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Abstract: The aim of this work is to develop and test a simple methodology for CO2 emission
retrieval applied to hyperspectral PRISMA data. Model simulations are used to infer the best SWIR
channels for CO2 retrieval purposes, the weight coefficients for a Continuum Interpolated Band Ratio
(CIBR) index calculation, and the factor for converting the CIBR values to XCO2 (ppm) estimations
above the background. This method has been applied to two test cases relating to the LUSI volcanic
area (Indonesia) and the Solfatara area in the caldera of Campi Flegrei (Italy). The results show the
capability of the method to detect and estimate CO2 emissions at a local spatial scale and the potential
of PRISMA acquisitions for gas retrieval. The limits of the method are also evaluated and discussed,
indicating a satisfactory application for medium/strong emissions and over soils with a reflectance
greater than 0.1.
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1. Introduction

The release into the atmosphere of carbon dioxide and methane greenhouse gases,
deriving from both natural phenomena and human activities, are decisive for the global
warming trend in recent decades [1,2]. The characterization of a gases’ spatial distribution,
at the global and local scales, is fundamental to understanding its origins and temporal
evolutions. The availability of gases absorbing spectral channels in the satellite or airborne
sensors allows the measurement of CO2 column contents. Gas concentrations can be
retrieved from spectra in the CO2 absorption bands around 1.6 µm and 2.0 µm in the
short-wave infrared (SWIR) spectral region, at 4.8 µm in the mid-wave infrared region
(MWIR), and at 15 µm in the thermal infrared region (TIR).

Carbon dioxide absorption bands in the SWIR spectral range are sensitive down to
the lowermost layers of the atmosphere, which are particularly affected by fluxes emitted
from point sources. The column-averaged dry-air mole fraction of CO2 (XCO2) is currently
measured by several satellite sensors such as TANSO-FTS on board the GOSAT satellite
(from 2009) [3], OCO-2 (from 2014) [4–7], TanSAT (from 2016) [8] and OCO-3 on board the
ISS (from 2019) [9,10].

The CO2 absorption bands in the MWIR spectral region have been little studied in the
literature; although this band is located in an atmospheric window [11], it seems suitable
only on surfaces characterized by high temperatures (i.e., on fires and lava flows) [12]. To
date, these bands have not been exploited in the operative satellite missions but are only
experienced through airborne sensors (i.e., MASTER [13]).

In particular, satellite and airborne hyperspectral data in the SWIR can be very useful
to detect point sources of gases and to estimate emitted fluxes [14–16]. The information
obtained by exploiting hyperspectral imagery is also crucial for several earth sciences appli-
cations, such as for vegetation and agriculture [17–19], geology and mining activities [20,21],
water monitoring [22–24], and fire detection [25–27].
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The Italian Space Agency launched a hyperspectral imaging platform, PRecursore
IperSpettrale della Missione Applicativa (PRISMA), on 22 March 2019 [28]. PRISMA holds
a panchromatic camera, acquiring images at 5 m spatial resolution, and a hyperspectral pay-
load. The hyperspectral camera works in the range of 0.4–2.5 µm with 66 and 173 channels
in the VNIR (visible and near infrared) and SWIR (short-wave infrared) regions, respec-
tively, and has a spatial resolution of 30 m. Several studies employing PRISMA data have
been carried out for specific applications [29,30] and the radiometric performance was also
evaluated [31].

Recent works used PRISMA spectra, in the SWIR spectral range, for achieving en-
hancements of XCO2 and XCH4 around large point sources such as power plants and gas
well blowouts [32–34]. In these studies, the IMAP-DOAS method [35] and the Matched
Filter technique [36] were employed for the retrievals.

In the present paper, a simple methodology based on the CIBR (Continuum Inter-
polated Band Ratio) technique was developed and arranged with regard to PRISMA
acquisitions with the aim of estimating XCO2 enhancements on natural sources of carbon
dioxide such as mud volcanoes and fumaroles. The CIBR technique is used to analyse the
spectral absorptions of H2O and CO2 and to quantify gas concentrations in the atmosphere
and in volcanic plumes; this technique was applied to hyperspectral data from AVIRIS (Air-
borne Visible/InfraRed Imaging Spectrometer) [14,37] and AVIRIS-NG (Next Generation)
sensors [38].

Firstly, the methodology is described and is then applied to two test cases in different
regions: the LUSI volcanic area (Indonesia) and the Solfatara area in the caldera of Campi
Flegrei (Italy).

2. Method Description

In this work, we exploit the CO2 signatures present in the SWIR spectral range.
Figure 1 depicts the absorptivity of carbon dioxide, in the spectral range of 1.0–2.5 µm,
obtained by using the MODTRAN (MODerate resolution atmospheric TRANsmission)
radiative transfer model [39] and considering the current concentration in the atmosphere
of about 400 ppm. The gas shows weak absorptions in the range of 1.4–1.6 µm and strong
absorptions in the range of 1.9–2.1 µm (Figure 1). In particular, the analysis performed in
the paper focuses on the absorption around 2.06 µm and takes advantage from simulations
carried out from version 6.0 of the MODTRAN code.

Figure 1. Carbon dioxide absorption bands in the SWIR spectral range.
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This chapter firstly describes performed model simulations and the selection of PRISMA
channels for retrieval purposes; then, the choice of weight coefficients, for the CIBR index
calculation, is discussed with the aim of reducing the influence of the water absorption in the
computation of index values. Moreover, the conversion from CIBR values to XCO2 estimations
is presented and finally, the limits and applicability of the methodology are reported.

2.1. MODTRAN Simulations and Selection of PRISMA Channels

The first set of five model simulations were performed by using the MODTRAN radiative
transfer model with the aim of selecting the best PRISMA channels for CO2 retrieval purposes.
Specifically, simulations were performed, with varying XCO2 values and maintaining fixed
all other parameters (see Table 1); CO2 concentration profiles were assumed to have constant
values in vertical direction, in accordance with the model “US standard 1976”.

Table 1. Input parameters for a set of five MODTRAN runs.

Input Parameter Value

Spectral range 0.35–2.55 µm
Atmospheric profiles US standard 1976
Surface temperature 290 K
CO2 concentrations 400, 450, 500, 550, 600 ppm
Ground reflectance 0.10

Altitude of the first layer 0 km
Altitude of the last layer 120 km
Number of vertical levels 50

Aerosol NO

The model runs were at a very high spectral resolution (1 cm−1) and the resulting
TOA (Top Of Atmosphere) radiance was convolved on PRISMA channels (see resulting
profiles in the Figure 2). The FWHM (Full Width at Half Maximum) of channels in the
considered spectral portion 1900–2200 nm is within the range 10–12 nm. Figure 2 also
reports positions of the channel most affected by CO2 absorption (central vertical line at
2061 nm) and the immediately adjacent channels not affected by the gas absorption (at
1985 and 2111 nm).

Figure 2. Simulated TOA spectral profiles convolved on PRISMA channels for several CO2 column-
averaged values (400, 450, 500, 550, 600 ppm) and the standard H2O column amount corresponding
to 1.416 g/m2 (US standard 1976).
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The CIBR index is defined as follows:

CIBR =
Lc

A × Ll + B × Lr
(1)

where Lc is the radiance at the PRISMA channel #115 (2061 nm), Ll is the radiance at
channel #106 (1985 nm) and Lr is the radiance at channel #121 (2111 nm); A and B are
weight coefficients, linked by the relationship A + B = 1, and its values will be discussed in
Section 2.2.

2.2. Selection of the Weight Coefficients A and B to Reduce the Water Vapor Influence

The weighting factors A and B in Equation (1) generally represent, in CIBR technique
applications, the spectral distances of “shoulder” wavelengths with no absorption from
the channel affected by gas absorption [40]. In the present study, the weighting factors
are defined and exploited to mitigate effects of the water absorption on spectral profiles.
In fact, the spectral region in the range of 1900–2200 nm is strongly affected by water
vapor absorptions that reduce radiance values achieved by remote sensors; it is crucial to
evaluate these effects to discriminate absorptions due to H2O or CO2 and correctly estimate
XCO2 enhancements. Hence, the model simulations described above were repeated for
several H2O column amounts: 0.708, 1.416 (US standard 1976), 2.124 and 2.832 g/m2.
Figure 3 shows resulting spectral profiles for considered H2O concentrations and for CO2
column-averaged values of 400 and 500 ppm.

Figure 3. Simulated TOA spectral profiles convolved on PRISMA channels, for two CO2 column-
averaged values (400, 500 ppm) and four H2O column amounts (0.708, 1.416, 2.124, 2.832 g/m2).

Absorption effects of water vapor are evident for the entire considered spectral range
and in particular for wavelengths less than 2000 nm. The method used for reducing water
effects acts on the choice of weight coefficients A and B, so that the decrease or increase
in CIBR values does not depend on the water concentration. A set of coefficient values
was experimentally used by varying the A value in the range of 0.05–0.50 (at steps of 0.05)
and the B value in the range of 0.50–0.95. The CIBR dependence on H2O column amounts
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results in the minimal assignment of the values of 0.15 and 0.85 for A and B coefficients,
respectively (Figure 4b). The CIBR parameter as a function of the H2O column amount is
shown for only three different combinations of the two coefficients (Figure 4).

Figure 4. CIBR index simulations for three different combinations of A and B weight coefficients: A = 0.20, B = 0.80
(a); A = 0.15, B = 0.85 (b); A = 0.10, B = 0.90 (c).

2.3. Conversion from CIBR to XCO2 by Means of MODTRAN Simulations

The conversion from CIBR values to XCO2 estimations, in parts per million, is a crucial
point. The set of model simulations described in Section 2.1 is used to link changes of CIBR
values to XCO2 enhancements. Results show an almost linear relationship between the
two parameters (see Figure 5). Specifically, it was revealed that an enhancement of 50 ppm
in XCO2 leads to a reduction of 0.0234 for the CIBR value; however, such a conversion
factor only links changes of the two parameters. In order to fix the reference CIBR value
corresponding to the background CO2 column-averaged value of 400 ppm, its modal value
in the PRISMA scene was considered and calculated. Then, CIBR deviations from its modal
value were attributed to carbon dioxide emissions, according to the estimated conversion
factor under the linear hypothesis.



Remote Sens. 2021, 13, 4502 6 of 13

Figure 5. Modelled relationship between CIBR changes and XCO2 enhancements.

2.4. Minimum TOA Radiance Values and Confidence Mask

Low values of ground reflectance, in standard conditions of surface temperature, lead
to low values of TOA radiance in the SWIR spectral range. MODTRAN model experiments
were performed considering a constant reflectance equal to 0.1 that determines radiance
values around 2 Wm−2sr−1µm−1 (see Figure 2) for the PRISMA channels employed in
the CIBR index calculation. Therefore, in the present study we did not consider physical
conditions with surface reflectance values less than 0.1; for this reason, the confidence mask
of retrieval results is defined for values of Lr greater than 2 Wm−2sr−1µm−1.

3. Applications

The sites selected for testing the method are the LUSI volcanic area (Indonesia) and
the Solfatara area in the caldera of Campi Flegrei (Italy) (see Figure 6). Both areas are
characterized by gas emissions but have very different geological structures [41,42].

Table 2 lists the characteristics of the test sites and the PRISMA acquisitions considered
for CO2 emissions retrieval.

Table 2. Test sites and PRISMA dataset.

Site Latitude (Deg);
Longitude (Deg) Type of Event Time of

Acquisition

LUSI (Indonesia) −7.527; 112.711 H2O, CO2, CH4 degassing 14 August 2020
Solfatara (Italy) 40.827; 14.140 H2O, CO2 degassing 18 February 2021



Remote Sens. 2021, 13, 4502 7 of 13

Figure 6. PRISMA panchromatic images of LUSI (a) and Solfatara (b) test sites.

3.1. Results of Retrieval

The methodology developed in the present study was applied to the two consid-
ered test cases. The results of XCO2 retrieval are depicted in Figures 7 and 8 for LUSI
and Solfatara, respectively. White areas represent regions with Lr radiance less than
2 Wm−2sr−1µm−1 (so not considered for the retrieval), while grey areas include regions
with XCO2 enhancement values up to 40 ppm, which is the minimum detectable value, as
discussed in Section 3.2.
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Figure 7. XCO2 (ppm) enhancements on the LUSI test site (Indonesia); PRISMA acquisition on
14 August 2020.

Figure 8. XCO2 (ppm) enhancements on the Solfatara test site (Italy); PRISMA acquisition on
18 February 2021.

3.2. Errors Evaluation and Minimum Value of XCO2

The errors and limits of the retrieval method are also evaluated considering the
relationship between the CIBR values and the TOA radiance at the channel #121 (2111 nm)
that is less affected by CO2 and H2O absorptions and so is mainly linked to surface
reflectance. Figures 9 and 10 show scatter plots between the two considered parameters for
the LUSI and Solfatara sites, respectively.



Remote Sens. 2021, 13, 4502 9 of 13

Figure 9. Distribution of CIBR values for TOA121 greater than 2 Wm−2sr−1µm−1 (LUSI case study).

Figure 10. Distribution of CIBR values for TOA121 greater than 2 Wm−2sr−1µm−1 (Solfatara case
study).

For both test cases, only points with a TOA121 radiance greater than 2 Wm−2sr−1µm−1

were considered. Regarding the LUSI test case, the modal value of CIBR results are equal
to 0.610 with a RMSE/2 equal to 0.0174. Considering the conversion factor of 0.0234 for a
XCO2 enhancement of 50 ppm, the minimum detectable value results are about 37 ppm.
For the Solfatara test case, the modal value of CIBR results are equal to 0.530 with a
RMSE/2 equal to 0.0165, leading to a minimum detectable value of about 35 ppm.

4. Discussion

In this study, the surface reflectance used in MODTRAN simulations is considered
spatially constant and is equal to 0.1. Firstly, this threshold value was selected to consider
TOA radiance values ~5–10 times greater than sensor noise and avoid large errors in
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the CIBR index calculation. Secondly, although this technique is robust with respect to
variations in soil composition, a non-case-dependent algorithm must consider variations of
surface reflectance values with respect to space and wavelength. For the LUSI test case,
the mud area emitting CO2 is characterized by a spatially constant value of reflectance of
about 0.09 (Figure 11); this hypothesis is weaker for the Solfatara case, where the emitting
area has reflectance values up to 0.3–0.4 (Figure 12). Finally, the comparison between XCO2
enhancements and reflectance values do not show any correlation.

Figure 11. Reflectance from PRISMA L2D data product on LUSI.

Figure 12. Reflectance from PRISMA L2D data product on Solfatara.

The effects of atmospheric aerosols were also tested by performing several MOD-
TRAN simulations. Specifically, AOD (Aerosol Optical Depth) values measured from the
AERONET network close to test sites, at the same time of PRISMA acquisitions, have been
used as input for radiative model runs. The “Rural” and “Urban” parametrization aerosol
models, were considered, with AOD values of 0.295 and 0.102 for the LUSI and Solfatara
sites, respectively. The comparison with the “No aerosol” parametrization highlighted that
simulated TOA radiance results were very different in the spectral range of 0.4–1.0 µm
but almost identical for longer wavelengths. Furthermore, the considered test sites are
characterized by fumarolic activities with little formation of volcanic aerosols; therefore,
as a first approximation, aerosol effects can be neglected in the XCO2 retrieval using the
2 µm band.
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A critical point of this work regards the validation of the method itself comparing
the results with other types of data; a comparison with in situ measurements would be
very useful. Nevertheless, the main objective of the present work is to define a simple
methodology to detect and quantify CO2 emissions by means of SWIR channels of the
PRISMA sensor. Further works for validation purposes could be carried out, including
enlarging the PRISMA dataset, calculating gas fluxes, and finding proximal data such as
by gas sampling instruments on drones.

5. Conclusions

In this work, a methodology for CO2 emission retrieval at the local scale, arranged
using hyperspectral PRISMA data, was presented and tested. The spatial resolution of gas
enhancement estimates is about 30 m, corresponding to the ground sampling distance of
the space sensor in SWIR channels. The method is based on the CIBR technique, and TOA
radiances obtained from the MODTRAN model simulations were convolved on PRISMA
channels. Simulations were used to select the best channels for CO2 retrieval purposes and
other parameters characterizing the technique. The method seems to be able to retrieve
CO2 enhancements from different gas sources with a minimum detectable XCO2 value,
above the background, of about 40 ppm. The methodology can be applied, with satisfactory
success, for medium/strong emissions and over soils with a reflectance greater than 0.1.
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