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Abstract: Object detection in remote sensing images plays an important role in both military and
civilian remote sensing applications. Objects in remote sensing images are different from those
in natural images. They have the characteristics of scale diversity, arbitrary directivity, and dense
arrangement, which causes difficulties in object detection. For objects with a large aspect ratio and
that are oblique and densely arranged, using an oriented bounding box can help to avoid deleting
some correct detection bounding boxes by mistake. The classic rotational region convolutional neural
network (R2CNN) has advantages for text detection. However, R2CNN has poor performance in
the detection of slender objects with arbitrary directivity in remote sensing images, and its fault
tolerance rate is low. In order to solve this problem, this paper proposes an improved R2CNN
based on a double detection head structure and a three-point regression method, namely, TPR-
R2CNN. The proposed network modifies the original R2CNN network structure by applying a
double fully connected (2-fc) detection head and classification fusion. One detection head is for
classification and horizontal bounding box regression, the other is for classification and oriented
bounding box regression. The three-point regression method (TPR) is proposed for oriented bounding
box regression, which determines the positions of the oriented bounding box by regressing the
coordinates of the center point and the first two vertices. The proposed network was validated on
the DOTA-v1.5 and HRSC2016 datasets, and it achieved a mean average precision (mAP) of 3.90%
and 15.27%, respectively, from feature pyramid network (FPN) baselines with a ResNet-50 backbone.

Keywords: convolutional neural network (CNN); object detection; remote sensing images; three-
point regression method (TPR); double detection head

1. Introduction

Object detection of remote sensing images plays an important role in military and
national defense. With object detection techniques, the categories and positions of military
objects can be obtained, and the battlefield situation and environment can be evaluated.
Since the 1990s, remote sensing image object detection has also played an important role in
civilian fields, such as the detection of vehicles and buildings, serving urban road planning,
parking lot site selection, and traffic management.

Convolutional neural networks have moved object detection to a new level. Since
traditional object detection methods perform badly both in detection precision and rate,
researchers have begun to study object detection methods based on deep learning. The
core of deep learning-based object detection methods is the convolutional neural network.
Compared with traditional feature extraction methods, convolutional neural networks
have unique characteristics of weight sharing, local connection, and down-sampling. These
decrease the number of parameters and perform well in feature extraction. Commonly
used feature extraction networks include VGG-16 [1], GoogleNet [2], and AlexNet [3]. With
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the advent of the residual block, deeper convolutional networks have emerged, such as
ResNet [4] and DenseNet [5]. Deep networks can extract features with more semantic
information, and ResNet is well known in the object detection field.

The network used in the object detection method based on deep learning can be
divided into a single-stage detection method and two-stage detection method, according to
different implementation methods. The two-stage detection method, which is based on
area recommendation, first extracts some regions of interest (RoIs) that may contain objects,
and then classifies and regresses bounding boxes. The precision is higher than that of the
single-stage method, but the detection rate is lower. The first proposed two-stage detection
network was the Region-based Convolutional Neural Network (R-CNN) [6]. Based on
R-CNN, more typical area-based object detection networks have been proposed, including
Fast R-CNN [7], Faster R-CNN [8], R-FCN [9], Mask R-CNN [10], and Cascade R-CNN [11].

The single-stage methods are based on regression and classification. They generate a
series of bounding boxes at various positions on the image, and predict and classify them,
without generating RoIs in advance [12–14]. Typical regression-based object detection
networks mainly include YOLO (You Only Look Once) [15], SSD (Single Shot Multi-Box
Detector) [16], and RetinaNet [17]. Based on the YOLO network, the extended object
detection networks include YOLOv2 [18] and YOLOv3 [19]. The improved networks
based on SSD are DSOD [20], RFBNet [21], ASSD [22], etc. In addition, G-CNN [23] and
AttentionNet [24] are also commonly used single-stage object detection networks.

However, compared to objects of natural images, objects of remote sensing images
have greater scale diversity, arbitrary directivity, and dense arrangement. In response to
these problems, predecessors used methods of feature fusion, extracting rotation invariant
features, using oriented detection bounding boxes, designing double detection heads, and
so on, to reconstruct the prior network model.

To detect scale diversity objects, in 2016, Lin et al. proposed the classic feature pyramid
network (FPN) [25]. An FPN provides more feature maps for objects with various scales
by feature fusion. Based on the FPN, more networks were proposed by reconstruction.
In 2019, Chen et al. proposed the scene-contextual feature pyramid network (SCFPN),
which detected objects by fusing the whole image’s feature map with the proposal box’s
feature [26]. In 2020, Qian et al. proposed a remote sensing image object detection method
based on multilevel feature fusion [27].

For the arbitrary directivity problem, some researchers tried to design rotated anchors
in a region proposal network (RPN) and extract rotation invariant features. In 2018,
Li et al. proposed a contextual feature fusion network with rotation invariance [28]. By
generating multiscale anchor frames based on RPN, multiangle anchor frames were added
to detect oriented objects. In 2020, Zhang et al. proposed a double network [29], which
contained multiple CNN channels, where each channel was responsible for a specific
rotation direction. However, designed anchors cannot involve all angles, and many anchors
need too much calculation, which leads to a low detection rate. Other researchers began to
improve the method by changing the regression method or turning the regression problem
into a classification problem. In 2019, Ding et al. proposed an RoI converter to achieve
oriented object detection [30]. By converting the horizontal region of interest (HRoI) into
a rotated region of interest (RRoI), based on the RRoIs, a rotational position-sensitive
RoI Align module was proposed. It was used to extract rotation-invariant features. In
August 2019, Yang et al. proposed a novel multiclass oriented detector SCRDet (small,
cluttered, and rotated detector) [31], which was suitable for detection of small, dense,
and rotating objects. In 2020, Fu et al. built a fused framework based on a two-stage
convolutional neural network for arbitrary directions and multiscale object detection in
remote sensing images [32]. In this paper, a rotation-aware object detector is constructed,
which uses an oriented frame to locate objects in remote sensing images. In 2021, Xu et al.
proposed a simple and effective framework to detect directional objects [33]. The network
used Faster R-CNN as the backbone network and realized oriented bounding box detection
by regressing four sliding offsets and a tilt factor. In 2021, Yang et al. proposed an end-
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to-end refined single-stage rotation detector, R3Det [34], to quickly and accurately locate
objects. In the text detection field, the rotational region convolutional neural network
(R2CNN) is an effective and simple network [35].

Previous studies have found that the features of interest are different for classification
tasks and localization tasks. Therefore, predecessors solved this problem by assigning
different detection heads to the different tasks. In 2020, Wu et al. proposed a double
head structure [36], which used a fully connected head for the classification task and a
convolutional head for the localization task. The convolutional head was made of one
residual block, some bottleneck blocks [4], and the same number of nonlocal blocks [37]. In
this paper, the authors also fused the classification scores from double heads. Song et al.
proposed a simple operator called task-aware spatial disentanglement (TSD) [38]. TSD
decouples classification and regression from the spatial dimension by generating two
disentangled proposals for them, which are estimated by the shared proposal.

In our experiments, we validated that the R2CNN network cannot perform well for
slender objects with arbitrary directivity. Furthermore, the convolutional head requires
calculation and leads to a low detection rate. Moreover, it is difficult to train. Therefore,
this paper proposes a simple and effective network for oriented object detection in remote
sensing images, namely TPR-R2CNN, which is based on a double fully connected head
structure and a three-point regression method. The proposed TPR-R2CNN network applies
a double fully connected head for classification and localization. One head is followed
by a classification layer and a horizontal bounding box regression layer, and the other is
followed by a classification layer and an oriented bounding box regression layer. The three-
point regression method is used in the oriented bounding box regression layer, which is a
fully connected layer, to regress the center point’s coordinate and two vertices’ coordinates
of the bounding box. The main contributions of this paper are as follows:

(1) The paper applies a double fully connected head with classification fusion, one for
classification and horizontal bounding box regression tasks, the other for classification
and oriented bounding box regression tasks. The outputs of the two classification
layers are fused as the final classification score.

(2) The paper proposes a three-point regression method (TPR) to enhance the detection
precision for remote sensing objects, which are slender and have arbitrary directions.
The new regression method increases the fault tolerance rate of the detection network.

We performed comparative experiments to validate the proposed method. Extensive
experimental results from the DOTA-v1.5 and HRSC2016 datasets showed better perfor-
mance of our detector than the regression method of the R2CNN network. The paper is
organized as follows.

In Section 2, we detail the proposed method, including the backbone, the basic algo-
rithm of TPR, the structure of the double detection head, and the new loss function based
on TPR. In Section 3, we detail the experiments, including the introduction and preprocess-
ing of the DOTA-v1.5 and HRSC2016 datasets, the evaluation metrics, and the parameter
settings in the training process. Section 4 presents the results of our method compared to
R2CNN and analyzes the results on two datasets. Finally, we discuss the limitations of the
proposed method and suggest future research directions. Section 5 concludes the paper.

2. Proposed Method

The basic network structure diagram of the proposed TPR-R2CNN is shown in
Figure 1. An oriented box regression layer was set parallel to the classification layer
and the horizontal box regression layer. A double head structure was used in the detection
stage. The double fully connected head was made of two single fully connected heads, one
of which was followed by a classification layer and the horizontal bounding box regression
layer, while the other was followed by a classification layer and oriented box regression
layer. The outputs of these classification layers were added together as the final result,
which was then put into the Softmax function to calculate the scores. The structures of
different detection heads will be explained in detail in Section 2.3.
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Figure 1. The object detection network structure diagram of the proposed TPR-R2CNN.

We proposed this detection method because using a horizontal box for detection has
certain drawbacks. A horizontal box contains some redundant information for oblique
objects, and it cannot accurately represent the position of all kinds of objects. In the
final non-maximum suppression (NMS) stage, for slender and densely arranged objects
with arbitrary directivity, such as vehicles and ships, the correct bounding boxes may be
deleted by mistake. This will result in a decrease in detection precision. As shown in
Figure 2, due to the influence of non-maximum suppression, the detection results miss
some correct objects. Using an oriented bounding box for detection is an effective way to
solve the problem.
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Figure 2. The detection results of slender and densely arranged objects with horizontal bounding boxes: (a) large vehicle
and (b) ship, small vehicle.

In order to realize object detection with an oriented bounding box, researchers added
some rotated anchor frames in the RPN stage. However, a large number of anchor frames
caused a sharp increase in the amount of calculation and introduced difficulties in training
and detecting. Then, researchers began to use the regression method for oriented object
detection with oriented bounding boxes. R2CNN [35] is an effective network for text
detection. However, the regression method cannot perform very well in remote sensing
object detection, especially for slender objects with arbitrary directions. Through our
experiments, we showed that the problem was mainly caused by the original regression
method, which is explained in detail in Section 2.2.
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2.1. Backbone

The oriented object detection network frame was based on the Faster R-CNN network.
The backbone used in this research was ResNet-50 [4] with FPN [25]. The focus of the
ResNet network is to propose a residual module, which can solve the problems of gradient
disappearance and gradient explosion in ultra-deep networks. In addition, the ResNet
network uses batch normalization (BN) instead of dropout, which speeds up the network
training process.

As remote sensing objects have the characteristics of scale diversity, FPN was used
in the network. Figure 3 shows the basic structure of the FPN network, which mainly
included three parts: a bottom-up feature extraction network, a top-down reconstruction
of the feature pyramid path, and a horizontal feature connection path.
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The bottom-up network produced feature maps of different sizes and levels. The low-
level feature maps had higher resolution but contained low-level semantic information, and
the high-level feature maps contained more abstract high-level features but lost resolution.
The top-down path reconstructed larger feature maps by up-sampling. In the horizontal
connection stage, the original feature map was operated by a 1×1 convolution layer, which
could unify the number of feature map channels. Then, the feature map was added by
element with the previous fused feature map, and the new fused feature map was obtained.

In this way, the fused feature maps {P0, P1, P2, P3} both had high resolution and deep
semantic information to a certain extent. In the anchor setting, {P0, P1, P2, P3} correspond to
the anchor scales of

{
322, 642, 1282, 2562}, respectively. The corresponding level of feature

map k is calculated by Equation (1):

k =
⌊

k0 + log2

(√
wh/224

)⌋
, (1)

where k0 is 4 and w and h are the width and height of the proposal, respectively.

2.2. Three-Point Regression

Based on the original Faster R-CNN network structure, this paper added an oriented
bounding box regression layer in parallel to the final prediction layers. This oriented
bounding box regression layer predicted the position offset information of the proposed
horizontal boxes. The proposed network contained the regression layer of the horizontal
box, because the authors of R2CNN [35] pointed out that the existence of the horizontal
bounding box regression layer can help improve detection precision. In the detection stage,



Remote Sens. 2021, 13, 4517 6 of 22

the horizontal bounding box NMS processing was changed to oriented bounding box NMS
processing, and the IoU threshold was set to 0.3.

Specifically, in the oriented bounding box regression stage, the R2CNN network
predicted the coordinate offsets of the first two points (upper left corner and upper right
corner) and the height of the oriented bounding box. This was effective for text detection
with a small angle of tilt. However, objects of remote sensing images are often accompanied
by large rotation angles, and the directions are arbitrary. For these objects, this method of
regression had a low error tolerance rate in the detection stage.

On the one hand, even if the predicted two vertices were only slightly different from
the vertices of the ground truth, the other two points’ coordinates could be quite different
from the true value. That is because they rely on the rotated angle of the oriented box,
the predicted vertices’ coordinates, and the height of the object. When the object has a
large aspect ratio in shape, the greater height and a small angle deviation will cause a large
deviation to the other two vertices. Hence, the predicted bounding box would probably
be deleted. Table 1 shows the IoUs of frames with different aspect ratios under various
angles. When the aspect ratio reaches 4:1, the predicted bounding box will be deleted if
the angle deviation is more than 10 degrees. As the aspect ratio increases, there are higher
requirements for the positioning precision of the first two vertices.

Table 1. IoUs of frames with different aspect ratios under various angles.

Aspect Ratio
Angle (Degree)

2 4 6 8 10 12 14 16 18 20

2:1 0.92 0.84 0.78 0.72 0.66 0.61 0.56 0.52 0.48 0.44
3:1 0.89 0.80 0.71 0.63 0.56 0.50 0.44 0.39 0.34 0.30
4:1 0.86 0.74 0.64 0.55 0.47 0.40 0.33 0.27 0.22 0.17
5:1 0.83 0.70 0.58 0.48 0.38 0.31 0.24 0.17 0.11 0.06
6:1 0.81 0.65 0.52 0.40 0.31 0.22 0.15 0.08 0.02 0.00

On the other hand, in some cases, the network may generate several predicted bound-
ing boxes at various directions for one ground truth. The IoUs between them and the
ground truth all reached 0.5, while the IoU values between some of them could not reach
the 0.3 threshold, and then there was not one predicted bounding box generated for one ob-
ject, thus decreasing the detection precision. This situation is shown in Figure 4. Figure 4a
shows the detection result of R2CNN. For the same large vehicle object, two detection
bounding boxes were generated, one of which was closer to the ground truth. The IoU
value did not reach the threshold of 0.3, so the relatively incorrect predicted bounding box
was not deleted.

In order to resolve this problem, we modified the original regression method by
regressing the coordinates of the first two vertices and the coordinates of the center points.
The coordinates of the other two vertices could be calculated from these three points. Once
the coordinates of the center point were located, a small deviation of the vertices would not
influence the location of the entire bounding box, and the fault tolerance was improved.
Although the predicted bounding box might not be a standard rectangle, the precision of
the position can be guaranteed to a certain extent, and the wrong boxes can be deleted easily
through NMS processing. This regression method is named the three-point regression
method (TPR). Figure 4b shows an example of the detection result with TPR-R2CNN.
Compared with R2CNN, the predicted position of this large vehicle was more precise.
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2.3. Double Detection Head

Figure 5 shows the structures of three different detection heads. Figure 5a is the
single fully connected head, which is made of two fully connected layers, with the size of
12,544 × 1024 and 1024 × 1024, respectively. In the single fully connected head structure,
the classification layer, horizontal box regression layer, and oriented box regression layer
share the one head. Figure 5b shows the structure of the double fully connected head. It
is made of two single fully connected heads, one of which is used for the oriented box
regression task.

Based on the double fully connected head, Figure 5c shows a new double fully con-
nected head, which contains two classification layers. For each predicted bounding box, the
outputs of the two classification layers were added element-wise to obtain a new output
vector. The Softmax function was applied to the new vector to obtain the final classification
score vector.

2.4. Loss Function

In this paper, the loss function is shown as in Equation (2). The total loss function
consists of three parts: the first is the object classification loss, which uses the cross-entropy
loss; the second is the horizontal box regression loss, which includes the regression loss
of the center point coordinates and the width and height of the box; and the third is the
newly added oriented box regression loss, including the regression loss of center point
coordinates and the first two vertices’ coordinates. λ0, λ1, and λ2 were set to 2, 1, and 1,
respectively.

L(p, t, u) = λ0
1

Nproposal
∑i Lcls

(
pi, p∗i

)
+ λ1

1
Nproposal

∑i Lreg
(
ti, t∗i

)
+ λ2

1
Nproposal

∑i Lreg
(
ui, u∗i

) (2)

Here, L(p, t, u) is the total loss function; Lcls
(

pi, p∗i
)
, Lreg

(
ti, t∗i

)
, and Lreg

(
ui, u∗i

)
are

the loss functions of classification, horizontal bounding box regression, and oriented
bounding box regression; and Nproposal is the number of proposals.

pi =
exp(ai1)

∑k exp(aik)
(k = 1, 2, . . . , Nc + 1), (3)

Lcls = −∑
i

p∗i log(pi), (4)
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Here, aik is the kth element of the classification vector obtained by the classification
layer, pi is the final classification score vector of the ith proposal, p∗i is the actual classifica-
tion score vector, and Nc is the number of categories. ti and ui are the predicted regression
values of the ith proposal.

Specifically, the classification loss was calculated by Equations (3) and (4). Both the
horizontal box and the oriented box regression loss were calculated using Smooth L1 Loss.
The formulas for calculating the regression value of the oriented bounding box are shown
in Equations (5) and (6):

ux1 =
(

x1 − xp1
)
/wp uy1 =

(
y1 − yp1

)
/hp

ux2 =
(

x2 − xp2
)
/wp uy2 =

(
y2 − yp2

)
/hp

uxc =
(
xc − xpc

)
/wp uyc =

(
yc − ypc

)
/hp

(5)
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smoothLl(x) =

{
0.5x2 i f |x| < 1

9

|x| − 0.5 otherwise
(6)

where wp and hp are the width and height of the proposal and (x1, y1), (x2, y2), and (xc, yc)
are the predicted coordinates of the first vertices and center point. (xp1, yp1), (xp2, yp2), and
(xpc, ypc) are the coordinates of proposed bounding box.

In the calculation of the oriented bounding box regression loss, the weights of the six
offsets in Equation (5) were set to 5, 5, 5, 5, 10, and 10. For the horizontal bounding box
regression loss, the weights were set to 10, 10, 5, and 5.

3. Experiment

To evaluate the performance of the proposed method, we performed experiments
on two publicly available and challenging datasets: the DOTA-v1.5 dataset [12] and the
HRSC2016 [39] dataset. The dataset preprocessing, evaluation metrics, and training details
are described in this section.

3.1. Dataset and Preprocessing

For the experiments, two datasets were chosen, DOTA-v1.5 and HRSC2016, for ori-
ented bounding box object detection in aerial images.

3.1.1. DOTA-v1.5

The DOTA-v1.5 dataset contains 2806 remote sensing images and 403,318 instances,
covering 16 categories: airplane, ship, storage tank, baseball diamond, tennis court, bas-
ketball court, ground track field, harbor, bridge, small vehicle, large vehicle, helicopter,
roundabout, football field, swimming pool, and container crane. DOTA-v1.5 is an updated
version of DOTA-v1.0. Both of them use the same aerial images but DOTA-v1.5 has revised
and updated the annotation of objects, where many small object instances about or below
10 pixels that were missed in DOTA-v1.0 have been additionally annotated. In addition,
DOTA-v1.5 added the category of container crane. Consistent with DOTA-v.1.0, the images
in DOTA-v1.5 mainly came from China’s resource satellites Jilin-1, Gaofen-2, and Google
Earth. The width and height of the DOTA-v1.5 images range from 800 to 4000 pixels, and
the spatial resolution is 0.1 m to 4.5 m. It is divided into a training set, validation set, and
test set, according to the ratios of 1/2, 1/6, and 1/3, respectively.

In the dataset, the position of each instance is represented by a quadrilateral bounding
box. The bounding box can be expressed as “x1, y1, x2, y2, x3, y3, x4, y4”. The vertices are
arranged in clockwise order. For the horizontal box, the starting point is the upper left
vertex, and for the oriented box, the starting point is the front left vertex in the physical
sense of the object. Through experiments, we found this method of labeling was hard to
train. Therefore, in our experiments, we set the point that was the nearest to the upper left
vertex of the horizontal bounding box as the starting point, and the vertices were arranged
in clockwise order.

We used the training set in the dataset for training and the validation set for testing
and evaluating the network. We separately counted the size information of all objects
in the training set and validation set, according to the horizontal bounding boxes. As
shown in Figure 6, the object sizes of the training set and validation set of DOTA-v1.5 were
concentrated within 200 pixels, the number of small targets was large, and the proportion
was high. There were nearly 100,000 small objects within 15 pixels of DOTA-v1.5, and the
smallest object area was only 8 square pixels.
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For the DOTA-v1.5 dataset, the sizes of most images were too large. Considering
the problem of memory occupation, the original images were split into 800 × 800 patches
with a stride of 640. Because both the horizontal and the oriented boxes’ information of
objects needed to be used, we comprehensively considered the selection criteria of the
cropped horizontal boxes and the oriented boxes. We ensured that the horizontal boxes of
the objects in the cropped images corresponded to the label information of the oriented
boxes one by one, and we contained the cropped objects with areas more than 90% of the
original total area. The number of images after splitting was 20,287, among which there
were 15,340 images in the training set and 4947 images in the validation set, respectively.

In the horizontal box and directed box labeling information, the incorrect labeling
information with an area of 0 was uniformly eliminated. Then, the annotation format of
the picture was converted to Pascal VOC format, which contained the information on the
horizontal frame and the directed frame. The horizontal annotations were expressed in
the form of “(xmin, ymin), (xmax, ymax)”, and the oriented annotations were expressed in the
form of “x1, y1, x2, y2, x3, y3, x4, y4”, which was different from DOTA-v1.5. In the original
labeling method of the data set, the coordinates of the starting point here were unified as
the coordinates of the top-left vertex, rather than the “top-left corner” in the physical sense.
Similarly, the DOTA-v1.5 data set images were also standardized before being sent to the
model. During the training process, half of the training images were also randomly flipped
for data augmentation.

After the preprocessing of the DOTA-v1.5 dataset, the number of objects contained
was counted in each image of the dataset, as shown in Figure 7. The abscissa was the
number of objects in each image, the interval was 15, and the ordinate was the number
of images.
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3.1.2. HRSC2016

The HRSC2016 dataset contains images from two scenarios, including ships at sea
and ships inshore. The images were collected from Google Earth. The images sizes range
from 300 × 300 to 1500 × 900, and most of them are larger than 1000 × 600. There are
more than 25 types of ships with large varieties in scale, position, rotation, shape, and
appearance. The training and validation datasets in our experiments contained 617 images
and 438 images, respectively. For data augmentation, we adopted horizontal flipping. The
images were resized to (512, 800), where 512 represents the length of the short side and 800
the maximum length of an image.

3.2. Evaluation Metrics

Object detection accuracy evaluation indicators include the missing alarm rate (MAR),
false alarm rate (FAR), average precision (AP), and mean average precision (mAP) for all
categories. These metrics are related to each other.

The precision reflects the number of positive samples that are found and correct, and
the recall reflects how many positive samples are found. By setting different confidence
thresholds, multiple sets of precision and recall can be obtained, which can be calculated
from Table 2 and Equation (7).

Table 2. Confusion matrix. P: Positive; N: negative; TP: true positive; FP: false positive; FN: false
negative; TN: true negative.

Actual Value
Predicted Value

Y N

Y TP FN
N FP TN

The P–R (precision–recall) curve was composed of recall values, which formed the
horizontal axis, and precision values, which formed the vertical axis, as shown by Figure 8.
Integrating the P–R curve, the average precision (AP) value was calculated. However, in
practical applications, integrating the P–R curve is not commonly used; smoothing the
P–R curve is more common. Specifically, for each point on the P–R curve, the value of
precision takes the value of the greatest precision on the right side of the point, as shown in
Equation (8). mAP is the average of the average precisions of all categories.
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Figure 8. An example of a P–R curve.

The evaluation metrics used in this paper were AP and mAP. The classification stan-
dard for positive and negative samples is whether the IoU value reaches 0.5. If the IoU
value between the predicted box and any ground truth is greater than 0.5, the predicted
box is classified as a positive sample; otherwise, it is a negative sample.
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In this research, the object detection speed evaluation metrics were the number of
images detected per second (FPS, frames per second), which was calculated on a graphics
card. Specifically, the model time was used to evaluate the detection effectiveness of
this model.

recall =
TP

TP + FN
precision =

TP
TP + FP

(7)

AP =
∫ 1

0
p(r)drPsmooth(r) = maxr′>=rP

(
r′
)

(8)

where p(r) is the P–R curve and AP is the average precision.

3.3. Training Details

The experiments in this paper were trained on a server, which had an RTX3090
GPU with 24 GB RAM. This research used the pretrained weights, which were trained
on ImageNet. In the training processing, the low-level weights conv1 and conv2_x in
ResNet-50 were frozen, and only the high-level weights were trained.

During the training process, the batch size (the number of images input to the net-
work each time) was set to 8 and 16 for the DOTA-v1.5 dataset and HRSC2016 dataset,
respectively, and the batch size of RPN was set to 256. The optimizer was the stochastic
gradient descent method with momentum, and the momentum was set as 0.9, which is
commonly used; the initial learning rate was set to 0.005. When the validation loss was
stable or over-fitting occurred, the learning rate was reduced to 1/3 of the original. After
the mAP value stabilized, the training was stopped. In the validation stage, the objects
with confidence above 0.05 were contained.

For the DOTA-v1.5 dataset, there were 8000 RoIs from RPN before NMS and 2000 RoIs
after NMS processing. We used 3 aspect ratios {1/2, 1, 2} for anchors. After oriented
bounding box NMS (IoU threshold = 0.3), the maximum number of detection boxes retained
per image in the DOTA-v1.5 dataset was 2000. For HRSC2016, there were 8000 RoIs from
PRN before NMS and 1000 RoIs after NMS. The aspect ratios of anchors were set to
{1/4, 1/3, 1/2, 1, 2, 3, 4}, because there were more aspect ratio variations in HRSC2016. For
the DOTA-v1.5 and HRSC2016 datasets, the maximum numbers of detection boxes retained
per image were 2000 and 100.

4. Results and Discussion
4.1. Results

This paper compared the detection results of the two regression methods, which were
regressing coordinates of two vertices and height and regressing coordinates of two vertices
and the center point. This paper also compared them with the network with a double
detection head and classification fusion. We reproduced the R2CNN network based on our
deep learning frame, so that the R2CNN in Tables 3–5 only had one difference of regression
method with TPR-R2CNN (without double detection head and classification fusion). The
other parameters were all the same, as control variable experiments are more convincing.

Table 3. Comparison of detection rate and mAP on HRSC2016 dataset. TPR: Three-point regression;
DH: double detection head; CF: classification fusion.

Detection Network TPR DH CF
Detection

Rate
(fps)

mAP (%)

R2CNN 48.6 74.11
TPR-R2CNN (Proposed)

√
48.2 88.16

TPR-R2CNN (Proposed)
√ √

46.6 88.61
TPR-R2CNN (Proposed)

√ √ √
45.8 89.38
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Table 4. Comparison of detection rate (fps) on DOTA-v1.5 dataset. TPR: Three-point regression; DH:
double detection head; CF: classification fusion.

Detection Network TPR DH CF Detection
Rate (fps)

R2CNN 28.7
TPR-R2CNN (Proposed)

√
27.2

TPR-R2CNN (Proposed)
√ √

27.3
TPR-R2CNN (Proposed)

√ √ √
27.2

Table 5. Comparison of the AP (%) of each class for the DOTA-v1.5 dataset. DH: Double detection head; CF: classification
fusion.

Class R2CNN TPR-R2CNN TPR-R2CNN
(DH)

TPR-R2CNN
(DH + CF) Increment

Plane 87.74 87.85 87.80 88.79 1.05
Baseball diamond 60.84 60.97 62.60 60.30 −0.54

Bridge 43.16 48.80 48.06 49.65 6.49
Ground and field 64.87 62.03 63.01 65.24 0.37

Small vehicle 45.75 47.75 48.64 48.19 2.44
Large vehicle 48.39 55.61 56.55 55.96 7.57

Ship 69.85 73.28 74.02 75.37 5.52
Tennis court 56.19 67.74 64.65 68.56 12.37

Basketball court 54.78 49.97 57.79 56.15 1.37
Storage tank 71.06 70.98 71.30 71.03 −0.03
Soccer field 50.59 52.28 58.21 50.68 0.09
Roundabout 64.03 64.40 66.77 66.48 2.45

Harbor 54.00 62.00 64.46 64.25 10.25
Swimming pool 53.43 56.19 58.08 57.30 3.87

Helicopter 47.65 47.09 46.66 56.61 8.96
Container crane 0.00 0.00 0.02 0.26 0.26

mAP (%) 54.52 56.68 58.15 58.42 3.90

The IoU threshold for detection bounding boxes was set to 0.5, and the results of
the DOTA-v1.5 dataset are shown in Tables 4 and 5. The detection rate and mAP of the
HRSC2016 dataset are represented in Table 3. The detection rates were obtained by test
experiments on GPU. Figures 9 and 10 show the visual detection results of the proposed
TPR-R2CNN network (containing the double detection head and classification fusion) in
the HRSC2016 and DOTA-v1.5 datasets, respectively. Plane, baseball diamond, bridge,
ground track field, small vehicle, large vehicle, ship, tennis court, basketball court, storage
tank, football field, roundabout, harbor, swimming pool, helicopter, and container crane
are denoted by sky blue, yellow, emerald green, purple, rose red, crystal blue, orange,
cyan blue, slate blue, cadmium red, grey, dark green, white, almond white, red, and blue,
respectively.
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Tables 4 and 5 show that, with the change in the oriented bounding box regression 
method, the detection rate of the network was slightly reduced from 28.7 to 27.2. In addi-
tion, the application of the double fully connected head and double classification layers 
did not influence the detection rate. 
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Figure 10. Some visual results of detection with TPR-R2CNN (double head with classi-
fication fusion) network (the threshold score is 0.5) for the DOTA-v1.5 dataset: (a) large
vehicle, small vehicle; (b) roundabout, small vehicle; (c) tennis court, small vehicle; (d) oil
tank, ship, and small vehicle; (e) plane, large vehicle, and small vehicle; (f) ship, small
vehicle; (g) football field, tennis court, small vehicle, baseball diamond, basketball field,
and swimming pool; (h) harbor; (i) baseball diamond; (j) football field, ground-track-field,
and large vehicle; (k) bridge; (l) helicopter; and (m) plane, large vehicle, and small vehicle.

Table 3 shows that, compared with the regression method of R2CNN, the detection
rate of the proposed network was slightly reduced from 48.6 to 45.8. The adoption of
TPR had a large increase in the mAP, which was 14.05%. With the double detection head
and classification fusion, the mAP reached 89.38%, even better than methods with larger
backbones. As Figure 9 shows, ships with various sizes and directions were detected
correctly and accurately. The ships which were obscured were also detected.

Tables 4 and 5 show that, with the change in the oriented bounding box regression
method, the detection rate of the network was slightly reduced from 28.7 to 27.2. In
addition, the application of the double fully connected head and double classification
layers did not influence the detection rate.

Compared with the regression method of the original R2CNN, the average accuracy
of the 16 categories of TPR-R2CNN increased from 54.52% to 56.68%, an increase of 2.16%.
Among them, the average precision of 11 categories increased: plane, baseball diamond,
bridge, small vehicle, large vehicle, ship, tennis court, soccer field, roundabout, harbor, and
swimming pool. In particular, for the bridge, large vehicle, ship, tennis court, and harbor,
the AP was greatly improved. They had increases of 5.64%, 7.22%, 3.43%, 11.55%, and 8%,
respectively. These categories of objects have some common characteristics; they have a
large aspect ratio and arbitrary directions. As shown in Figure 10, objects with various
sizes and directions were detected correctly. Some small objects such as small vehicles were
also detected accurately.
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The comparative experiments verified that the regression method of TPR-R2CNN
performed better than R2CNN in remote sensing image object detection tasks.

Figure 11 shows the visualization results of R2CNN and TPR-R2CNN. We chose ship,
large vehicle, and harbor objects for comparison. The locations of objects with large aspect
ratios were more precisely located. The majority of the wrong detection bounding boxes
could be deleted after the NMS process.
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TPR-R2CNN with a double fully connected head offered an increase of 1.47%; the
mAP was 58.15%. Compared with the single fully connected head, this detection head
provided a single head for the oriented bounding box regression task, and this method
improved the AP of 12 categories of objects. The basketball court AP had the largest
increase of 7.82%. Based on the double detection head structure, the application of two
classification layers’ fusion increased the mAP by 0.27%. The proposed network classified
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plane and helicopter objects more accurately, and the AP of helicopter increased by 3.90%.
More helicopters were distinguished from planes.

As shown in Figure 10, the proposed detection network detected objects of different
categories and various sizes. Even some small vehicle objects less than 20 pixels were
detected accurately, which are marked in pinks frame in the above images. For densely
arranged objects with arbitrary directions, this network could also accurately detect the
locations of the objects and marked them with oriented bounding boxes.

We also chose some images which contained slender and densely arranged objects.
By using horizontal boxes and oriented boxes to detect objects, we obtained the results
shown in Figure 12. Figure 12a,b,e,f shows the detection result of vehicles and Figure 12c,d
compares the detection result of ships. The detection result with oriented bounding
boxes performed better than that with horizontal bounding boxes. The proposed network
improved the influence of NMS and more objects were detected.
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We compared the proposed method with the state-of-the-art methods on HRSC2016.
Table 6 shows the comparisons between them, and the detection rate was tested on the CPU.
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Table 6. Comparisons with the state-of-the-art methods on HRSC2016.

Detection Network Backbone Detection Rate (fps) mAP (%)

R2CNN ResNet50 3 74.11
Gliding Vertex ResNet101 10 88.20

RoI Transformer ResNet101 6 86.20
R3Det ResNet101 12 89.26

TPR-R2CNN
(Proposed) ResNet50 2.9 89.38

From Table 6, it is shown that with a smaller backbone of ResNet-50, the proposed
method achieved a better detection result on the HRSC2016 dataset. We believe that if
we use a larger backbone, the mAP could be even higher. The detection rate was lower
than other state-of-the-art methods. The reason may be that the object detection frame
we used was Faster R-CNN, a double-stage detection method. Furthermore, the adoption
of both the horizontal and oriented bounding box regression method introduced more
parameters for this model. In our future research, we will examine some single-stage
detection methods such as RetinaNet, and reduce some model parameters.

4.2. Discussion

By comparing and analyzing the groups of experiments, the validity of the proposed
method was verified.TPR-R2CNN with a double fully connected head and classification
fusion offered superior performance to slender and high-density objects with arbitrary di-
rections. However, container cranes were barely detected because the number of container
cranes for training was only 47, and the number of images was only 7. The sample size of
the container cranes was too small, while some other categories of objects reached more
than 10,000. The large difference in the number of different object categories caused the
network parameters to change in the direction of the categories with a large number during
the network training process. However, a small number of crane objects were difficult to
detect. In future research work, we will increase the sample size of these under-numbered
object categories by rotating and flipping the images. By controlling the number of different
categories in a relatively balanced range, it is possible to achieve better training results.

Furthermore, it can be seen from Figure 13 that the TPR-R2CNN network structure
affected the classification effect during the training process. Although there was also a
misdetection between similar object classes in the horizontal bounding box detection, the
problem was obviously more serious in TPR-R2CNN. We increased the weight of the class
branch, but the improvement was not significant. This is a problem to be solved in future
experiments.
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5. Conclusions

This paper proposed an improved oriented object detection in remote sensing images
based on a three-point regression method. The proposed method has the following novel
features: (1) a double fully connected head with classification fusion to further improve the
detection precision and (2) the three-point regression method (TPR), which can enhance
the detection precision for remote sensing objects which are slender and arranged densely.
The experimental results on the two public and challenging datasets and the comparisons
with the R2CNN network demonstrate the effectiveness and good performance of the
proposed method. However, despite demonstrating better performance, the proposed
method increased the misdetection rate due to inaccurate classification between similar
categories. Furthermore, the detection rate was lower than the state-of-the-art methods
due to the basic detection frame and a large number of parameters. Thus, our future work
will focus on increasing the classification precision and reducing the calculation amount.
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