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Abstract: Landslides are recognized as high-impact natural hazards in different regions around the
world; therefore, they are extensively researched by experts. Landslide inventories are essential to
identify areas that are likely to be affected in the future, thereby enabling interventions to prevent
loss of life. Today, through combined approaches, such as remote sensing and machine learning
techniques, it is possible to apply algorithms that use data derived from satellite images to produce
landslide inventories. This work presents the performance of five machine learning methods—k-
nearest neighbor (KNN), stochastic gradient descendent (SGD), support vector machine radial basis
function (SVM RBF Kernel), support vector machine (SVM linear kernel), and AdaBoost—in landslide
detection in a zone of the state of Guerrero in southern Mexico, using continuous change maps and
primary landslide factors, such as slope angle, terrain orientation (aspect), and lithology, as inputs.
The models were trained with 2/3 of ground truth samples of 671 slidden/non-slidden polygons.
The obtained inventory maps were evaluated with the remaining 1/3 of ground truth samples by
generating a confusion matrix and applying the Kappa concordance coefficient, accuracy, precision,
recall, and F1 score as evaluation metrics, as well as omission and commission errors. According to
the results, the AdaBoost classifier reached greater spatial and statistical coherence than the other
implemented methods. The best input layer combination for detection was the continuous change
maps obtained by the linear regression and image differencing detection methods, together with the
slope angle, aspect, and lithology conditioning factors.
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1. Introduction

Significant efforts have been made worldwide to collect, record, and analyze data
on the occurrence and impacts of natural disasters [1]. The development of natural dis-
aster databases is essential since they facilitate the evaluation of their natural and social
impacts and the vulnerability of regions at different scales, which can be used to design
and implement risk management or land-use planning by the corresponding authori-
ties [2]. Geographic databases that contain information on landslides, including inventories
and thematic data, represent a powerful tool for local, regional, national, or continental
management and organization [3].

Inventory maps are essential components of a geographical landslide database. They
provide historical information on past landslide events, including their location, type, and
triggers, such as heavy rain, rapid thaw, or an earthquake. Inventories also include statistics
on the frequency of slope failures and provide relevant information to build models of
landslide susceptibility or landslide risk [4–10].

Most studies on landslide susceptibility, landslide risk, or landslide vulnerability start
from the data of previous events integrated into landslide inventory maps, which are
useful for evaluating the predictive capacity of the applied methods. Van Westen et al.
(2008) [11] suggest that “a comprehensive landslide inventory is essential to be able to
quantify both landslide hazard and risk.” Thus, inventory generation is a crucial stage in
this type of study and can be improved by applying techniques such as image analysis,
historical research, or the integration of field sampling [12], which requires more significant
resources and raises some difficulties in the integration of historical information, often due
to a lack of available information [13].

The approaches applied in integrating landslide inventory maps have evolved with
technological advances that have allowed access to satellite images with better spatial,
radiometric, and temporal resolutions. The inventories of landslides integrated from visual
inspections and mapping of landslides on photographs or images, complemented through
field studies, have been helpful in the integration of maps of hazards and susceptibility
to landslides [14]. According to Harp et al. [15], in the early 1960s, the first earthquake-
induced landslide inventory maps were made by using aerial photographs; however,
access to satellite images has allowed the integration of landslide inventories applying
semi-automatic methods [14,16], detection of changes and image fusion [17].

Automatic change detection methods and learning algorithms that use images have
been applied to integrate landslide inventory maps. Ramos-Bernal et al. (2018) [18] ob-
tained a global landslide inventory map from the integration of three landslide inventory
maps generated by applying three automatic change detection methods and two threshold-
ing methods; the global map showed a mean omission error of 7.97%, a mean commission
error of 6.79%, and a Kappa concordance coefficient of 84.15%. Chen et al. (2018) [19]
obtained a landslide inventory map of Shenzhen, Zhouqu County, and Beichuan County,
China, by applying a deep convolution neural network (DCNN) to extract areas where
drastic alterations had occurred, followed by the application of spatial–temporal context
learning (STCL) to identify landslide areas. The map obtained a commission error below
17.6% and reached a quality percentage higher than 61.1% for landslide areas. Hacıe-
fendioğlu et al. (2021) [20] applied Resnet-50, VGG-19, Inception-V3, and Xception deep
learning techniques to automatically detect regional landslides. They used receiver oper-
ating curves (ROCs) and F1 scores applicable to the characteristics of landslide detection
to evaluate the experimental results. The results obtained show that both Resnet-50 and
VGG-19 had a success rate greater than 90%.

Conditioning Factors of Terrain Stability

Integrating a landslide inventory map over a large area means limiting the number of
factors to consider because it is impossible to effectively control all of them due to either
data availability or economic or time constraints. For this reason, it is vital to understand
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how some individual factors influence the landslide process and thus decide whether to
incorporate them into the analysis.

The spatiotemporal distribution of landslides is conditioned by factors that may be
due to site characteristics or external agents. The factors can be many and varied; they
interact in a complex way and can be classified into conditioning factors and triggers
according to their characteristics. Inventories of landslides analyzed with the factors that
conditioned or triggered them can generate helpful information for spatial models.

Various factors were identified in previous works on landslide susceptibility or land-
slide risk. Certain common factors were considered in many works, such as slope, aspect,
geological lineaments, and lithology [12,19,21–31]. In addition, the number and types of
considered factors always depend on the characteristics and conditions of the study area.
Some of the most common factors among the analyzed works are slope angle, aspect, and
lithology, which are included in this study mainly based on the analysis of the individual
contribution of each of the mentioned factors, carried out through graphs of response
curves and the jackknife test, developed by Ramos-Bernal [32].

The slope is the angle between the plane of the Earth’s surface and the horizontal
plane. The effects of gravity that determine the water flows and the materials removed
vary depending on the slope (on higher slopes, the gravity and the speed of materials are
more significant). This combination causes erosion, water and material transportation, and
the induction of stress on the slopes, thus increasing the likelihood of landslides.

According to previous works, the slope angle is one of the most important factors to
consider in landslide studies. It determines the amount of kinetic and potential energy
that a stable mass can store or generate when unstable. Sites with low slope angles are
considered more stable and safer from the occurrence of landslides; in other words, the
possibility of a hillside failure tends to increase with a higher slope angle. A long hillside
can include sections that may be affected by movements from the upper sections; thus, the
steepness of the terrain indicates whether an area is prone to sliding. Several studies have
confirmed the hypothesis that landslides occur more frequently on steeper surfaces [33–35].
According to Alcántara-Ayala (2000) [36], slopes equal to or greater than 5◦ favor the
occurrence of landslides.

The terrain orientation represents the direction of exposure at a point, defined as the
angle between the geographic north (azimuth) and the projection on the horizontal plane
of the vector normal to the surface at a given point, with values of −1◦ to represent flat and
continuous areas and values from 0◦ to 360◦ depending on the orientation [32]. The terrain
orientation provides us with information about the insolation of a slope; it can also be
interpreted in terms of vegetation. Depending on the rain front, the orientation influences
the amount of rain and the direction in which it impacts the slope during precipitation
events.

According to Guzzetti et al. (1999) [37], Cevik and Topal (2003) [38], Lee et al.
(2004) [39], and Chen et al. (2015) [31], there is an important relationship between the
terrain orientation and the occurrence of landslides; thus, it is often considered in studies
aiming to model landslides. DeGraff and Romesburg (1980) [40] pointed out that the
orientation reflects the structural and organic conditions of a slope because it includes fault
planes and climatic factors. Marston et al. (1998) [41] observed that exposed soil on south-
facing slopes in the Himalayas was subject to several wetting and drying cycles, which
increased landslide activity. Other researchers, such as Chen et al. (2015) [31] and Rawat
et al. (2015) [30], reported an association between landslides and the terrain orientation and
classified them to identify the class range in which a more significant number of landslides
occurred. The results of their work indicate that, in their study area, landslides tended to
occur in orientations from southeast to east.

Lithology includes the structure, composition, texture, and other attributes that in-
fluence the physicochemical behavior of rocks and sediments, which together determine
cohesion, internal friction angle, permeability, and susceptibility to weathering, whether
physical or chemical.
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Lithological and structural variations often lead to a difference in the strength and
permeability of rocks and soils. Some works have recognized lithology as one of the most
critical factors in slope sliding. Different lithological units present different degrees of
landslide susceptibility; some soft lithologies weather more easily and are more prone to
sliding than other hard lithologies [42–45].

The availability of remote sensing data is helpful to produce landslide inventory maps.
Spectral data combined with specific factors that influence the landslide process can be
indispensable for detecting landslides at a specific moment.

Given the above context, this work aims to integrate landslide inventory maps by
applying supervised machine learning (ML) classification algorithms to continuous change
maps derived from change detection techniques and maps of conditioning factors that
influence land instability. This study referenced data from 2013 because extraordinary
hydrometeorological events occurred that year: tropical depression No. 13 in the Pacific
Ocean and two simultaneous hurricanes, Manuel in the Pacific and Ingrid in the Gulf of
Mexico, caused significant flooding and landslides across the coast of the State of Guerrero.

2. Study Area

The study area covers 3300 km2 in the central zone in the State of Guerrero in México;
it consists of a mountainous region with elevations ranging from 280 m to 3540 m above
mean sea level and slopes greater than 40◦ (Figure 1).
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Figure 1. Study area. The central region of the State of Guerrero in México.

The precipitation records of the Mexican Meteorological Service (SMN) for 2013
indicate that the average varied from a minimum of 800 mm to a maximum of 2100 mm
from June to September. The area was covered by 74.8% forest (coniferous, mesophilic, and
mixed), 14.1% deciduous forest, 7.8% agricultural areas, 3.2% induced vegetation, and 0.1%
human settlements and urban areas [46].

The area is physiographically located in the Sierra Madre del Sur [47]. It has various
metamorphic rock compositions consisting of schists and gneisses of biotite and quartzite,
deposited limestone outcrops, metavolcanic rocks with sedimentary influence, siltstones,
sandstones, conglomerates, and carbonate rocks. Rhyolitic rocks are also found because of
Oligocene–Miocene volcanism. The youngest rocks correspond to alluvial deposits present
in riverbanks and channels [48,49].

The study area is interesting for its geographical location, its topographic and geo-
logical conditions, and the occurrence of hydrometeorological phenomena in recent years,
triggering massive landslides that have affected the population and the infrastructure
in their communities. September 2013 was particularly notable, as this is when tropical
depression No. 13 in the Pacific Ocean and subsequent simultaneous hurricanes—Manuel
in the Pacific and Ingrid in the Gulf of Mexico—caused major landslides off the coast of
the State of Guerrero. The landslide in the La Pintada community in Atoyac de Álvarez
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stands out as particularly devastating (Figure 2a), causing 70 fatalities, 379 victims, and
20 damaged buildings [18].
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https://www.jornada.com.mx/2013/09/24/ciencias/a03a1cie (accessed on 25 May 2021). (b) Landslide in Jaleaca de
Catalán and (c) landslide in El Tule ravine in Chilpancingo, the capital city of the State of Guerrero. Source: Adaptation in
Google Earth and El Sur, 2017. https://suracapulco.mx/aun-no-reubican-a-20-familias-que-perdieron-su-casa-tras-un-
deslizamiento-de-tierra-en-la-capital/(accessed on 25 May 2021).

The mountain region (yellow in Figure 2), located on the west of Guerrero State,
was one of the areas most affected by heavy rains in 2013. Twenty-nine fatalities were
confirmed, and the Ministry of Agrarian, Territorial and Urban Development (SEDATU)
reported that 4351 homes in the mountain region were affected (some experienced fissures
or subsidence, and others were destroyed), but local sources in the region assert that an
additional 2988 homes were damaged [50,51]. The central region was also affected by the
occurrence of landslides; one of them is particularly notable for its size (2.5 × 0.5 km),
which occurred approximately 14 km north of the community of Jaleaca de Catalán and
33 km northwest of Chilpancingo, the state capital (Figure 2b).

In September 2017, due to intense rainfall, Chilpancingo, the state capital, was affected
by a landslide that led to the collapse of ten houses near the El Tule ravine (Figure 2c),
located between the El Mirador and Obrera neighborhoods [52].

There is a significant concentration of inhabitants in the study area. According to the
2010 population and housing census (the closest census year to the occurrence of landslides
in the study area), 187 localities with 15,230 dwellings were occupied by 59,098 inhabi-
tants [53].

https://www.jornada.com.mx/2013/09/24/ciencias/a03a1cie
https://suracapulco.mx/aun-no-reubican-a-20-familias-que-perdieron-su-casa-tras-un-deslizamiento-de-tierra-en-la-capital/
https://suracapulco.mx/aun-no-reubican-a-20-familias-que-perdieron-su-casa-tras-un-deslizamiento-de-tierra-en-la-capital/
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3. Materials and Methods

The methodology developed for the integration of landslide inventories consists of
four stages:

1. Dataset. The first step consists of acquiring primary data: ASTER images, Digital
Elevation Model (DEM), geological-mining charts, aerial photographs, and field
data. Derived maps were generated from Principal Component 1 (PC1) in principal
component analysis (PCA), normalized difference vegetation index (NDVI), cloud
masks, slope angle (S), aspect (A), lithology (L), and ground truth (GT) samples.
Dinamica EGO 5 was used to generate the NDVI images; the PCA images were
obtained using ArcMap 10.3.

2. Automatic change detection. At this stage, two change detection methods were
applied, linear regression (LR) and image differencing (Diff), to the maps derived
from the ASTER images. Three maps of continuous change were generated: LR
applied to PC1 (LR-PC1), LR applied to NDVI (LR-NDVI), and Diff applied to PC1
(Diff-PC1). This process was performed with Dinamica EGO 5.

3. Supervised classification. In this stage, the k-nearest-neighbor (KNN), stochastic
gradient descent (SGD), support vector machine (SVM), and AdaBoost classifiers
were applied using the previously obtained continuous change maps (LR-PC1, LR-
NDVI, and Diff-PC1) and the factors of slope stability (S, A, and L) considered.
The process was repeated and complemented by incorporating the factors into the
classification, one by one, and combining them. All classification algorithms, so as the
accuracy evaluation metrics, were run using the scikit-learn version 0.22.1 for Python
3.6.5 programming language.

4. Accuracy assessment. In this stage, the inventory maps obtained by supervised
classification were evaluated by confusion matrices, omission and commission errors,
and metrics such as the Kappa concordance coefficient (k), accuracy (ACC), precision,
recall, and F1 score. Python’s Georasters library version 0.5.20 was used to read the
derived satellite images, including its metadata, and generate the maps after the
classification stage.

The overall methodology used in the study is depicted in Figure 3.
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3.1. Dataset

Two ASTER (level AST-L1T) images were used courtesy of the United States Geological
Survey; the images cover the study area and were captured on 10 December 2012, and 13
December 2013 (before and after the extraordinary hydrometeorological event of September
2013). The green, red, and near-infrared bands were used with a spatial resolution of 15 m.
The SCS + C method (Sun Canopy Sensor + Correction) was employed for topographic
correction by slope class [54] to better characterize the diffuse irradiance; this approach
is recommended for mountainous forest areas [55]. From these normalized images, new
images were generated through principal component analysis transformation [56] and
normalized difference vegetation indices [57,58] using a cloud mask and shadows. The
derived images were used in the change detection stage.

From the topographic maps, courtesy of the National Institute of Statistics and Geog-
raphy of Mexico (INEGI), a digital elevation model (DEM) of 15 m spatial resolution was
obtained to generate the slope angle (S) and aspect (A) maps. The lithology map (L) was
obtained from geological-mining charts courtesy of the Mexican Geological Service (SGM).
These three maps were used as factors in the supervised classification stage (Figure 4).
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meteorological events of September 2013).
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3.2. Ground Truth

The ground truth (GT) was integrated by sampling actual landslide and non-landslide
zones and digitizing polygons on the image from 12 August 2014, on the Google Earth
platform. When sampling the GT inventory, areas with surfaces greater than 450 m2 (two
ASTER pixels) were given priority to characterize small landslides in greater detail.

Due to the time difference between the image used for integrating the GT and the
date of the extraordinary rainfall (11 months), a validation was applied to ensure that
the polygons identified in Google Earth existed in the 2013 ASTER image. As a result,
671 polygons were digitized and converted to raster format, representing 32,462 pixels of
the study area: 592 polygons (15,266 pixels) correspond to landslides, and 79 polygons
(17,196 pixels) correspond to non-landsides (Figure 5). The polygons were included within
the landslide areas to obtain more reliable results.
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Figure 5. Ground truth (GT) sampling.

An evaluation of the GT was carried out through field visits to some areas. Due to
issues of access and unsafe conditions in the study area, not all digitized polygons were
field verified. Field verification was performed on 321 polygons (53.3%) in safe areas close
to the largest cities and near the most important roads. The GT must be accurate and timely;
in this study, the GT refers to sites in which actual significant landslides were previously
identified and sites considered unaltered or stable within the study area, determined
through Google Earth images and partially validated by field check.

Among the areas identified as non-landslides in the GT sampling, different land use
and land cover areas were included, such as forests, low deciduous forests, agriculture,
bodies of water, and human settlements, to evaluate only the capacity of the model to
identify landslides.

The GT samples were randomly divided into two parts, as follows:

• 2/3 of the GT samples (21,640 pixels) were used for the training stage of the classifica-
tion models to identify landslides/non-landslides;

• 1/3 of the GT samples (10,822 pixels) were reserved for assessing the accuracy of the
classifier methods in detecting landslides.

3.3. Automatic Change Detection

Three maps of continuous change were generated and used as data layers in the
supervised classifier to integrate landslide inventories. The continuous change maps were
obtained from Principal Component 1 (PC1). The normalized difference vegetation index
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(NDVI) maps were derived from the normalized ASTER images and the application of
linear regression and image differencing as change detection methods, which are described
below.

3.3.1. Linear Regression

The linear regression (LR) change detection method assumes that the pixel values
(Y) of the final-date image f 2 result from a linear function of the pixel values (X) of the
initial-date image f 1. Thus, it is possible to perform a regression from YK

I,J( f2) to XK
I,J( f1) by

least squares [59–61] to obtain the parameter gradient m and Y-intercept b of the regression
line and generate a model equation in the form Y′ = mX + b.

In this case, we applied LR to the values of PC1 and NDVI images to obtain a new
image, Y′KI,J , ( f2 − f1), for each index that corresponds to the expected values generated by
the prediction model. With the expected and actual PC1 and NDVI values of f2, residual
images of the PC1 and NDVI values can be calculated by the following equation:

Rk
i,j = Y′KI,J , ( f2 − f1)−Yk

i,j( f2) (1)

where Rk
i,j is the residual pixel value of line i and column j for band k; Y′KI,J , ( f2 − f1) is the

image created by the prediction model; and Yk
i,j( f2) is the image with the actual PC1 or

NDVI values of the final date.
The pixel values in the expected image obtained by the predicted model will be the

same as the actual pixel values of the final date only if no changes were recorded during
the analyzed period (residual = 0). On the other hand, a residual with a value other than
zero indicates a change. The magnitude of the value indicates the intensity of the change
(Figure 6b,c).
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3.3.2. Image Differencing

This change detection method obtains a simple difference between the pixel values of
two images from different dates by subtracting the initial-date image f 1 from the final-date
image f 2, pixel-by-pixel, shown in Equation (2).

Di f fi,j = Yi,j f2 − Xi,j f1 (2)

where Di f fi,j represents the continuous change image, Yi,j f2 is the value of the later date,
and Xi,j f1 is the value of the earlier date. For this case, the values correspond to PC1 and
NDVI, and the images are from 13 December 2013, and 10 Decemeber 2012.

The values obtained by the change prediction model will be equal to zero if no changes
were registered during the analyzed period (residual = 0). On the other hand, if there were
changes, they will be reflected in the corresponding residual value, and the magnitude
indicates the intensity of the change (Figure 6a).

3.4. Supervised Classification

Landslide detection was performed using supervised learning models, specifically
classification algorithms. The classification algorithms work in two main stages:

• First, the algorithm undergoes a learning process by generating knowledge from the
association between known input and output data;

• Second, the corresponding output values are estimated based on new input data.

These estimated values are compared with the GT samples to measure the algorithm’s
performance through different evaluation metrics.

In this study, the input data are defined by the data from the layers obtained in the
previous automatic change detection stage, and they are grouped into one of two possible
output classes: landslide or non-landslide zones.

The use of machine learning models to solve spatial modeling problems involving
natural hazards, such as landslide assessments, has increased in recent years. These models
have some advantages over conventional models, e.g., the possibility of adjusting their
internal structure based on experimental data, working with big data, and predicting
categorical factors to provide cost-effective, fast, and accurate models [62].

As mentioned before, this work aims to identify landslide-affected areas by applying
k-nearest-neighbor (KNN), stochastic gradient descent (SGD), support vector machine
(radial basis function kernel and linear kernel), and AdaBoost machine learning models
to a combination of continuous change images (LR-PC1, LR-NDVI, and Diff-PC1) during
the analyzed period and conditioning factors (S, A, and L), which are used as inputs in
the supervised classification. The machine learning algorithms used were implemented in
Python programming language, using the Scikit-Learn library in version 0.21.3.

Classifiers

K-nearest neighbor is an algorithm that compares unknown input data to previously
known data and assesses their similarity. This comparison is carried out by computing the
distance (typically Euclidean) between the pixel values of the conditioning factors in the
area to be classified and the pixel values of all known zones. The next step is to identify k
zones that are most similar (those with the shortest distance) to the zone to be classified,
and finally, the most frequent class among the k-nearest zones is assigned. Pixels with
similar conditioning factors will have a smaller distance between them, compared to pixels
with significantly different conditioning factors. The k parameter is commonly an odd
positive integer to avoid a tie between classes [63].

Stochastic gradient descent is a simple but efficient approach to adjust convex loss
functions in linear classifiers or regressors, such as SVM (linear) and logistic regression.
Strictly speaking, stochastic gradient descent is more like an optimization technique and
does not correspond to a specific family of machine learning models, and thus, it is used
only for training a model. The main advantage of SGD is its efficiency since it is linear



Remote Sens. 2021, 13, 4515 11 of 27

in the number of training data, so it is less complex than other algorithms and also has a
lower computational cost. For example, if there is a matrix of size (n, p), the training step
has a cost O(knp), where k is the number of iterations (epochs), and p is the average number
of non-zero attributes per sample [64].

Support vector machine (SVM), which is a supervised machine learning classifier
that arose from the theory of non-parametric statistical learning [65] and the principle of
structural risk [62,66,67], is widely used in the generation of cartography for landslide
detection [62,68–71]. SVM uses training data to transform the initial input space to a higher
feature space to generate optimal hyperplanes between two different classes and maximize
the margin between those classes. These hyperplanes are known as support vectors and
make the classifier more robust to noise, as they take advantage of the maximum margin
between the landslide and non-landslide classes [65,72]. To achieve this separation, a
suitable kernel function must be selected [62]. The kernels most frequently used are linear,
polynomial, radial basis function, and sigmoid. The SVM classifier was applied in two
variants in this work, with one using the radial basis function kernel (RBF kernel) and the
other using the linear kernel.

AdaBoost was proposed by Freund and Schapire (1997) [73] and is one of the most
widely used boosting algorithms [74]. It involves the application of an adaptive resampling
technique and can improve predictions because it controls bias and variance [75–77].
Boosting is a methodology that combines the performance of several weak classifiers, such
as logistic regression [78], functional tree [79], or neural networks [80], for the training
dataset and generates a robust classifier. The AdaBoost technique can be described in three
steps:

1. A subset of training data is randomly generated from the original training dataset,
each of which is assigned equal weights;

2. The misclassified data are given greater weight, whereas correctly classified data still
have the same weight;

3. The first step, followed by a normalization process, is repeated, and a new training
subset is generated. This process is performed repeatedly and ends when a predefined
stop condition is reached, obtaining a lower error value than expected [75,81].

AdaBoost is sensitive to atypical values and can affect the accuracy of the classifier. By
combining several models, the boosting method can predict the landslide/non-landslide
classes better than using a single model. In this work, a decision tree was used as the weak
classifier to implement AdaBoost.

3.5. Experimental Description

In the supervised classification, two groups of images were applied:

1. The spectral images analyzed correspond to the best continuous change images
produced by the change detection method in the previous stage, as described in
Ramos-Bernal et al. (2015) [16] and Ramos-Bernal et al. (2018) [18], corresponding to
LR for PC1 and NDVI images, and Diff for PC1 images. Those images were selected
based on relevant differences in sites where landslides occurred during the analyzed
period.

2. The combinations of maps with the S, A and L factors were included in the landslide
detection process, generating 40 landslide and non-landslide maps.

The combinations of input maps in each classification step are shown in Table 1.
For example, combination C1 includes LR-PC1, LR-NDVI, and Diff-PC1; combination C2
includes the three previous images and the slope angle.
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Table 1. Image combinations of input data in supervised classification.

Images Input Classification

LR-PC1 * * * * * * * *
LR-NDVI * * * * * * * *
Diff-PC1 * * * * * * * *

Slope angle (S) * * * *
Aspect (A) * * * *

Lithology (L) * * * *

Combination C1 C2 C3 C4 C5 C6 C7 C8
* image/factor included in the combination.

All classification methods were run using their default parameters. Table 2 describes
the parameters used to train classifiers. The classification process used 2/3 of the GT
samples to train the models.

Table 2. Parameters used in the training of classifiers.

Classifiers Parameters

KNN N_neighbors = 5, weights = “uniform”, algorithm = “auto”, leaf_size = 30, p = 2,
metric = “minkowski”, mertric_params = None, n_jobs = None, Kwargs

SGD

Loss = “hinge”, penalty = ”l2”, alpha = 0.0001, l1_ratio = 0.15,
fit_intercept = True, max_iter = 1000, tol = 0.001, shuffle = True, verbose = 0,
epsilon = 0.1, n_jobs = _None, random_state = 0, learning_rate = “optimal”,
eta0 = 0.0, power_t = 0.5, early_stopping = False, validation_fraction = 0.1,

n_iter_no_changes = 5, class_weight = None, warm_start = False, average = False

SVM
RBF kernel

C = 10, kernel = “rbf”, degree = 3, gamma = “auto_deprecate”, coef0 = 0.0,
shrinking = True, probability = False, tol = 0.001, cache_size = 200,

class_weight = None, verbose = False, max_iter = −1,
decision_fuction_shape = “ovr”, random_state = 0.

SVM
linear kernel

Penalty = “l2”, loss = “squared_hinge”, dual = True, tol = 0.0001, C = 1.0,
multi_class = ”ovr”, fit_intercept = True, intercept_scaling = 1,

class_weight = None, verbose = 0, random_state = None, max_iter = 1000

AdaBoost Base_estimator = None, n_estimators = 50, learning_rate = 1.0,
algorithm = “SAMME.R”, random_state = 0

3.6. Accuracy Assessment

One-third of the GT subsample (10,822 pixels) was reserved for the evaluation stage. A
cross-tabulation was performed between the GT subsample and each thematic map result-
ing from the classification, generating confusion matrices, omission and commission errors,
and the Kappa concordance index [82] to quantify the concordance between the observed
GT map and the randomly expected map. The Kappa concordance coefficient attempts
to define the degree of adjustment only by the precision of categorization, regardless of
random causes [56,83].

In addition, accuracy (ACC), precision, recall, and F1 score were obtained and used as
evaluation metrics. Accuracy corresponds to the rate of correctly classified output values:
it is calculated by summing the number of values correctly predicted as landslides and
those correctly predicted as non-landslides, and then dividing the resulting value by the
total number of GT values. Precision evaluates how many of the values predicted by the
classifier to be landslides correspond to actual landslides. High precision means that the
model has a high probability of generating a correct landslide classification. On the other
hand, recall measures the number of landslides correctly identified by the classifier relative
to the total number of landslides in the GT. Since the precision and recall methods evaluate
different aspects of the classifier, the F1 score combines these two metrics to obtain the
harmonic mean, where a score of 0 is the worst value and 1 is the best score. Table 3 shows
the equations of the evaluation metrics.
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Table 3. Evaluation metrics.

Method Equations

Kappa concordance
coefficient

k =
(
n∑ i=1,n Xii −∑ i=1,n Xi+ X+i

)
/
(
n2 −∑ i=1,n Xi+ X+i

)
k is the Kappa coefficient of agreement, n is the sample size, Xii is
the observed agreement, and Xi+ X+i is the expected agreement

in each category i.

Accuracy

ACC = TP+TN
TP+TN+FP+FN

TN corresponds to true-negative pixels; FP represents
False-Positive pixels; TP represents true-positive pixels, and FN

represents False-Negative pixels.

Precision

Precision = TP
TP+FP

FP represents False-Positive pixels, and TP represents
True-Positive pixels.

Recall

Recall = TP
TP+FN

TP represents True-Positive pixels, and FN represents
false-negative pixels.

F1 score F1 score = 2·Precision·Recall
Precision+Recall

4. Results
4.1. Supervised Classification

The proposed methodology described in Figure 3 was applied to the eight-layer
combination of satellite-derived images (Table 1). The resulting landslide/non-landslide
maps are depicted in Figures 7–11.

Figure 12 presents a close-up visualization of the eight maps generated by the Ad-
aBoost classifier for a more detailed analysis.

Figure 13 shows the same region but displays the maps generated by all methods in
this study (KNN, SGD, SVM RBF kernel, SVM linear kernel, and AdaBoost) when applying
combination 1 (LR-PC1, LR-NDVI, and Diff-PC1) in landslide detection.

4.2. Accuracy Assessment

As described in the proposed methodology, the maps resulting from each classification
method applied to each combination were evaluated by comparing them to the GT samples
reserved for evaluation. The resulting values of the evaluation metrics applied in the
comparison are shown in Table 4.

As defined in Table 3, the Kappa concordance coefficient was computed using a
confusion matrix resulting from a cross-comparison between the GT samples reserved
for the evaluation step and the maps resulting from each classification method and each
combination, considering the commission and omission errors for each analyzed category
(landslide/non-landslide). In contrast to the evaluation metrics, the Kappa index integrates
both successes and errors in each category into a single index, making it more suitable for
evaluation purposes in this study. Figure 14 depicts the Kappa concordance coefficient for
each method and combination.
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(e) C5, (f) C6, (g) C7, and (h) C8.
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Figure 9. Landslide inventories generated by SVM with RBF Kernel using combinations (a) C1, (b) 
C2, (c) C3, (d) C4, (e) C5, (f) C6, (g) C7, and (h) C8. 
Figure 9. Landslide inventories generated by SVM with RBF Kernel using combinations (a) C1,
(b) C2, (c) C3, (d) C4, (e) C5, (f) C6, (g) C7, and (h) C8.
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Table 4. Performance evaluation of landslide/non-landslide maps.

Method Combination Precision Recall F1 Score Accuracy Kappa Omission
Error

Commission
Error

KNN

C1 0.94 0.90 0.92 0.93 0.850 7.324 7.569
C2 0.97 0.93 0.95 0.96 0.911 4.274 4.527
C3 0.97 0.92 0.94 0.94 0.888 5.372 5.700
C4 0.96 0.93 0.95 0.95 0.899 4.927 5.092
C5 0.98 0.94 0.96 0.96 0.927 3.480 3.714
C6 0.98 0.95 0.97 0.97 0.937 3.043 3.252
C7 0.97 0.93 0.95 0.95 0.907 4.479 4.718
C8 0.99 0.95 0.97 0.97 0.944 2.658 2.860

SGD

C1 0.91 0.82 0.86 0.88 0.751 11.884 12.657
C2 0.93 0.92 0.92 0.93 0.857 7.083 7.165
C3 0.85 0.87 0.86 0.87 0.732 13.414 13.366
C4 0.89 0.84 0.87 0.88 0.751 12.253 12.567
C5 0.96 0.9 0.93 0.94 0.873 6.075 6.470
C6 0.93 0.91 0.92 0.92 0.846 7.650 7.712
C7 0.96 0.62 0.75 0.81 0.606 15.232 20.211
C8 0.95 0.91 0.93 0.94 0.875 6.083 6.324

SVM
RBF kernel

C1 0.93 0.87 0.9 0.91 0.818 8.823 9.232
C2 0.96 0.9 0.93 0.94 0.870 6.268 6.628
C3 0.95 0.88 0.91 0.92 0.839 7.708 8.193
C4 0.93 0.87 0.9 0.91 0.817 8.853 9.272
C5 0.96 0.9 0.93 0.94 0.876 5.891 6.322
C6 0.96 0.9 0.93 0.93 0.867 6.411 6.791
C7 0.95 0.88 0.91 0.92 0.840 7.684 8.164
C8 0.96 0.9 0.93 0.94 0.872 6.077 6.532

SVM
linear
kernel

C1 0.93 0.87 0.9 0.91 0.817 8.830 9.268
C2 0.98 0.78 0.87 0.88 0.767 9.718 12.020
C3 0.95 0.82 0.88 0.9 0.789 9.539 10.803
C4 0.90 0.91 0.91 0.91 0.821 8.952 8.912
C5 0.97 0.76 0.85 0.88 0.750 10.412 12.890
C6 0.97 0.85 0.9 0.91 0.825 7.944 9.010
C7 0.84 0.86 0.85 0.85 0.709 14.550 14.472
C8 0.73 0.97 0.83 0.81 0.627 15.866 18.157

AdaBoost

C1 0.93 0.93 0.93 0.93 0.861 6.934 6.945
C2 0.98 0.97 0.98 0.98 0.956 2.163 2.208
C3 0.97 0.94 0.96 0.96 0.922 3.806 3.969
C4 0.95 0.96 0.95 0.96 0.914 4.317 4.294
C5 0.98 0.97 0.98 0.98 0.956 2.162 2.208
C6 0.98 0.98 0.98 0.98 0.965 1.767 1.772
C7 0.98 0.97 0.97 0.97 0.947 2.609 2.651
C8 0.98 0.98 0.98 0.98 0.962 1.920 1.894
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5. Discussion
5.1. Visual Analysis

At first glance, the resulting maps (Figures 7–11) seem to match the areas where
landslides are predicted. However, we also observe differences, with some maps, including
many more landslide pixels than others (Table 5).

Table 5. Landslide detection ratio by classification method for each layer combination. The mean
ratio and the standard deviation are also included.

Method C1 C2 C3 C4 C5 C6 C7 C8 Std.
Dev. Mean

KNN 1.14 2.83 2.68 2.73 3.46 4.39 3.40 4.81 1.13 3.18
SGD 0.78 4.47 5.81 1.87 1.81 4.99 0.29 2.85 2.03 2.86
SVM

RBF kernel 0.82 1.04 0.73 0.81 0.82 0.97 0.73 0.79 0.11 0.84

SVM
linear kernel 0.80 0.38 0.63 1.2 0.44 0.56 11.76 25.09 8.96 5.11

AdaBoost 1.56 2.00 1.59 1.60 2.12 2.13 1.38 2.14 0.31 1.82

As shown in Table 4, some maps have a high tendency to detect landslides (SVM
linear kernel+C7 and SVM linear kernel+C8), whereas other maps have a lower landslide
detection ratio (SVM RBF kernel+C3 and SVM RBF kernel+C7). Furthermore, the results
suggest that methods with lower standard deviations will generate more coherent maps,
namely, SVM RBF kernel and AdaBoost; this statement can be confirmed by inspecting
their corresponding maps, as shown in Figures 9 and 11.

According to Figure 11 and the landslide ratio results reported in Table 4, the maps
obtained by the AdaBoost classifier (Figure 12) have the highest visual coherence.

A close-up of the region in the study area where the largest landslide was triggered
(2.5× 0.5 km) is depicted in Figure 12. An initial visual inspection seems to suggest that the
eight maps correctly identify this landslide. However, some differences can be observed in
regions where more minor landslides occurred, such as the region outlined by the yellow
bounding box, in which a method may detect more extensive zones (Figure 12c,f,g) or
smaller areas (Figure 12b,d,e,h) depending on the combination of continuous change maps
and the inclusion of conditioning factors.

At a glance, the maps in Figure 13 may look similar; however, differences are detected
upon detailed inspection. In the map generated by AdaBoost, the pixels for landslides
are better identified throughout the entire zone (Figure 13e). On the other hand, the
SGD-generated map fails to identify some landslide zones, as can be seen in the largest
landslide and other minor ones (Figure 13b). Moreover, the maps obtained by methods
other than AdaBoost, such as SGD, SVM RBF kernel, and SVM linear kernel, do not detect
some landslides in the yellow-marked region (Figure 13b–d), and the KNN map correctly
identifies only a small zone of the landslides in the same area (Figure 13a).

As described above, the AdaBoost method outperforms the other classifiers in catego-
rizing landslide zones; this conclusion is based on two principal findings: it fully covers the
largest landslide and detects minor landslides omitted by the other classification methods.

5.2. Accuracy Assessment

According to the evaluation metrics shown in Table 4, for most of the maps, the values
of precision, recall, F1 score, and accuracy exceed 0.80, which are considered acceptable.
Analyzing the behavior of classification methods individually, AdaBoost shows more
consistent results across the metrics with a standard deviation of 0.018, followed by KNN
with 0.02, SVM RBF kernel with 0.026, SVM linear kernel with 0.06, and, finally, SGD with
0.068; thus, SGD has the most variance in its results.

Analyzing the metrics only for the maps obtained by the AdaBoost method but for
different combinations, combination C8 (composed of LR-PC1, LR-NDVI, Diff-PC1, S, A,
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and L) and combination C6 (composed of LR-PC1, LR-NDVI, Diff-PC1, S, and L) have the
highest values, i.e., 0.98 for all analyzed metrics, representing the best results among the
applied methods and the combinations of inputs.

Figure 14 shows the values of the Kappa concordance coefficient. The highest values
were obtained by the AdaBoost classifier, with an average of 0.94, using combinations
C6 (layers LR-PC1, LR-NDVI, Diff-PC1, S, and L) and C8 (layers LR-PC1, LR-NDVI, Diff-
PC1, S, A, and L), with values of 0.965 and 0.962, respectively. Similarly, the AdaBoost
method exhibits, on average, the lowest commission (3.21) and omission (3.24) errors
among classifiers, averaging 3.23 in total. In addition, combinations C6 and C8 have the
best average errors: 1.77 and 1.91, respectively.

Among the other classifiers, two methods obtained a Kappa index above 0.80: the
KNN method has a Kappa average of 0.91 with average omission and commission errors
of 4.44 and 4.68, and the SVM RBF kernel has a Kappa index of 0.85 with average omission
and commission errors of 7.21 and 7.64. The remaining methods obtained a Kappa con-
cordance coefficient below 0.80: SGD has an average Kappa value of 0.79 and omission
and commission errors of 9.96 and 10.81, respectively, and SVM linear kernel has a Kappa
value of 0.76 and higher omission and commission errors of 10.73 and 11.94.

Thus, the performance evaluation supports the previous visual examination. The
maps resulting from SGD (combinations C7 and C3) and SVM linear kernel (combinations
C7 and C8) obtained the lowest values of the Kappa concordance coefficient as well as
the worst evaluation metrics (Table 4 and Figure 14). This result is validated by the visual
incoherence visible in their corresponding maps (Figure 8c,g and Figure 10g,h).

5.3. Conditioning Factor Analysis

In this work, continuous change maps resulting from the change detection process
between images from different dates were tested as alternative input layers for each algo-
rithm (KNN, SGD, SVM RBF kernel, SVM linear kernel, and AdaBoost) in the classification
stage. Thus, the landslide inventory maps depicted in Figures 7a, 8a, 9a, 10a and 11a,
were obtained. In the visual inspection and performance evaluation, specific changes were
observed when adding each conditioning factor or combining two or three factors with the
obtained maps.

The AdaBoost and KNN methods show a general upward trend in the Kappa concor-
dance coefficient (Figure 14) as conditioning factors are incorporated or combined, which
is not observed for the rest of the classifiers, for which the Kappa index could increase or
decrease when adding independent or combined factors. However, this upward trend is
preserved by including the three continuous change images and the three conditioning fac-
tors, i.e., combination C8, into the classification step with the AdaBoost and KNN methods.
Both cases generate excellent results, as shown in Table 5 and Figures 7h, 11h and 14.

The landslide inventory map obtained using the SGD method using combination
C7 (LR-PC1, LR-NDVI, Diff-PC1, A, and L) only identifies 0.29% of the pixels classified
as landslides (Figure 8g; Table 4), in contrast to the other inventory maps obtained with
combinations C1–C6 and C8, as illustrated in Figure 8a–f,h.

As mentioned before, the slope angle (S) is a fundamental conditioning factor, and
according to previous studies, it has a relevant impact on landslide occurrence. Focusing on
the maps produced by the AdaBoost and KNN methods, the incorporation of the S factor
in the classification step results in a significant increase in the Kappa values in comparison
to those considering only the continuous change image; the values improve from 0.861
to 0.956 for AdaBoost and from 0.85 to 0.911 for KNN (Table 4). In general, when the S
factor is included, e.g., combination C2, the Kappa concordance coefficient of the maps
generated by the classification methods improves to values higher than 0.85, except for
the map generated by the SVM linear kernel method, which is the only case in which the
Kappa index drops (0.767) after the incorporation of the S factor. This exception may be
due to the fact that the SVM linear kernel method with combination C2 also results in the
lowest landslide detection ratio (only 0.38). Furthermore, the landslide inventory maps
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obtained using the SVM linear kernel method applying combinations C7 and C8 have the
largest number of pixels categorized as landslide (Figure 10g,h, Table 3).

As was previously mentioned, all classification methods were run using their default
parameters. It is evident that a careful selection of parameters may lead the classification
algorithms to better results regarding a specific region of interest. However, although there
are some parameter selection methods (e.g., grid search or randomized search), we decided
not to use any of them, as we wish to highlight this study as a generalized methodology
for any other study area.

Some other works apply well-known deep learning architectures [19,20,84–86]. Chen
et al. [19] and Hacıefendioğlu et al. [20] in their results report an average recall of 0.86 and
0.91, respectively. Lu et al. [84], Defang et al. [85] and Qin et al. [86] report an accuracy
of 0.98, 0.98 and 0.88, respectively. As can be seen, their results are very similar to those
achieved in this work (Table 4). However, their algorithms require higher computational
costs than those presented in this study.

6. Conclusions

The established aim for this work was to integrate an inventory of landslides by
applying supervised machine learning classification to continuous change maps derived
from change detection techniques and conditioning factors of hillside terrain instability.

The results obtained in this study indicate that the AdaBoost algorithm achieved the
highest precision indices and was thus, the most suitable. Therefore, this algorithm is
recommended for generating landslide/non-landslide inventory maps in study areas with
similar conditions to those in this work, using the methods and the conditioning factors
described herein. Compared with previous work [18–20] that applied different methods
and methodologies, the applied metrics and Kappa concordance coefficient were improved
with the AdaBoost method, with values above 90% for these parameters and mean errors
of omission and commission below 2.0%.

As a future line of research, we consider it appropriate to investigate some deep
learning algorithms in order to establish more accurate comparisons with the method
proposed in this study, and we will explore strategies to reduce the computational cost.
For example, an original compact model can be used instead of a pre-trained architecture,
or transfer learning can be used, which can improve the training stage of the categories
of interest (in this case, landslides and non-landslides) by using the knowledge that the
model in question learns for one task and applying it to training on a related task.

The sampling design and the integration of the ground truth are fundamental steps
that define the capacity of the applied classification method, as feeding the classifier
algorithm with the best combination of GT can maximize its ability to discriminate areas of
landslides from those that remain stable.

Mapping information on landslide susceptibility is necessary for landslide-prone
areas; it can support the establishment of early warning systems for residents in high-
risk areas and can also assist in the management of events of this type by institutions
and organizations responsible for safeguarding the public, allowing them to locate areas
with greater vulnerability according to relevant factors and implement plans for the early
detection or prevention of disasters in areas with higher priority.

This work can be complemented with the identification of evacuation routes, care
centers, and shelters and their capacities, among other possible actions, all of which place
a fundamental focus on acquiring knowledge of the territory through the application of
geographic, computing, and information technologies.
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