameters and ResNet101 with 42.50M parameters.

For the Potsdam dataset, the MAT outperformed previous methods in the overall
metrics and in F1-scores of all the classes, which demonstrated the MAT’s effectiveness in
handling high-resolution remote sensing image semantic segmentation tasks. The MAT
achieved an average F1-score of 91.59 and an mIoU of 84.82. As for the comparison, the
attention-aided method S-RA-FCN, which adopts VGG16 as the backbone, appends heavy
feature fusion modules in the decoder, and uses multiple loss to train the network, only
obtained an average of a 90.17 F1-score and an mIoU of 82.38. The MAT outperformed the
S-RA-FCN mostly in classes that tended to occupy large areas such as impervious surface
(+2.15 F1-score) and building (+0.99 F1-score) due to the benefit of the large receptive field
of the transformer and the explicit global branch. The total gains in the average F1-score
were 1.42 and for the mIoU 2.44.

For the Vaihingen dataset, the results reported in Table 2 show that the MAT’s per-
formance was competitive with the S-RA-FCN, while it could surpass other works by a
large margin.

The superior performance of the MAT can be largely attributed to the powerful
representation ability of the transformer, which can extract global information from all the
locations in the image. The memory mechanism can decouple the extraction process into
local feature extraction and global information guidance, which can ease the computational
complexity of the transformer and avoid optimizing overly long image patches.

The segmentation results of the MAT and FCN8s are presented in Figures 8 and 9 for
a visual comparison. The first row is the input remote sensing images, the second row the
ground truth segmentation masks, the third row the prediction of the FCN8s, which was
trained using the same hyperparameters as the MAT, and the last row the MAT’s prediction.
The results showed that the MAT can surpass the FCN in most cases. The MAT can better
capture the primary structure of the target and locate the boundaries between targets and
small objects such as cars. Especially on the Vaihingen dataset, as shown in Figure 9, the
FCN tended to predict more clutters and to wrongly classify instances. On the contrary, the
MAT performed much better than the FCN8s, being able to segment the images holistically
concurrently with ground truth.
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Figure 8. The 512 × 512 segmentation results on the Potsdam dataset. The FCN results are predicted
by our implementation in the same hyperparameter settings, and the annotation colors are consistent
with the ground truth.

Figure 9. The 512× 512 segmentation results on the Vaihingen dataset. The FCN results are predicted
by our implementation in the same hyperparameter settings, and the annotation colors are consistent
with the ground truth.
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Besides cropping image visualization, the segmentation results of the sliding image
inference strategy are also provided. The visualization results were cropped from the
whole prediction mask, and the cropping size was 1000 × 1000. As shown in Figure 10,
after the slide inference, both the FCN and MAT performed better compared with the direct
inference result in Figures 8 and 9.

(a)

(b)

Figure 10. Segmentation results on the two datasets using the slide inference strategy. The result are
cropped from the original image prediction: (a) 1000 × 1000 segmentation results on the Potsdam
dataset; (b) 1000 × 1000 segmentation results on the Vaihingen dataset.
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The FCN tended to predict smoothed masks that would miss the intervals between
objects and small objects that are surrounded by other classes. To be specific, the FCN’s
prediction missed many cars in the third image of the Potsdam dataset, eroded all the
intervals between the low vegetation into the low vegetation class in the second image
of the Potsdam dataset, and neglected all the clutter class in the first and last images of
the Potsdam dataset.

As for the result on the Vaihingen dataset, the false predictions of the FCN were
greatly suppressed, but its quality was still lower compared to the results of the MAT.
The results of the FCN were so smooth that it was difficult to locate the corners of the
buildings. For cars that mainly lie inside the impervious surface, the FCN tended to ignore
them, while the MAT perfectly segmented it out.

The ablation study in Table 3 verified the effectiveness of the proposed memory prior
and the global module. Note that the experiment without the global module did not have
the memory prior. The experimental results showed that the results reported on the model
without the global module were inferior to the model without the memory prior. It can be
delineated that the global module and the memory prior are reciprocal since with both of
them, the results were far better than adopting only one.

The T-SNE results of the learned prior on both datasets are shown in Figure 7. The vi-
sualization results showed that these tokens tended to learn different memory prior infor-
mation concerning their locations. Moreover, the ablation study in Table 3 confirmed that
the memory prior could obtain a 1.20 mIoU gain and a 1.35 average F1-score gain on the
Potsdam dataset, while it could obtain a 3.55 mIoU gain and a 2.29 average F1-score gain
on the Vaihingen dataset.

However, the limitations of the MAT are mainly two fold. Firstly, the quadratic
computation complexity of self-attention with respect to the input token number of the
transformer encoder still made the MAT’s MACs higher even if the transformer had a
relatively smaller number of model parameters. For example, the MAC of our model was
309.29G for an image of size (512, 512); therefore, it is worth exploring the use of more
efficient transformer variants to reduce the computation, and we leave this for future works.
Secondly, the transformer encoder augments the global information representation ability
at the expense of local continuity, which sometimes made our semantic results tend to be
cluttered, especially in small areas and edges. Detailed cases are shown in Figure 11, where
our methods were not smooth enough in the first two segmentations and small noise areas
were intersected with the main object in the last image.

Figure 11. The failure cases of our proposed model. The failure parts are highlighted by the dashed
yellow box, and the zoomed results are appended to the top right corner for better visualization.
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6. Conclusions

In this paper, a memory-augmented transformer model was proposed to perform
high-resolution remote sensing image semantic segmentation tasks. Prior information was
added to the network via learnable memory tokens. A global branch and a local branch
were proposed for parallel feature extraction. Memory-query and memory-update were
interleaved between the two branches to facilitate information interaction between the
global and local branch. We used the transformer encoder as the base feature extraction
module to aggregate local information between spatial features and global information
between memory tokens. Experimental results showed that our method can achieve
comparable accuracies to the SOTA methods.
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