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Abstract: To meet the need for multispectral images having high spatial resolution in practical
applications, we propose a dense encoder–decoder network with feedback connections for pan-
sharpening. Our network consists of four parts. The first part consists of two identical subnetworks,
one each to extract features from PAN and MS images, respectively. The second part is an efficient
feature-extraction block. We hope that the network can focus on features at different scales, so we
propose innovative multiscale feature-extraction blocks that fully extract effective features from
networks of various depths and widths by using three multiscale feature-extraction blocks and
two long-jump connections. The third part is the feature fusion and recovery network. We are
inspired by the work on U-Net network improvements to propose a brand new encoder network
structure with dense connections that improves network performance through effective connections
to encoders and decoders at different scales. The fourth part is a continuous feedback connection
operation with overfeedback to refine shallow features, which enables the network to obtain better
reconstruction capabilities earlier. To demonstrate the effectiveness of our method, we performed
several experiments. Experiments on various satellite datasets show that the proposed method
outperforms existing methods. Our results show significant improvements over those from other
models in terms of the multiple-target index values used to measure the spectral quality and spatial
details of the generated images.

Keywords: convolutional neural network; double-stream structure; feedback; encoder–decoder
network; dense connections

1. Introduction

Satellite technology has developed rapidly since the last century, and remote sensing
satellite images have gained widespread attention and applications in many fields. They
provide an important reference for applications in digital maps, urban planning, disaster
prevention and control, emergency rescue, and geological observations [1–4].

In most practical applications, remote sensing images with high spatial resolution and
high spectral resolution are required. Given the physical structure of satellite sensors, a
single sensor is unable to achieve this. Earth-observation satellites, such as Quick-Bird,
IKONOS, and World-View, are equipped with sensors for obtaining high-spatial-resolution
images for single bands and multispectral sensors for obtaining low-spatial-resolution
images for multiple bands, which are acquired as panchromatic (PAN) and multispectral
(MS) images, respectively.

In order to fully utilise all of the information available in the two types of images, PAN
and MS images are usually fused using a pan-sharpening algorithm to simultaneously
generate images having PAN image spatial resolution as well as the corresponding MS
image spectral resolution. This results in images with high spatial resolution and high
spectral resolution, which practical applications need.

Owing to the need for high-quality remote sensing images in practical applications,
many researchers have studied varied directions related to pan-sharpening algorithms:
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(1) component substitution (CS) [5–8], (2) multiresolution analysis (MRA) [9–13] (3) model-
based algorithms [14–20], and (4) algorithms for deep learning. The representative CS
algorithms are principal component analysis (PCA) [5], intensity-hue-saturation (IHS)
transform [6], Gram–Schmidt (GS) sharpening [7], and partial substitution (PRACS) [8].
These methods all adopt the core idea of the CS method, namely to first rely on the
MS image in another space to separate the spatial-structure component and the spectral-
information component, then match the PAN image and spatial-structure component
using histograms and complete the replacement or partial replacement. This makes the
PAN image have the same mean and variance as the spatial component. Finally, the pan-
sharpening task is completed through an inverse transformation operation. These methods
can achieve good results when PAN images are highly correlated with MS images, but
owing to spectral differences between MS and PAN images, CS methods often encounter
spectral-preservation problems and suffer from spectral distortion. Methods based on
MRA are more straightforward than CS-based methods; these extract details from the PAN
images and then inject them into the upsampled MS images. This approach makes the
quality of the output image sensitive to the details of the injection, which makes the image
blurred, while excessive detail injection leads to artifacts and spectral distortion. Decimated
wavelet transform [9], atrous wavelet transform [10], Laplacian Pyramid [11], curvelet [12],
and non-subsampled contourlets transform [13] are examples of this approach. The hybrid
method combines the advantages of the CS and MRA methods to improve the spectral
distortion and fuzzy spatial-detail deficiencies, resulting in better fusion results.

Model-based methods are mainly based on the mapping relationship between MS
images, PAN images, and the desired high-resolution multispectral (HRMS) images. If
pan-sharpening can be viewed as an inverse problem, the PAN and MS images can be
understood as degraded versions of the HRMS images and can be recovered through opti-
mization procedures. As considerable information is lost during the degradation process,
this is an unsettled problem. The general practice is to introduce prior constraints and regu-
larization methods into formulas to fuse the images and thus to solve this ill-posed inverse
problem. Representative algorithms include sparsity regularization [14], Bayesian posterior
probability [15], and variational models [16]. A hierarchical Bayesian model to fuse many
multiband images with various spectral and spatial resolutions is proposed [17]. An online
coupled dictionary learning (OCDL) [18], and two fusion algorithms [19] that incorporate
the contextual constraints into the fusion model via MRF models have been proposed. As
these methods are highly dependent on regularization terms, the resulting solutions are
sometimes unstable [20]. These methods have much more temporal complexity than many
other algorithms, but they can make immense progress in gradient information extraction.

In recent years, with the rapid development of artificial intelligence, algorithms based
on deep learning methods have achieved impressive results in various image-processing
domains. In the field of computer vision, CNNs have been successfully applied to a large
number of domains, including target detection [21], medical segmentation [22], image
fusion [23], and image reconstruction [24]. Due to the superior feature-representation capa-
bilities of deep convolutional neural networks, many researchers have used the technique
for pan-sharpening [25,26].

To some extent, image super-resolution reconstruction is a task associated with whole-
chromatic sharpening, as super-resolution and euchromatic sharpening are both designed
to improve image resolution. However, there are some differences between them, as the
former is usually a single-input, single-output process, while the latter is a multiple-input,
single-output case. Therefore, in earlier work, the PAN image and the MS image are
usually cascaded together in the input grid for training, treating the pan-sharpening task
as an image-regression task. Inspired by the super-resolution work based on CNN [27],
Masi et al. [28] followed the three-layer CNN architecture in SRCNN to implement pan-
sharpening and increase input by introducing nonlinear radiation exponents. This is the
first application of pan-sharpening in the generalised sharpening field. In light of the signifi-
cant improvement of the network training effect due to the residual structure, Rao et al. [29]
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proposed RCNNP, a residual convolutional neural network for pan-sharpening, which
continued to use a three-layer network structure when the idea of jump connections was
introduced to help the network with training. Wei et al. [30] designed a deep residual
network (DRPNN) to complete the pan-sharpening task, and they extended the depth
of the network to eleven layers, which improved the network performance. Based on
these three papers, He et al. [31] proposed two networks employing detail-injection ideas
while clarifying the role of CNN in the pan-sharpening task from a theoretical perspective
and clearly explaining the effectiveness of adding residual structure for pan-sharpening
network improvement.

Although earlier CNN-based methods achieved better results than previous methods,
they did not take into account the importance of spatial and spectral retention in the fusion
process, treating it as a black-box learning process. To enhance the network’s ability to retain
both spatial and spectral information, Yang et al. [32] proposed a deep network architecture
for pan-sharpening (PanNet), which differs from the other methods. To preserve the
spectral information, they propose a method, called spectral mapping, that directly mapps
the upsampled multispectral images to the network output for lossless propagation. To
enhance the network’s focus on the spatial structure in PAN images, PanNet, unlike the
previous work, chose to train the network in high-frequency domains. This idea from an
earlier work helped them achieve remarkable results, but it had some limitations. It is
generally believed in the pan-sharpening field that PAN and MS images contain different
information. PAN images are the carriers of geometric-detail (spatial) information, while
MS images provide the spectral information required to fuse the images. Although PanNet
trains the network in the high-frequency domain, it still inputs PAN images and MS images
after cascading into the network. This operation prevents the network from completely
extracting different features contained in PAN and MS images and allows the network
to effectively utilise varied spatial information and spectral information. Concurrently, it
only uses a simple residual structure that complements the extraction of image features at
various scales and lacks the ability to more efficiently recover details from the features. As
the network outputs the fusion results directly through a convolutional layer, the network
cannot make full use of all the features extracted by various residual blocks, affecting the
final fusion effect.

In this study, we are inspired by the ideas of the detail-injection network and image
super-resolution reconstruction network. We propose a dense encoder–decoder network
with feedback connections for pan-sharpening. As the CNN methods in earlier works
either viewed euchromatic sharpening as a super-resolution problem [29,30] or used a CNN
as a tool to extract spatial details [31,32], they generate results with good visual quality, but
spectral distortion or artifacts still exist. This is mainly because it is almost impossible to
individually extract features representing spatial or spectral information from the input
network by stacking the PAN image and the MS information together. To address this issue,
we choose to perform image fusion at the feature level rather than at the pixel level, as in
earlier works. We use a dual-stream network structure to extract features from the PAN and
MS images separately, which allows the network to efficiently extract the desired spatial
information and spectral information without interference. To extract richer and efficient
multiscale features from images, we input efficient multiscale feature-extraction modules
from the two-stream network. Given the powerful multilevel feature-extraction, fusion,
and reconstruction capabilities of the encoder–decoder, the extracted multiscale features
are encoded and decoded based on the idea of dense connections. The shallow networks
are limited by the receptive field size and can only extract coarse features, which we have
repeated in subsequent networks, owing to the idea of dense connections, which partly
limits the learning power of the network. We, therefore, introduce a feedback-connectivity
mechanism that transfers deep features back to the shallow network through long-jump
connections to optimise coarse low-level features and improve early reconstruction capabil-
ity by completing preliminary reconstructed-image correction for some incorrect features
in the early network. Concurrently, we follow the idea of detail injection, using the fusion
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results of the network as the detail branch and low resolution multispectral (LRMS) images
as the approximate branch. Both can help the network obtain excellent HRMS images.

In conclusion, the main contributions of this study are as follows:

1. We propose a multiscale feature-extraction block with an attention mechanism to
address the issue of insufficient network extraction ability to extract diverse scales,
which can not only effectively extract multiscale features but also utilise feature
information between multiple channels. In addition, the spatial and channel-attention
mechanisms can effectively enhance the acquisition of important features to the
network so as to help the fusion and reconstruction of the later network.

2. We propose an efficient feature-extraction block with two-way residuals, which stacks
three multiscale feature-extraction blocks, enables the network to extract multiscale
features at different depths, and maps low-level features to high-level space with two
jump connections for the purpose of collecting more information.

3. We use a network structure with a multilayer encoder and decoder combined with
dense connections to complete the task of integrating and reconstructing the extracted
multiscale spatial and spectral information. As the task of the deep network is to
encode the semantic information and abstract information of images, it is difficult
for the network to recover texture, boundary, and colour information directly from
advanced features, but shallow networks are excellent at identifying such detailed
information. We inject low-level features into high-level features via long-jump
connections, making it easier for the network to recover fine real images, while
numerous dense connection operations bring the feature graph at the semantic level
in the encoder closer to the feature graph in the decoder.

4. We inject HRMS images from the previous subnetwork into the shallow structure of
the latter subnetwork, complete the feedback connectivity operation, and attach the
loss function to each subnetwork to ensure that correct deep information can be trans-
mitted backwards in each iteration and the network can obtain better reconstruction
capabilities earlier.

The rest of this article is arranged as follows. We present the relevant CNN-based work
that inspired us in Section 2 and analyse networks that have achieved significant results in
the current pan-sharpening work based on CNN. Section 3 introduces the motivation of
our proposed dense encoder–decoder network with feedback connections and explains in
detail the structure of each part of the network. In Section 4, we show the experimental
results and compare them with other methods. We discuss the validity of the various
structures in the network in Section 5 and summarise the paper in Section 6.

2. Background and Related Work
2.1. Convolutional Neural Networks

Based on work in other fields, it is shown that better results can be obtained by
increasing the depth and width of the network [33,34]. However, blindly increasing the
depth of the network does not improve the network effectively. Worse, the problem of
gradient explosion and gradient extinction occurs during training with increasing network
depth, hampering networks with deeper and more complex structures. To overcome this
difficulty, He et al. [35] proposed a residual learning framework to reduce the difficulty of
network optimization and reduce degradation problems so that a deeper network structure
could be used in the task. The advent of ResNet made network optimization simpler and
allowed researchers to design deeper and more complex network structures to improve
results. Based on this work, Huang et al. [36] proposed the intensive connection network
(DenseNet) by fully injecting simple features of shallow networks into deep networks,
achieving better performance than ResNet but requiring fewer parameters and lower
computational costs.

Olaf et al. [23] proposed a U-Net network with a fully symmetrical encoder–decoder
structure. The encoder structure in the first half of the network obtains multiscale features
by reducing the spatial dimension, and the decoder structure in the second half progres-
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sively recovers the details and spatial dimensions of the image. The loss of information
during downsampling is compensated for by adding a shortcut connection between the
encoder and the decoder, which helps the decoder to better fix the details of the target. This
network structure has provided immense inspiration to other researchers. Zhou et al. [37]
proposed the U-Net++ network based on the U-Net network, introducing the idea of dense
connectivity into the network. They took advantage of long and short connections to allow
the network to grasp various levels of features and integrate them through a feature super-
position manner while adding a shallower U-Net structure to ensure smaller differences
in feature-graph scaling at fusion. Huang et al. [38] improved the U-Net structure from
another angle, and U-Net 3+ redesigned the jump connection compared to U-Net and
U-Net++. To enhance the network’s ability to explore full-scale information, they proposed
full-scale jump connections, where each decoder layer in U-Net 3+ incorporates feature
maps from small-scale and same-scale features in the encoder and large-scale features
from the decoder, where fine-grained and coarse-grained semantics enable the network to
produce more accurate location perception and boundary-enhanced images.

These network structures, which have achieved remarkable results in other fields,
have considerably inspired researchers performing pan-sharpening work and have been
applied to the core ideas of these networks in recent CNN-based pan-sharpening work,
achieving good results.

2.2. CNN-Based Pan-Sharpening

Inspired by the idea of traditional pan-sharpening methods to improve the struc-
tural consistency of fusion images by using the Qualcomm information of PAN images,
Yang et al. [32] proposed a network structure called PanNet. Inspired by enhanced network
performance in U-Net [37], RBDN [39] and GoogLeNet [34] that enhanced the multiscale
feature grasping of networks, Fu et al. [40] presented an improved approach based on
the original structure of PanNet. As the introduction of extensive pooling operations
to obtain abstract features results in irreparable loss of spatial information, the network
used to perform pan-sharpening does not expand the receptive field after downsampling
images by pooling operations to obtain multiscale features. However, removing pooling
operations slows down the increase in receptive fields. Simultaneously, because PanNet
uses high-frequency information as input, it is equivalent to only fine details and edges
being input into the network, and extracting multiscale features in a hierarchical way leads
to limited multiscale representation ability of the network. To overcome this difficulty, they
proposed a grouped multiscale expansion block based on expansion convolution [41] to
extract the multiscale representation at the fine-granular level.

As PAN images are the carriers of spatial information in pan-sharpening work while
MS images provide spectral information, recent work abandoned the practice of stack-
ing PAN images and MS input networks as in earlier works [28–32], instead extracting
features separately and choosing to fuse images in the feature domain rather than the
pixel domain. Liu et al. [42] proposed a dual-stream fusion network for pan-sharpening
where, to make full use of the spatial and spectral information in the image, they used
two identical subnetworks to extract complementary information and features of PAN
and MS images. To recover fine and realistic details from the extracted features, they
introduced the encoder–decoder structure from U-Net [37] into pan-sharpening. Further-
more, to enhance the network to utilise all levels of features, the encoder was added to the
decoder and connected to the corresponding feature maps to inject more details lost during
downsampling. In a subsequent work, Liu et al. [43] proposed an improvement on TFNet,
called ResTFNet, that further improves the performance of the proposed network by using
basic residual blocks instead of the continuous convolutional layer in TFNet. Inspired
by the dual-stream network structure, Fu et al. [44] proposed a network structure called
TPNwFB that, after extracting spatial and spectral information, introduces a feedback
connectivity mechanism to implement a subnetwork iterative process using recurrent
structures, which allows strong-deep feature backflow to modify poor low-level features.
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In TPNwFB, input features are iteratively upsampled and downsampled in TPNwFB to
achieve a reverse projection mechanism, enabling feature-extraction blocks to generate
more powerful features. As early networks using MSE loss-constraint networks made
images too smooth and lost edge information, TFNet, ResTFNet, and TPNwFB were trained
using MAE loss-constraint networks.

Liu et al. [45] used a dual-stream network to extract PAN and MS image features and
an encoder–decoder structure for fusion and reconstruction of images. They also introduces
the idea of generating an adversarial network for the first time in pan-sharpening work,
proposing a network called PSGAN. In this GAN-based model, the generator attempts
to generate images similar to the ground truth values, while the discriminator attempts
to distinguish between the generated images and the HRMS images. PSGAN builds
a generator through a dual-stream network that generates high-quality HRMS images
using encoders and decoders, and then introduces a five-layer structured network as
a discriminator. Shao et al. [46] reference a PSGAN network by proposing a network
structure called RED-cGAN. Unlike the former, RED-cGAN discards the operation of
up and downsampling in the network and replaces additional constraints as an input
discriminator from an LRMS image for a PAN image. The two models differ from other
methods by using multiple loss functions to constrain network learning rather than network
training using MSE or MAE loss functions alone.

Zhang et al. [47] proposed a multilevel dense neural network for pan-sharpening.
They made some modifications to the original DenseNet to enable it to complete the
pan-sharpening task. They combined dual-stream and densely connected networks. To
make full use of spatial and spectral information, the network in the hierarchical feature
extraction and image reconstruction fraction consists of up to 83 convolutional layers, deep
networks that have never been used in other pan-sharpening work. Li et al. [48] proposed
to obtain higher performance HRMS images by using a network structure called MDECNN.
They adopted a similar idea to PanNet to train the network in the high-frequency domain
and enhance the spectral information of the image by spectral mapping but used a two-
stream network to extract features for the PAN and MS images separately. Moreover, in
their network, the feature information of the PAN image is extracted by using a multiscale
feature-extraction module, and a parallel expansion of convolutional blocks is used to
obtain the features of the various receptive fields of the image. MDECNN encodes and
decodes U-Net-like structures and designs dense encoding blocks to comprehensively
image deep images with a symmetric structure with the same number of encoders and
decoders but discards upsampling and downsampling operations in the U-Net network
and replaces the jump connections in the encoder and decoder for dense connections
between all convolutional layers. The network is constrained by a mixed loss function,
which is a combination of MSE loss and MAE loss. The loss of spectral information is
constrained by MSE loss, and MAE is used as a constraint on spatial loss.

3. Proposed Network

In this section, we detail the specific structure of the DEDwFB model presented
in this study. As we use a detail-injection network, our proposed network has clear
interpretability. The use of dense and feedback connections in the network gives the
network excellent early ability to reconstruct images, while effective feature reuse helps the
network alleviate the challenge of gradient disappearance and gradient explosion during
gradient transmission, giving the network very good performance against overfitting. We
give a detailed description of each part of the proposed network framework. As shown
in Figures 1 and 2, our model consists of two branches. One includes the LRMS image-
approximation branch, which provides most of the spectral information and a small amount
of spatial information needed to fuse the images, while the other is the detailed branch
used to extract spatial details. This structure has clear physical interpretability, and the
presence of approximate branching forces CNN to focus on learning the section information
needed to complement LRMS images, which would reduce uncertainty in network training.
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The detail branch has a structure similar to the encoder–decoder system, consisting of a
two-path network, multiscale feature-extraction networks, feature-fusion and recovery
networks, feedback connectivity structures, and image-reconstruction networks.

Figure 1. Detailed structure of the proposed multistage dense encoder–decoder network with feedback connections. Red
lines denote the feedback connections.

Figure 2. Specific structure of each subnet.

3.1. Two-Path Network

In pan-sharpening, it is widely accepted that the PAN and MS images contain different
information. PAN images are the carriers of geometrical detail information, while MS
images provide spectral information for the fusion images. The goal of pan-sharpening is
to combine spatial details and spectral information to generate new HRMS images.

Although PAN images are considered carriers of spatial information, they may also
contain spectral information. Similarly, the spatial information required for the HRMS
image is also present in the MS image. To make full use of the information of PAN and
MS images, we rely on CNN to fully extract the varied spatial and spectral information in
the images and to perform feature-fusion reconstruction and image-recovery work in the
feature domain.

We used two identical network results to extract features from the PAN and MS
images separately. One network took single-band PAN images (size H ×W × 1) as input,
while the other network used multiband MS images (size H ×W × N) as input. Before
entering the network, we upsampled the MS images by transposition convolution to
make them the same size as the PAN image. Each subnetwork consists of two separate
convolutional layers and a subsampling layer, each followed by a parametric rectified linear
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unit (PReLU). The downsampling operation improves the robustness of the input image to
certain perturbations while obtaining features of translation invariance, rotation invariance,
and scale invariance and reduces the risk of overfitting. Most CNN architectures utilise
maximum or average pooling for downsampling, but pooling results in an irreparable loss
of spatial information, which is unacceptable for pan-sharpening. Therefore, throughout
the network, we use a convolutional kernel of step 2 for downsampling rather than simple
pooling. The two-path network consists of two branches, each including two Conv3,64(·)
layers and one Conv2,32(·) layer. We use Conv f ,n(·) to represent convolution layers with
size f × f convolution kernels and n channels and use δ(·) to represent the PReLU activation
function, fMS, while fPAN represents the extracted MS and PAN image features, respectively,
and ⊗ represents the concatenation operation:

fMS = δ(Conv2,32(δ(Conv3,64(δ(Conv3,64(ILRMS)))))), (1)

fPAN = δ(Conv2,32(δ(Conv3,64(δ(Conv3,64(IPAN)))))), (2)

fP+M = fMS ⊗ fPAN , (3)

3.2. Multiscale Feature-Extraction Network

Remote sensing images contain a large number of large-scale objects, such as buildings,
roads, vegetation, mountains, and water bodies, as well as vehicles, ships, pedestrians, and
municipal facilities. In order to obtain more accurate HRMS images, our network needs
to have the ability to fully capture features having different scales from the PAN and MS
images. The depth and width of the network have a clear effect on the network’s ability
to acquire multiscale features. With a deeper network structure, the network can learn
richer feature information and context-related mapping. Owing to the emergence of the
ResNet [35] network structure, optimizing the network training process by adding skip
connections effectively solves the issues of gradient explosion, gradient disappearance,
and training difficulties as the network structure deepens, ensuring that we can use deeper
networks to obtain features at various scales. The inception structure proposed by an
earlier study [34] fully extends the width of the network so that the network can acquire
features of various scales at the same depth.

Inspired by the idea of enhancing network feature extraction by extending network
depth and width, we propose an efficient feature-extraction block (EFEB) to help the
network efficiently acquire features at various scales. As shown in Figure 3, EFEB consists
of three identical multiscale feature-extraction blocks (MFEB) with attention mechanisms
and two jump connections. MFEB can help the network acquire local multiscale features
by extending network width at a single depth, while EFEB uses multiple MFEB features
at various depths. As each MFEB output contains different features and makes full use of
these different hierarchical features, we use a simple hierarchical feature-fusion structure
that maps low-level features to advanced space through two jump connections, giving
EFEB more efficient multiscale feature grasping.

Figure 3. Specific structure of the efficient feature-extraction block.
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Inspired by GoogLeNet, MFEB was designed to expand the ability of the network
to obtain multiscale features using a structure shown in Figure 4. To obtain features at
different scales in the same level of the network, we used four parallel branches for separate
feature extraction. On each clade, we used convolutional nuclei of sizes 3 × 3, 5 × 5, 7 × 7,
and 9 × 9, respectively, to obtain receptive fields at different scales. However, this results in
high computational costs, which increases the training difficulty of the network. Inspired
by the structural improvement work of PanNet in a study [40], we chose to similarly
use the dilated convolution [41] operation to expand the receptive field of small-scale
convolutional kernels without additional parameters. As void convolution is a sparse
sampling method, with a mesh effect when multiple void convolutions are superimposed,
some pixels are not utilised at all while losing the continuity and correlation of information.
This results in a lack of correlation between features obtained from distant convolution,
which severely affects the quality of the last-obtained HRMS images. To mitigate this
concern, we introduce Res2Net [49]’s idea to improve the dilated convolution.

We used a dilated convolution block on each branch to gain more contextual informa-
tion using a 3 × 3 layer and set the expansion rate to 1, 2, 3, and 4, equivalent to our use of
convolutional kernels of sizes 3 × 3, 5 × 5, 7 × 7, and 9 × 9 but using a minimal number
of parameters. To further expand the receptive field and obtain more sufficient multiscale
features, we processed the features using a convolutional layer of 3 × 3 on each clade.

To mitigate the issue of grid effects caused by dilated convolution and the lack of
correlation between the extracted features, we connected the output of the former branch
to the next branch by jumping, which is repeated several times until the outputs of all
branches are processed. This allows for different scale features to be effectively complemen-
tary and the loss of detailed features and semantic information to be avoided as large-scale
convolutional kernels can be dominated by multiple small-scale convolutional cores. Jump
connections between branches allow each branch to have continuous receptive fields of 3,
5, 7, and 9, respectively, while avoiding information loss from continuous use of dilated
convolution. Finally, we fused the results from the four pathway cascades through a 1 × 1
convolutional layer. We then used spatial and channel-attention mechanisms through
compressed spatial information to measure channel importance and compressed channel
information to obtain measures of spatial location importance. Indicators indicate the
importance of different feature channels and spatial locations that can help the network
enhance features more important to the current task. To better preserve intrinsic infor-
mation, the output features are fused to the original input in a similar manner, and the
jump connections across the module effectively reduce training difficulty and possible
degradation. This procedure can be defined as:

x = δ(Conv1,64( f3×3 ⊗ f5×5 ⊗ f7×7 ⊗ f9×9)), (4)

FCSE(x) = σ(Conv1,64(δ(Conv1,32(µ(x))))), (5)

FSSE(x) = σ(Conv1,1(x)), (6)

FMFEB = FCSE(x) ∗ x + FSSE(x) ∗ x + x, (7)

We use Conv f ,n(·) to represent convolution layers with size f × f convolution kernels
and n channels.δ(·),δ(·), and µ(·) represent the sigmoid activation functions, PReLU activa-
tion function, and global average pooling layer, respectively. FCSE(x) and FSSE(x) represent
the measures of channel importance and the measures of spatial location importance, re-
spectively. Furthermore, x represents multiscale features extracted from four branches with
different-scale receptive fields, and ⊗ represents the concatenation operation.
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Figure 4. Detailed structure of the multiscale feature-extraction block.
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3.3. Feature Fusion and Recovery Networks

To effectively fuse the various levels of extracted multiple-scale features and recover
high-quality HRMS images, we propose a feature-fusion and recovery block (FFRB) com-
posed of densely connected encoders and decoders. The concrete structures of the FFRB
and residual block are shown in Figure 5. CNN-based pan-sharpening approaches, such
as TFNet [42], ResTFNet [43], PSGAN [45], and RED-cGAN [46] adopt a fully symmetric
encoder–decoder framework structure and achieve remarkable results. Unlike these works
on network design based on the U-Net [23] infrastructure, we are inspired by U-Net++ [37]
and U-Net3+ [38] to propose more complex but more efficient encoder–decoder structures.

Figure 5. Structure of the proposed residual block and the feature-fusion recovery block.

Owing to the different size of the receptive field, the shallow structure of the network
focuses on capturing some simple features, such as boundary, colour, and texture infor-
mation, whereas deep structures are good at capturing semantic information and abstract
features. The downsampling operation improves the robustness of the input image to
certain perturbations while obtaining features of translation invariance, rotation invariance,
and scale invariance and reducing the risk of overfitting. Continuous downsampling can
increase the receptive-field size and help the network fully capture multiscale features.
The downsampling operation helps the encoder fuse and encode features at different
levels, the edge and detail information of the image are recovered through the upsampling
operation and decoder, and the reconstruction of the fusion image was initially completed.
However, multiple downsampling and upsampling operations can cause edge information
and small-scale object loss. The complex-encoded semantic and abstract information also
poses substantial difficulties for the decoder.

As shown in Figure 5, we used four residual blocks and three downsampling opera-
tions to compose the encoder network. Unlike other fully symmetrical encoder–decoder
structures in the work, we used six residual blocks to constitute the decoder network and
add an upsampling layer before each decoder. In the network, we doubled the number of
channels of the feature graph by each subsampled layer and halve the number of feature-
graph channels at each upsampled layer. As we changed the number of channels after
each downsampling and upsampling, given that the jump connection of the residual block
requires input and output with the same number of channels, we changed the number of
channels via a 1 × 1 convolutional layer.
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To effectively compensate for the information lost in multiple downsampling and
upsampling operations and to reduce the difficulty for the decoder to recover features from
highly complex and abstract information, we introduced the idea of dense connectivity in
the encoder-decoder structure, adding dense connectivity between encoders and decoders
with the same size of the feature graph, which not only places the encoder and decoder at
a similar semantic level but also improves the ability of the network to resist overfitting.
Different levels of features focus on different information but are consistent with the
importance of completing pan-sharpening, and in order to obtain higher precision images
while enhancing the ability of the network to explore full-scale information and make full
use of all levels of features, we also added dense connections between decoders acting on
the same encoder. The input to each decoder is composed of feature maps in encoders and
decoders with the same scale and large scale that capture fine-grained and coarse-grained
semantics at the full scale.

3.4. Feedback Connection Structure

Li et al. [50] carefully designed a feedback block to extract powerful high-level rep-
resentations for low-level computer-vision tasks and transmit high-level representations
to perfect low-level functions. Fu et al. [44] added this feedback connection mechanism
for super-resolution tasks to the network for pan-sharpening. They enable the feature-
extraction block to generate more powerful features by iterating the information in each
subnetwork to the same module of the next subnetwork, iteratively up and downsampling
the input features to achieve the feedback connectivity mechanism.

Our proposed network has a similar structure to that of TPNwFB, which consists of
four identical subnetworks, each with a specific structure, as shown in Figure 2. Compared
to feedforward connections, each network layer can only accept information from the previ-
ous layer, and the shallow network cannot access useful information from the deep network,
so it can only extract the underlying features, lacking sufficient context information and
abstract fields. Feedback connections can input features that have already completed
the initial reconstruction as depth information into the next subnetwork. The high-level
information transmitted can complement the semantic and abstract information lacking in
low-level features, correct the misinformation carried in low-level features, correct some
previous states, and provide the network with significant early reconstruction capability.

3.5. Image Reconstruction Network

We reconstructed the images from the recovered features using a residual block and
a convolution layer of 3 × 3. We upsampled the recovered features to the same scale as
the PAN image and injected them into the residual block after they were stacked with the
features extracted by the two-path network, which helps compensate for the information
lost by the network during convolution while effectively reducing the training difficulty
of the network. Finally, the detailed features needed to complement the LRMS images
were recovered by a convolutional layer and interacted with the LRMS in the approximate
branch to generate high-quality HRMS images. This procedure can be defined as:

Iout = ILRMS + δ(Conv3,4(FRB(Deconv2,64(FFEEB(·))⊗ fPAN ⊗ fMS))), (8)

We use ⊗ to represent cascading operations. Conv f ,n(·) and Deconv f ,n(·) represent
convolutional and deconvolutional layers, respectively, and f and n represent the size and
number of channels of convolutional kernels. FRB(·) and FFEEB(·) represent the residual
blocks and the feature-fusion reconstruction blocks, respectively.

3.6. Loss Function

The L2 loss function may cause local minimization problems and result in artifacts in
the image-smoothing region. Simultaneously, the L1 loss function yields a good minimum,
and the L1 loss function retains the spectral information, such as colour and brightness,
better than the L2 loss function. Therefore, we chose the L1 loss function to optimise
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the parameters of the proposed network. We attached the loss function to each subnet,
ensuring that the information passed to the latter subnetwork in the feedback connection
is valid:

loss =
1
N

N

∑
i=1
|Φ(X(i)

p , X(i)
m ; θ)− Y(i)|1, (9)

where X(i)
p , X(i)

m and Y(i) represent a set of training samples; X(i)
p and X(i)

m refer to the
PAN image and low-resolution MS image, respectively; Y(i) represents high-resolution MS
images; Φ represents the entire network; and θ is the parameter in the network.

4. Experiments and Analysis

In this section, we demonstrate the effectiveness and superiority of the proposed
method through experiments on the QuickBird, WorldView-2, WorldView-3, and IKONOS
datasets. In early experiments, the best model is selected for experiments by comparing
and evaluating the training and test results of various network parameter models. Finally,
the visual and objective metrics of our best model are compared with several existing
traditional algorithms and CNN methods to demonstrate the superior performance of the
proposed method.

4.1. Datasets

For QuickBird data, the spatial resolution of the MS image is 2.44 m, the spatial
resolution of the PAN image is 0.61 m, and the MS image has four bands, i.e., blue,
green, red, and near-infrared (NIR) bands, with a spectral resolution of 450–900 nm. For
WorldView-2 and WorldView-3 data, the spatial resolutions of the MS images are 1.84 m
and 1.24 m, respectively, the spatial resolutions of the PAN images are 0.46 m and 0.31 m,
respectively, the MS image has eight bands, i.e., coastal, blue, green, yellow, red, edge, NIR
and NIR 2 bands, and the spectral resolutions of the images are 400–1040 nm. For IKONOS
data, the spatial resolution of the MS image is 4 m, the spatial resolution of the PAN image
is 1 m, and the MS image has four bands, i.e., blue, green, red, and near-NIR bands, with a
spectral resolution of 450–900 nm.

The network architecture in this study was implemented using the PyTorch deep
learning framework and trained on an NVIDIA RTX 2080Ti GPU. The training time for the
entire program was approximately eight hours. We used the Adam optimisation algorithm
to minimise the loss function and optimise the model. We set the learning rate to 0.001 and
the exponential decay factor to 0.8. The LRMS and PAN images were both downsampled by
Wald’s protocol in order to use the original LRMS images as the ground truth images. The
image patch size was set to 64 × 64 and the batch size to 64. To facilitate visual observation,
the red, green, and blue bands of the multispectral images were used as imaging bands of
RGB images to form colour images. The results are presented using ENVI. In the calculation
of image-evaluation indexes, all the bands of the images were used simultaneously.

Considering that different satellites have different properties, the models were trained
and tested on all four datasets. Each dataset is divided into two subsets, namely the training
and test sets, between which the samples do not overlap. The training set was used to
train the network, and the test set was used to evaluate the performance. The sizes of the
training and test sets for the four datasets are listed in Table 1. We used a separate set of
images as a validation set to assess differences in objective metrics and to judge the quality
of methods from a subjective visual perspective, each consisting of original 256 × 256 MS
images and original 1024 × 1024 PAN images.
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Table 1. Size of training and test sets for different satellite datasets.

Dataset Total Numbers Train Set Validation Set

QuickBird 950 750 200
WorldView-2 750 600 150
WorldView-3 1300 1000 300

IKONOS 160 144 16

4.2. Evaluation Indexes

We contrast the performance of different algorithms through two different types of
experiments, i.e., simulation experiments with HRMS images as a reference and real exper-
iments without HRMS images as a reference, because in the actual application scenarios of
remote sensing images, there is often a lack of HRMS images. In order to more objectively
evaluate and analyse the performance of different algorithms in different aspects of differ-
ent datasets, we selected ten objective evaluation indicators according to the characteristics
of simulation experiments and real experiments. Depending on whether or not reference
images are used, they can be divided into reference indicators and non-reference indicators.

The universal image quality index [51], averaged over the bands (Q_avg) and its
four-band extension, Q4 [52] represents the quality of each band and the quality of all the
bands, respectively. The relative global dimensional synthesis error (ERGAS) [32], also
known as the relative overall two-dimensional comprehensive error, is generally used as
the overall quality index. The relative average spectral error (RASE) [42] estimates the
overall spectral quality of the pan-sharpened image. Structural similarity (SSIM) [53] is a
measure of similarity between two images. The correlation coefficient (CC) [43] is a widely
used index for measuring the spectral quality of pan-sharpened images. It calculates
the correlation coefficient between the generated image and the corresponding reference
image. The spectral angle mapper (SAM) [54] measures the spectral distortion of the pan-
sharpened image compared with the reference image. It is defined as the angle between
the spectral vectors of the pan-sharpened image and the reference image in the same pixel.
The closer Q_avg, Q4, SSIM, and SCC are to 1, the better the fusion results, while the lower
SAM, RASE, and ERGAS are, the better the fusion quality.

To evaluate these methods in the full-resolution case, we used the reference-free
mass index (QNR) [55] and its spatial index (DS), as well as the spectral index (Dλ) for
quantitative evaluation. QNR primarily reflects the fusion performance with no real
reference values and is composed of Ds and Dλ. The Ds index being close to 0 indicates
good structural performance; the Dλ index being close to 0 shows good fusion in the
spectrum; and a QNR value close to 1 indicates the original full-colour pan-sharpening
performance. As these metrics rely heavily on raw MS and PAN images, often, quantifying
the similarity of certain components in the fusion images to low-resolution observations
would bias these indicator estimates, and for this reason, some methods can generate
images with high QNR values but poor quality.

4.3. Simulated Experiments and Real Experiments

To verify the effectiveness and reliability of the proposed network, we performed
simulated and real experiments on different datasets. Some representative traditional
and deep learning-based algorithms were selected from four datasets, and performance
was compared between different methods by subjective visual and objective metrics. The
selected traditional algorithms include the CS-based methods, such as IHS [5], PRACG [8],
HPF [56], and GS [7]. Among the MRA-based methods, DWT [9] and GLP [57] were
considered. One model-based method, PPXS [58], was considered. We selected five deep
learning-based methods as contrast objects, including PNN [28], DRPNN [30], PanNet [40],
ResTFNet [43], and TPNwFB [44].
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4.3.1. Experiment with QuickBird Dataset

The fusion results using the QuickBird dataset with four bands are shown in Figure 6.
Figure 6a–c shows the HRMS, LRMS, and PAN (with a resolution of 256 × 256 pixels),
Figure 6d–j shows the fusion results of the traditional algorithms, and Figure 6k–p shows
the fusion results of the deep learning methods.

Figure 6. Results using the QuickBird dataset with four bands (resolutions of 256× 256 pixels): (a) reference image; (b) PAN;
(c) LRMS; (d) IHS; (e) PRACS; (f) HPF; (g) GS; (h) DWT; (i) GLP; (j) PPXS; (k) PNN; (l) DRPNN; (m) PanNet; (n) ResTFNet;
(o) TPNwFB; (p) ours.

Based on the analysis of all the fused and contrast images, it can be intuitively ob-
served that the fused images of the seven non-deep learning methods have obvious colour
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differences. These images have distinct spectral distortions, with some ambiguity in the
edges of the image. Significant artifacts appear around moving objects. Among these
methods, the spectral distortion of the DWT image is the most severe. The IHS fusion
image has an obvious detail loss in the obvious part of the changing spectral information.
The spatial distortion of the PPXS is the most severe, and the fusion image presents a very
vague effect. GLP and GS present significant edge blur in the spectral distortion region,
and the PRACS method presents artifacts in the image edges, while HPF images show
slight blur and edge-texture blur on the image. The deep learning methods show good
fidelity to spectral and spatial information on the QuickBird dataset, and it is difficult to
determine the texture details of image generation through subjective vision. Therefore,
we further compared the following metrics and objectively analysed the advantages and
disadvantages of each fusion method. Table 2 lists the results of objective analysis of each
method according to the index values.

Table 2. Evaluations using the QuickBird dataset (best result is in bold).

Method SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑
IHS 7.3370 29.2116 0.6930 7.7931 0.9245 0.8383 0.6968

PRACS 6.6502 27.0441 0.6985 7.2882 0.9287 0.8693 0.7003
HPF 6.1590 26.5007 0.7199 7.1123 0.9308 0.8795 0.7177
GS 6.7736 28.6871 0.6995 7.6727 0.9282 0.8421 0.7047

DWT 12.6372 39.1140 0.5688 9.9968 0.8361 0.7731 0.5492
GLP 6.2712 26.1510 0.7300 7.0190 0.9329 0.8872 0.7305
PPXS 6.3972 37.0457 0.4738 9.8349 0.8606 0.7126 0.4433
PNN 4.8988 20.4170 0.7949 5.4583 0.9612 0.9259 0.8060

DRPNN 4.0506 16.5490 0.8340 4.4543 0.9738 0.9527 0.8519
PanNet 3.8544 14.0295 0.8497 3.7743 0.9808 0.9627 0.8664

ResTFNet 2.9400 12.1735 0.8834 3.2852 0.9858 0.9739 0.9031
TPNwFB 2.5072 10.0468 0.9072 2.7214 0.9909 0.9822 0.9263

ours 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577

Objective evaluation metrics show that deep learning-based methods show signif-
icantly better performance than conventional methods in terms of evaluating spectral
information as well as the metrics for measuring spatial quality. Among traditional meth-
ods, the HPF method achieves the best results on the overall metrics, but there is still a huge
gap compared to those using deep learning. The HPF and GLP methods differ only slightly
in other metrics, but the HPF method outperforms the GLP method in maintaining spectral
information, while GLP’s spatial details are better. With extremely severe spectral distor-
tion and ambiguous spatial detail, the DWT band exhibits extremely poor performance
across all metrics. The PPXS RASE index evaluation outperforms only the serious DWT,
shows spatial distortion, and the fusion image is fuzzy. However, it has a good retention
of spectral information. In CNN-based methods, affected by the network structure, the
more complex networks can achieve better results in general. As only the three-layer
network structure was used, even when the nonlinear radiation metrics were introduced
with added input, PNN showed the worst performance in the deep learning-based ap-
proach. Networks using dual-stream structures achieve significantly superior performance
over PNN, DRPNN, and PanNet, bringing the texture details and spectral information
of the fused images closer to the original image. Although our proposed network and
TPNwFB use feedback connectivity, we use a more efficient feature-extraction structure.
Therefore, whether one indicator evaluates spatial or spectral information, the proposed
neural network outperforms all compared fusion methods, without obvious artifacts or
spectral distortion in the fusion results. These results demonstrate the effectiveness of our
proposed method.
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4.3.2. Experiment with WorldView-2 Dataset

The fusion results using the WorldView-2 dataset with four bands are shown in Figure 7.
Figure 7a–c shows the HRMS, LRMS, and PAN (with a resolution of 256 × 256 pixels),
Figure 7d–j shows the fusion results of the traditional algorithms, and Figure 7k–p shows
the fusion results of the deep learning methods.

Figure 7. Results using the WorldView-2 dataset with four bands (resolutions of 256 × 256 pixels): (a) reference image;
(b) PAN; (c) LRMS; (d) IHS; (e) PRACS; (f) HPF; (g) GS; (h) DWT; (i) GLP; (j) PPXS; (k) PNN; (l) DRPNN; (m) PanNet;
(n) ResTFNet; (o) TPNwFB; (p) ours.
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It is intuitively seen from the graph that the fusion images of non-deep learning
methods have distinct colour differences compared to the reference images, and the results
of traditional methods are affected by more serious spatial blurring than deep learning-
based methods. PRACS and GLP partially recover better spatial details and spectral
information, obtaining better subjective visual effects than other conventional methods.
However, it is still affected by spectral distortion and artifacts. Through visual observation,
it is intuitive that deep learning-based methods do better in the preservation of spectral
information than conventional methods.

Table 3 presents the results of objective analysis of each method according to the index
values. On the WorldView-2 dataset, images produced using conventional algorithms and
fusion images produced based on deep learning algorithms do not show significant gaps
in various metrics, but the latter still performs better from all perspectives.

Table 3. Evaluations using the WorldView-2 dataset (best result is in bold).

Method SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑
IHS 5.6371 25.9189 0.7103 6.4711 0.9003 0.8176 0.6712

PRACS 4.9892 24.8504 0.7471 6.0704 0.9056 0.8615 0.7070
HPF 4.7316 23.7913 0.7413 5.8646 0.9115 0.8643 0.6950
GS 5.1635 25.6432 0.7210 6.3201 0.9030 0.8286 0.6827

DWT 8.0542 31.1777 0.6142 7.8327 0.8368 0.7677 0.5529
GLP 4.8826 23.4767 0.7563 5.7863 0.9163 0.8732 0.7124
PPXS 5.0452 29.1005 0.5384 7.2093 0.8638 0.7565 0.4580
PNN 4.4631 20.0271 0.8148 4.9370 0.9390 0.9055 0.7846

DRPNN 4.3753 19.8093 0.8161 4.8780 0.9404 0.9075 0.7851
PanNet 4.4901 20.6826 0.8078 5.1074 0.9343 0.9003 0.7765

ResTFNet 4.2802 18.9940 0.8213 4.6836 0.9447 0.9107 0.7912
TPNwFB 4.0258 17.9753 0.8413 4.4353 0.9505 0.9216 0.8124

ours 3.7506 16.5804 0.8643 4.0970 0.9584 0.9346 0.8407

Unlike other methods, PanNet chose to train networks in the high-frequency domain,
still inevitably causing a loss of information, even with spectral mapping. Owing to
the differences between datasets, it is harder to train deep learning-based methods on
WorldView-2 datasets than on other datasets. This results in PanNet failing to achieve
satisfactory results on the objective evaluation indicators. Notably, the networks using the
feedback connectivity mechanism yielded significantly better results than other methods,
with better objective evaluation of metrics, indicating that the fusion images are more
similar to ground truth. On each objective evaluation metric, our proposed method exhibits
good quality in terms of spatial detail and spectral fidelity.

4.3.3. Experiment with WorldView-3 Dataset

The fusion results using the WorldView-3 dataset with four bands are shown in Figure 8.
Figure 8a–c shows the HRMS, LRMS, and PAN (with a resolution of 256 × 256 pixels),
Figure 8d–j shows the fusion results of the traditional algorithms, and Figure 8k–p shows
the fusion results of the deep learning methods. Table 4 presents the results of objective
analysis of each method according to the index values.

On the WorldView-3 dataset, non-deep learning methods are still affected by spectral
distortion, which is particularly evident with buildings. The DWT fusion images exhibit
the most severe spectral distortion and a loss of spatial detail. The IHS fusion images show
partial details of some spectral distortion regions and fuzzy artifacts of the road-vehicle
regions. The HPF, GS, GLP, and PRACS methods show good performance in the overall
spatial structure, but they show distortion and ambiguity in spectrum and detail. The HPF
and GS methods can show colours closer to the reference image, but the edges and details
of the house are accompanied by artifacts visible to the naked eye. Spectral distortion in
non-deep learning methods leads to local detail loss, with distortion and blurring of vehicle
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and building edges. Deep learning-based methods all reflect a better retention of spectral
and spatial information as a whole.

Figure 8. Results using the WorldView-3 dataset with four bands (resolutions of 256 × 256 pixels): (a) reference image;
(b) PAN; (c) LRMS; (d) IHS; (e) PRACS; (f) HPF; (g) GS; (h) DWT; (i) GLP; (j) PPXS; (k) PNN; (l) DRPNN; (m) PanNet;
(n) ResTFNet; (o) TPNwFB; (p) ours.
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Table 4. Evaluations using the WorldView-3 dataset (best result is in bold).

Method SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑
IHS 3.9227 20.0131 0.8249 5.0851 0.9532 0.9167 0.7991

PRACS 3.9758 17.9972 0.8500 4.4154 0.9577 0.9437 0.8194
HPF 3.3183 17.7482 0.8369 4.4816 0.9580 0.9407 0.8002
GS 3.5870 19.7825 0.8341 5.0001 0.9546 0.9229 0.8091

DWT 7.4893 29.8107 0.6770 7.5423 0.8853 0.8337 0.6257
GLP 3.3455 16.9436 0.8564 4.2733 0.9652 0.9489 0.8255
PPXS 3.5409 24.1764 0.7045 6.1892 0.9202 0.8763 0.6456
PNN 3.0606 11.3623 0.9219 2.8347 0.9828 0.9752 0.9095

DRPNN 2.9469 11.0848 0.9276 2.7820 0.9836 0.9774 0.9157
PanNet 2.6216 10.9912 0.9288 2.7574 0.9840 0.9773 0.9170

ResTFNet 2.6916 11.3202 0.9317 2.8295 0.9831 0.9764 0.9207
TPNwFB 2.6904 11.1373 0.9257 2.7867 0.9835 0.9769 0.9125

ours 2.4029 9.9737 0.9421 2.4939 0.9868 0.9813 0.9326

To further compare the performance of the various methods, we analysed them using
objective evaluation measures for different networks. Although PPXS achieved good
evaluation on SAM, it has an obvious gap in terms of other metrics and other methods.
The HPF and GLP methods show performance similar to that of deep learning methods on
SAM metrics, achieving good results in preserving spatial information and yielding better
spectral information in the fused results over other non-deep learning methods. However,
they still have a large gap on RASE and ERGAS and the methods using CNN, indicating
that there are more detailed blurs and artifacts in the fused images.

Among the CNN methods, PanNet showed the best performance, with superior re-
sults using high-frequency domains on the WorldView-3 dataset. ResTFnet and TPNwFB
achieved similar performance, in addition to TPNwFB, still showing better performance in
SSIM indicators, which shows that feedback connection operations in the network still play
an important role. Compared with all the contrast methods, our proposed network more
effectively retains the spectral and spatial information in the image, yielding good fusion re-
sults. Based on all the evaluation measures, the proposed method significantly outperforms
the existing fusion methods, demonstrating the effectiveness of the proposed method.

4.3.4. Experiment with the IKONOS Dataset

The fusion results using the IKONOS dataset with four bands are shown in Figure 9.
Figure 9a–c shows the HRMS, LRMS, and PAN (with a resolution of 256 × 256 pixels),
Figure 9d–j shows the fusion results of the traditional algorithms, and Figure 9k–p shows
the fusion results of the deep learning methods. Table 5 presents the results of objective
analysis of each method according to the index values.

Table 5. Evaluations using the IKONOS dataset (best result is in bold).

Method SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑

IHS 3.1691 13.8400 0.3860 3.1599 0.9427 0.4741 0.4089
PRACS 2.8249 12.7932 0.4800 2.6011 0.9513 0.6675 0.5197

HPF 2.7730 13.5253 0.4683 2.7728 0.9458 0.6389 0.4950
GS 2.8089 14.0234 0.4487 2.8821 0.9411 0.6032 0.4896

DWT 9.4846 22.7378 0.3183 5.4503 0.8553 0.2945 0.3417
GLP 2.7788 13.5999 0.4852 2.8028 0.9455 0.6458 0.5083
PPXS 2.7693 12.7035 0.4065 2.5701 0.9535 0.6351 0.4725
PNN 2.4621 8.2089 0.7088 1.8787 0.9801 0.8057 0.7508

DRPNN 2.3908 8.6174 0.7147 1.9280 0.9786 0.8121 0.7521
PanNet 1.8269 5.6283 0.7899 1.3172 0.9909 0.8862 0.8210

ResTFNet 0.6309 1.4935 0.9512 0.4399 0.9994 0.9747 0.9659
TPNwFB 1.2008 3.3423 0.8842 0.8731 0.9968 0.9375 0.9069

ours 0.4096 1.0310 0.9680 0.2973 0.9997 0.9824 0.9802
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Figure 9. Results using the IKONOS dataset with four bands (resolutions of 256 × 256 pixels): (a) reference image; (b) PAN;
(c) LRMS; (d) IHS; (e) PRACS; (f) HPF; (g) GS; (h) DWT; (i) GLP; (j) PPXS; (k) PNN; (l) DRPNN; (m) PanNet; (n) ResTFNet;
(o) TPNwFB; (p) ours.

All conventional methods produce images with apparent spectral distortion and
blur or loss of edge detail. It is clear from the figure that the images obtained using the
PNN and DRPNN methods have significant spectral distortion. At the same time, given
that the spatial structure is too smooth and a lot of edge information is lost, the index
value objectively shows the advantages and disadvantages of various methods, and the
overall effect of deep learning is significantly better than that of traditional methods. These
data suggest that networks with an encoder–decoder structure have better performance
than other structures. ResTFNet obtained significantly superior results using this dataset.
Through our proposal that the network-generated images closest approach the original
image, the evaluation metrics clearly show the effectiveness of the method.
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4.3.5. Experiment with WorldView-3 Real Dataset

For the full-resolution experiment, we used the model trained by the reduced-resolution
experiment and the real data as the input to generate fused images. In this experiment, we
directly input MS and PAN images into models without any resolution reduction, which
guarantees the ideal full-resolution experimental results and follows a similar approach to
those used by the other models.

The fusion results using the WorldView-3 Real dataset with four bands are shown in
Figure 10. Figure 10a,b shows the LRMS and PAN (with a resolution of 256 × 256 pixels),
Figure 10c–i shows the fusion results of the traditional algorithms, and Figure 10j–o shows
the fusion results of the deep learning methods. Table 6 presents the results of objective
analysis of each method according to the index values.

Figure 10. Results using the WorldView-3 Real dataset with four bands (resolutions of 256 × 256 pixels): (a) LRMS;
(b) PAN; (c) IHS; (d) PRACS; (e) HPF; (f) GS; (g) DWT; (h) GLP; (i) PPXS; (j) PNN; (k) DRPNN; (l) PanNet; (m) ResTFNet;
(n) TPNwFB; (o) ours.

By observing the fusion images, it is found that DWT and IHS show obvious spectral
distortion. Although in the GS and GLP methods, the overall spatial structure information
is well preserved, local information is lost. The merged images in the PRACS method were
too smooth, resulting in severe loss of edge detail.

TPNwFB and our proposed method have the best overall performance and can demon-
strate practical utility in using feedback connection operations in the network. An analysis
of objective data shows that the index values of PPXS are significantly better than other
methods in Dλ but decreased slightly in QNP and Ds. Deep learning-based methods show
a certain performance gap in non-deep learning methods. However, given the extremely
simple network structure of PNN and DRPNN, satisfactory results are not achieved. Con-
sidering three indicators, our proposed network achieves better results in full-resolution
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experiments, conclusively demonstrating that the proposed innovation plays a positive
role in generalised sharpening.

Table 6. Evaluations using the WorldView-3 Real Dataset (best result is in bold).

Method QNP↑ Dλ↓ Ds↓

IHS 0.6315 0.0794 0.3140
PRACS 0.8041 0.0287 0.1721

HPF 0.6710 0.1067 0.2488
GS 0.6426 0.0708 0.3084

DWT 0.6119 0.2875 0.1412
GLP 0.6755 0.1082 0.2425
PPXS 0.8936 0.0063 0.1008
PNN 0.7134 0.1080 0.2003

DRPNN 0.7515 0.0715 0.1907
PanNet 0.8052 0.0790 0.1257

ResTFNet 0.8805 0.0509 0.0723
TPNwFB 0.9116 0.0511 0.0393

ours 0.9213 0.0201 0.0598

4.3.6. Experiment with QuickBird Real Dataset

The fusion results using the QuickBird Real dataset with four bands are shown in
Figure 11. Figure 11a,b shows the LRMS and PAN (with a resolution of 256 × 256 pixels),
Figure 11c–i shows the fusion results of the traditional algorithms, and Figure 11j–o shows
the fusion results of the deep learning methods. Table 7 presents the results of objective
analysis of each method according to the index values.

Figure 11. Results using the QuickBird Real dataset with four bands (resolutions of 256 × 256 pixels): (a) LRMS; (b) PAN;
(c) IHS; (d) PRACS; (e) HPF; (f) GS; (g) DWT; (h) GLP; (i) PPXS; (j) PNN; (k) DRPNN; (l) PanNet; (m) ResTFNet; (n) TPNwFB;
(o) ours.
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Table 7. Evaluations using the QuickBird Real Dataset (best result is in bold).

Method QNP↑ Dλ↓ Ds↓
IHS 0.6096 0.1173 0.3093

PRACS 0.8293 0.0374 0.1384
HPF 0.6468 0.1216 0.2636
GS 0.6418 0.0920 0.2932

DWT 0.5647 0.3273 0.1605
GLP 0.6512 0.1198 0.2601
PPXS 0.8743 0.0061 0.1203
PNN 0.7766 0.1871 0.0446

DRPNN 0.8178 0.0979 0.0935
PanNet 0.8236 0.0817 0.1031

ResTFNet 0.9211 0.0426 0.0379
TPNwFB 0.9090 0.0495 0.0437
Proposed 0.9311 0.0205 0.0494

PRACS and PPXS obtain better visual effects in non-deep learning methods with
sufficient retention of spectral information but still lack effective retention of detail com-
pared to deep learning methods. Among the deep learning methods, ResTFNet and our
proposed method achieved the best results on the whole, with full and effective retention of
spatial details and spectral colour and comprehensive analysis of three objective evaluation
indicators. The use of encoder–decoder structure in the network structure can effectively
improve the performance of the network in real experiments.

4.3.7. Processing Time and Model Size

As shown in Table 8, for different deep learning methods, our proposed method had
the longest processing time in the test mode. Our method also has a far greater number
of parameters than the other methods. The data clearly show that the more complex
the model, the more time it takes to generate a single fusion image; however, a more
complex structure can achieve better performance results. Our method is mainly designed
to optimize the structure from the perspective of improving the effect of the fusion result.
The issue of optimizing the network runtime was not considered.

Table 8. Different deep learning methods for processing time and model size.

Method Time (S) Model Size (MB)

PNN 1.92 0.31
DRPNN 2.08 3.19
PanNet 2.22 2.06

ResTFNet 2.49 8.55
TPNwFB 2.82 52.3
Proposed 3.13 210

5. Discussion
5.1. Discussion of EFEB

In this subsection, we examine the influence of each part of the model through ablation
learning in order to obtain the best performance of the model. To obtain high-quality HRMS
images, we propose a dense encoder–decoder network with feedback connections for pan-
sharpening. In the network, we use an efficient feature-extraction module to fully capture
features at different scales in networks of different depths and widths. To increase the
depth of the network, we used three MFEBs. In each MFEB, we increased the width of the
network by using four branches with different receptive fields.

To validate the effectiveness of our proposed EFEB and to explore the impact of
combinations using different receptive field branches on the fusion results, we performed
comparative experiments on them using four datasets. We performed experiments using
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convolutional kernel combinations with different receptive field sizes while retaining three
MEFB and four branches in each block, from which the best receptive field scale was
selected for combination. Experiments demonstrate that the highest-performing multiscale
modules can be obtained by using structures with an expansion rate of {1,2,3,4}. We used
four branches with receptive field sizes of 3, 5, 7, and 9, separately, although if we increased
the parameters and the number of calculations, we would obtain noticeably better results.
The experimental results are presented in Table 9.

Table 9. Quantitative evaluation results of multiscale feature-extraction modules with different
combinations are shown in bold.

Scale SAM↓ RASE↓ Q_AVE↑ ERGAS↓ CC↑ Q4↑ SSIM↑

1123 2.0460 7.4101 0.9369 2.0083 0.9949 0.9897 0.9498
1124 2.0284 7.4482 0.9425 1.9891 0.9948 0.9899 0.9539
1125 2.1016 7.3502 0.9356 1.9812 0.9949 0.9897 0.9485
1223 2.1681 7.6609 0.9295 2.0630 0.9944 0.9890 0.9453
1224 2.2350 7.8802 0.9207 2.1199 0.9941 0.9879 0.9402
1225 2.0571 7.2789 0.9379 1.9671 0.9949 0.9903 0.9509
1233 1.9660 6.6951 0.9392 1.8075 0.9958 0.9913 0.9532
1234 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577
1235 1.8182 6.6792 0.9487 1.7930 0.9958 0.9914 0.9579
1333 2.1834 7.6122 0.9229 2.0516 0.9945 0.9889 0.9424
1334 1.9818 7.1717 0.9431 1.9291 0.9952 0.9906 0.9543
1335 2.2714 8.0409 0.9193 2.1526 0.9940 0.9879 0.9391

To validate the effectiveness of EFEB across the model, we compared the networks
using EFEB to those not using this module on four datasets. The objective evaluation
indicators are listed in Table 10. Using EFEB increases the width and depth of the network
to extract richer feature information and to identify additional mapping relationships that
meet expectations. Elimination of multiscale modules results in a lack of multiscale feature
learning and detail learning, which hampers the extraction of more efficient features in the
current task, thus reducing image-reconstruction capabilities. EFEB demonstrates the effec-
tiveness of multiple-enhancing network performance in experiments on all four datasets.

Table 10. Quantitative evaluation results of different structures using different datasets. In A, a
contrasting network without EFEB. In B, our network is used.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

QuickBird (A) 2.4643 8.5049 0.9135 2.2910 0.9932 0.9863 0.9335
QuickBird (B) 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577

WorldView-2 (A) 3.8236 16.6670 0.8622 4.1180 0.9578 0.9332 0.8386
WorldView-2 (B) 3.7506 16.5804 0.8643 4.0970 0.9584 0.9346 0.8407
WorldView-3 (A) 2.4399 10.2544 0.9402 2.5637 0.9861 0.9804 0.9302
WorldView-3 (B) 2.4029 9.9737 0.9421 2.4939 0.9868 0.9813 0.9326

IKONOS (A) 0.4096 1.0310 0.9680 0.2973 0.9997 0.9824 0.9802
IKONOS (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748

5.2. Discussion of FFRB

In the network, we used a network structure with a multilayer encoder and decoder
combined with dense connections to complete the task of integrating and reconstructing
the extracted multiscale spatial and spectral information. In contrast with other two-stream
networks for pan-sharpening, which used encoder–decoder structures to decode only the
results after the last level encoding, we decoded the results after each level encoding. We
also added sufficient dense connections between the encoder and the decoder, which is a
further improvement of the conventional symmetric encoder–decoder structure.

To demonstrate that the dense connection between the encoder and the decoder is
valid, we retrained a network for comparison on four datasets that retained the same
number of encoders and decoders as our proposed network but did not use the dense
connection operation. The experimental results are presented in Table 11.
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Table 11. Quantitative evaluation results of different structures using different datasets. In A, a
contrasting network is used. In B, our network is used.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

QuickBird (A) 2.8675 10.8443 0.8930 2.9372 0.9888 0.9788 0.9152
QuickBird (B) 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577

WorldView-2 (A) 3.8805 17.6535 0.8488 4.3531 0.9529 0.9260 0.8222
WorldView-2 (B) 3.7506 16.5804 0.8643 4.0970 0.9584 0.9346 0.8407
WorldView-3 (A) 2.4125 10.2680 0.9396 2.5737 0.9860 0.9803 0.9294
WorldView-3 (B) 2.4029 9.9737 0.9421 2.4939 0.9868 0.9813 0.9326

IKONOS (A) 0.7847 1.9036 0.9430 0.5412 0.9990 0.9689 0.9582
IKONOS (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748

Through objective indicators on four datasets, it is clear that we injected low-level
features into advanced features through long-jump connections, improved the ability of the
network to make full use of all features, reduced information loss during upsampling and
downsampling, reduced differences in semantic feature level in the encoder and decoder,
reduced the difficulty of network training, and improved the network’s ability to recover
fine real images.

5.3. Discussion of Feedback Connections

In the network, to obtain better reconstruction power earlier, we introduced feedback
connectivity operations to refine deep features in the previous subnetwork by iterating
exactly the same network four times into the shallow network structure. As the number of
iterations of the subnet had significant effects on the final result, we evaluated the network
with different numbers of iterations using the QuickBird dataset. The experimental results
are presented in Table 12.

Table 12. Results of the network quantitative evaluation with different iterations. The best perfor-
mance is shown in bold.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

1 2.7088 9.1094 0.9039 2.4473 0.9923 0.9841 0.9276
2 2.4039 8.4655 0.9214 2.2745 0.9931 0.9861 0.9361
3 2.0831 7.3411 0.9402 1.9763 0.9948 0.9898 0.9509
4 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577
5 2.0550 7.1303 0.9379 1.9180 0.9952 0.9903 0.9504

We trained a network with the same four subnet structures and attached the loss
function to each subnet, but we disconnected the feedback connection between each
subnetwork. A comparison of the resulting indexes is presented in Table 13. Although
the two networks trained under exactly the same conditions, there is a clear gap in their
relative performance, and the feedback connection significantly improves performance and
gives the network good early reconstruction capability.

Table 13. Quantitative evaluation results of different structures using different datasets. In A, a
contrasting network. In B, our network is used.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

QuickBird (A) 2.6883 8.7127 0.9040 2.3564 0.9927 0.9854 0.9274
QuickBird (B) 1.7930 6.6668 0.9495 1.7914 0.9958 0.9913 0.9577

WorldView-2 (A) 4.2092 18.5268 0.8379 4.5671 0.9489 0.9198 0.8102
WorldView-2 (B) 3.7506 16.5804 0.8643 4.0970 0.9584 0.9346 0.8407
WorldView-3 (A) 2.5027 9.9731 0.9384 2.4939 0.9869 0.9813 0.9284
WorldView-3 (B) 2.4029 9.9737 0.9421 2.4939 0.9868 0.9813 0.9326

IKONOS (A) 0.6362 1.6218 0.9557 0.4448 0.9993 0.9750 0.9691
IKONOS (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748
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6. Conclusions

In this paper, we proposed a dense encoder–decoder network with feedback connec-
tions for pan-sharpening based on the practical demand for high-quality HRMS images. We
adopted a network structure that has achieved remarkable results in other image-processing
fields for pan-sharpening and combined it with knowledge in the remote sensing image
field to effectively improve the network structure. Our proposed DEDwFB structure,
which significantly improves the depth and width of the network, improves its ability
to grasp large-scale features and reconstruct images, effectively improving the quality of
fusion images.

We aimed to achieve two goals: spectral information preservation and spatial infor-
mation preservation in pan-sharpening. PAN and LRMS were therefore chosen to process
separate images using dual-stream structures, without interference, taking advantage
of diverse information in the two images. Efficient feature-extraction blocks sufficiently
increase the network’s ability to grab features from different scales of receptive fields and
fully recover higher-quality images from scratch-to features through an encoder–decoder
network with dense connectivity mechanisms. Feedback mechanisms help networks refine
low-level information through powerful deep features and help shallow networks obtain
useful information from coarse reconstructed HRMS.

Experiments on four datasets demonstrate that the structure we used in the network
is very efficient for obtaining higher-quality fusion images than other methods. As our
proposed network has replicated feature extraction and image fusion reconstruction struc-
tures, the network can obtain better results when processing images with more complex
information. The method is better at processing spectroscopic and spatially informative im-
ages, and complex network structures and dense jump connections can efficiently capture
rich features from dense buildings, dense vegetation, and large amounts of transportation,
which helps to produce satisfactory high-quality fusion images.
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