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Abstract: The conventional fuzzy c-spherical shells (FCSS) clustering model is extended to cluster 
shells involving non-crisp numbers, in this paper. This is achieved by a vectorized representation 
of distance, between two non-crisp numbers like the crisp numbers case. Using the proposed clus-
tering method, named vector fuzzy c-spherical shells (VFCSS), all crisp and non-crisp numbers can 
be clustered by the FCSS algorithm in a unique structure. Therefore, we can implement FCSS clus-
tering over various types of numbers in a unique structure with only a few alterations in the details 
used in implementing each case. The relations of VFCSS applied to crisp and non-crisp (containing 
symbolic-interval, LR-type, TFN-type and TAN-type fuzzy) numbers are presented in this paper. 
Finally, simulation results are reported for VFCSS applied to synthetic LR-type fuzzy numbers; 
where the application of the proposed method in real life and in geomorphology science is illus-
trated by extracting the radii of circular agricultural fields using remotely sensed images and the 
results show better performance and lower cost computational complexity of the proposed method 
in comparison to conventional FCSS. 
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1. Introduction 
Use of clustering models is a wide field of research in image processing and pattern 

recognition and they have been applied in different areas such as business, geology, en-
gineering systems, etc. [1–3]. The objective of clustering is to explore the structure of the 
data and to partition the data set into groups with similar individuals. While the proposed 
method in this paper is objective-function based, generally clustering models may be ob-
jective-function, hierarchical or heuristic based. Hard clustering methods restrict each 
point of the data set to exactly one cluster [4]. Since Zadeh [5] presented fuzzy sets which 
introduce the idea of partial membership of belonging defined by a membership function, 
fuzzy clustering has been applied in various areas. After that, research in this field has 
been extended to apply fuzzy states to crisp cases. In the literature on fuzzy clustering, 
the fuzzy c-mean (FCM) clustering algorithms are the best-known methods [2,6]. Hadi et 
al. [7–9] presented some models to apply the FCM clustering model to crisp and non-crisp 
numbers. Using these models, the FCM can be stated in a single structure like the conven-
tional FCM case. Sasha and Das [10] proposed an axiomatic extension of the possibilistic 
fuzzy clustering model in three directions: joint contribution function, choice of the dis-
similarity measure, and the penalty function. Yu et al. [11] proposed a Suppressed Possi-
bilistic C-Means (S-PCM) clustering model by creating a suppressed competitive learning 
approach into the Possibilistic C-means (PCM) to address the shortcoming of the PCM so 
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as to develop the between-cluster relationships. Sasha and Das [12] presented a class of 
generalized FCM algorithms. They stated that the Consistent Membership-degree 
Weighting Function (CMWF) based clustering scheme can be generalized to other FCM 
variants with different distance measures. 

The fuzzy C-shells (FCS) presented by Dave is a novel algorithm in clustering spher-
ical shells and it has been simplified to adaptive FCS (AFCS) for elliptical shells [13,14]. 
Krishnapuram et al. utilized the fuzzy C-spherical shells algorithm (FCSS) [15] to decrease 
the computational costs of FCS using an algebraic (non-Euclidean) distance measure. In 
this model, the prototypes can be determined directly, and the coupled nonlinear equa-
tions solution is not necessary. For two-dimensional (2D) cases, Man and Gath utilized 
the fuzzy C-rings (FCR) algorithm [16] for clustering ring data, while Gath and Hoory 
presented the fuzzy C-ellipses (FCE) model [17] for ellipse data. Krishnapuram et al. cre-
ated the fuzzy C-quadric shells (FCQS) model[18], that detects quadrics like ellipses, cir-
cles, lines, or hyperbolas. The clustering models for detecting rectangular shells have been 
developed in the literature, such as the norm-induced shell prototypes (NISP) model by 
Bezdek et al. [19] and the fuzzy C-rectangular shell (FCRS) model by Hoeppner [20]. Wang 
[21] proposed a type of alternating optimization-based possibilistic c-shell model for clus-
tering template-based shapes. Song et al. [22] proposed the information fuzzy C-spherical 
shells (IFCSS) model that addresses the intertwined robust fuzzy clustering problems of 
outlier detection. The model-based fuzzy c-shells clustering proposed by Hadi et al. [23] 
to cluster any shells (in 2-dimensions) that can be demonstrated by a fixed structure model 
in polar coordinates (but with arbitrary scale and centre for each shell). Song et al. [22] has 
been utilized the basic FCSS model for the clustering phase to reduce the difficulty of pro-
totype initialization and minimize the number of hyper-parameters. 

In this paper, the vector form of fuzzy c-Spherical Shells (VFCSS) over non-crisp 
numbers is presented. Using the proposed VFCSS, all crisp and non-crisp numbers can be 
clustered by the Fuzzy c-Spherical Shells algorithm. This approach can be applied on 
fuzzy and non-fuzzy numbers with unique structures. In this paper, the proposed VFCSS 
is applied over crisp numbers, symbolic numbers, fuzzy numbers (LR-type fuzzy num-
bers, TFN-type fuzzy numbers and normal fuzzy numbers). Simulations are applied on 
all introduced number classes and results are presented. Furthermore, the VFCC is uti-
lized in the simulation results section to extract the radii of circular agriculture fields from 
remotely sensed images. 

The rest of this paper is arranged as follows. The conventional FCSS clustering that 
is applied over crisp numbers is presented in Section 2. This section defines different types 
of non-crisp numbers and reviews the different metrics for them and presents the pro-
posed VFCSS method. Simulation results of VFCSS applied over LR-type fuzzy numbers 
and satellite images (represented as symbolic-interval numbers) and discussion are pre-
sented in Section 3. Finally, the conclusion is presented in Section 4. 

2. Methods 
The goal of the FCSS algorithm is minimizing the following objective function re-

garding fuzzy membership 𝑢𝑢𝑖𝑖𝑖𝑖 and cluster centroid 𝑣𝑣𝑖𝑖 [15]: 

𝐽𝐽𝑚𝑚(𝑈𝑈,𝑉𝑉,𝑅𝑅) = ��𝑢𝑢𝑖𝑖,𝑘𝑘𝑚𝑚 𝑑𝑑2(𝑥𝑥𝑘𝑘 ,𝑣𝑣𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑐𝑐

𝑖𝑖=1

𝑛𝑛

𝑘𝑘=1

 (1) 

𝑑𝑑2(𝑥𝑥𝑘𝑘 ,𝑣𝑣𝑖𝑖 , 𝑟𝑟𝑖𝑖) = (‖𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑖𝑖‖2 − 𝑟𝑟𝑖𝑖2)2 = ((𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑖𝑖)𝑇𝑇(𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑖𝑖) − 𝑟𝑟𝑖𝑖2)2 (2) 

where 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛} is a set of features vectors and k is a finite set of p-dimensional 

vectors over the crisp numbers (𝑥𝑥𝑖𝑖 = �𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2,⋯ , 𝑥𝑥𝑖𝑖,𝑝𝑝�
𝑇𝑇
 for, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛). 𝑐𝑐 is the num-

ber of clusters, and 𝑚𝑚 > 1 is the fuzziness index. The matrix 𝑈𝑈 = �𝑢𝑢𝑖𝑖,𝑘𝑘�𝑐𝑐×𝑛𝑛
 is called the 

fuzzy membership degree that has the following constraint: 
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𝑢𝑢𝑖𝑖,𝑘𝑘 ∈ [0,1], 𝑖𝑖 = 1,2, . . . , 𝑐𝑐, 𝑖𝑖 = 1,2, . . . ,𝑛𝑛 

�𝑢𝑢𝑖𝑖,𝑘𝑘

𝑐𝑐

𝑖𝑖=1

= 1, 𝑖𝑖 = 1,2, . . . ,𝑛𝑛 (3) 

where 𝑢𝑢𝑖𝑖𝑘𝑘 is the grad of membership of the k-th number to the i-th cluster. 𝑉𝑉 =
{𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑐𝑐} is the cluster prototypes set. 𝑣𝑣𝑖𝑖 = �𝑣𝑣𝑖𝑖,1, 𝑣𝑣𝑖𝑖,2,⋯ , 𝑣𝑣𝑖𝑖,𝑝𝑝�

𝑇𝑇
∈ 𝑅𝑅𝑝𝑝, 𝑖𝑖 = 1,2,⋯ , 𝑐𝑐 is the 

centre of the i-th cluster. 𝑅𝑅 = {𝑟𝑟1, 𝑟𝑟2, . . . , 𝑟𝑟𝑐𝑐} is the set of cluster radii. 
By creating a Lagrange function, we can minimize 𝐽𝐽𝑚𝑚(𝑈𝑈,𝑉𝑉,𝑅𝑅) subject to the con-

straints in (3) and conclude updated relations as follows: 

𝐿𝐿(𝑉𝑉,𝑅𝑅,𝑈𝑈, 𝜆𝜆) = ��𝑢𝑢𝑖𝑖,𝑘𝑘𝑚𝑚 ((𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑖𝑖)𝑇𝑇(𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑖𝑖) − 𝑟𝑟𝑖𝑖2)2
𝑐𝑐

𝑖𝑖=1

𝑛𝑛

𝑘𝑘=1

−�𝜆𝜆𝑘𝑘 ��𝑢𝑢𝑖𝑖,𝑘𝑘

𝑐𝑐

𝑖𝑖=1

− 1�
𝑛𝑛

𝑘𝑘=1

, (4) 

𝑢𝑢𝑖𝑖,𝑘𝑘 = ���
𝑑𝑑2(𝑥𝑥𝑘𝑘 ,𝑣𝑣𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑑𝑑2�𝑥𝑥𝑘𝑘 ,𝑣𝑣𝑗𝑗 , 𝑟𝑟𝑗𝑗�

�

1
𝑚𝑚−1

𝑐𝑐

𝑗𝑗=1

�

−1

=

⎝

⎜
⎛
��

((𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑖𝑖)𝑇𝑇(𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑖𝑖) − 𝑟𝑟𝑖𝑖2)

��𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑗𝑗�
𝑇𝑇
�𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑗𝑗� − 𝑟𝑟𝑗𝑗2�

�

2
𝑚𝑚−1𝑐𝑐

𝑗𝑗=1

⎠

⎟
⎞

−1

, 𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 1,2,⋯ , 𝑐𝑐 𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑖 1,2,⋯ ,𝑛𝑛 

⎩
⎨

⎧𝑣𝑣𝑖𝑖 = −
1
2 �𝑞𝑞𝑖𝑖,1, 𝑞𝑞𝑖𝑖,2, … , 𝑞𝑞𝑖𝑖,𝑝𝑝�

𝑇𝑇

𝑟𝑟𝑖𝑖 = �𝑣𝑣𝑖𝑖𝑇𝑇𝑣𝑣𝑖𝑖 − 𝑞𝑞𝑖𝑖,𝑝𝑝+1
, 𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 1,2,⋯ , 𝑐𝑐. (5a) 

𝑊𝑊ℎ𝑒𝑒𝑟𝑟𝑒𝑒:

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑞𝑞𝑖𝑖 = −

1
2𝐻𝐻𝑖𝑖

−1𝜔𝜔𝑖𝑖                    

𝐻𝐻𝑖𝑖 = �𝑢𝑢𝑖𝑖,𝑘𝑘𝑚𝑚 𝑔𝑔𝑘𝑘𝑔𝑔𝑘𝑘𝑇𝑇 
𝑛𝑛

𝑘𝑘=1

         

𝜔𝜔𝑖𝑖 = �𝑢𝑢𝑖𝑖,𝑘𝑘𝑚𝑚 𝑠𝑠𝑘𝑘

𝑛𝑛

𝑘𝑘=1

               

𝑠𝑠𝑘𝑘 = 2�𝑥𝑥𝑘𝑘𝑇𝑇𝑥𝑥𝑘𝑘�𝑔𝑔𝑘𝑘, 𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 1,2, … ,𝑛𝑛       

𝑔𝑔𝑘𝑘 = �𝑥𝑥𝑘𝑘,1, 𝑥𝑥𝑘𝑘,2, … , 𝑥𝑥𝑘𝑘,𝑝𝑝, 1�𝑇𝑇 , 𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 1,2, … ,𝑛𝑛   

 

(5b) 

(5c) 

(5d) 

(5e) 

(5f) 

In this part, we first define concepts of various types of non-crisp numbers. Then we 
review some dissimilarity definitions between two non-crisp numbers [24–33]. 

2.1. Definition of Various Non-Crisp Numbers 
A symbolic number (SN) 𝑋𝑋�  is said to be a symbolic number where its membership 

function can be expressed as: 

𝜇𝜇𝑋𝑋�(𝑥𝑥) = �1,𝛼𝛼𝑋𝑋� ≤ 𝑥𝑥 ≤ 𝛽𝛽𝑋𝑋�
0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒. (6) 

We denote a symbolic number (SN) 𝑋𝑋�with its start point (𝛼𝛼𝑋𝑋� ) and its end point (𝛽𝛽𝑋𝑋� ) 
with 𝑋𝑋� = �𝛼𝛼𝑋𝑋� , 𝛽𝛽𝑋𝑋��𝑆𝑆𝑆𝑆. 

Let L (and R) be decreasing, shape functions from 𝑅𝑅+ to[0,1] with 0 ≤ 𝐿𝐿(𝑥𝑥) ≤ 1 for 
all 𝑥𝑥 > 0; 𝐿𝐿(𝑥𝑥) = 1 for 𝑥𝑥 = 0; 𝐿𝐿(𝑥𝑥) = 0 for all 𝑥𝑥 ≥ 1. A fuzzy number 𝑋𝑋 � is called LR-type 
if shape functions L and R and four parameters(𝑚𝑚1𝑋𝑋� ,𝑚𝑚2𝑋𝑋�) ∈ 𝑅𝑅2, �𝛼𝛼𝑋𝑋� , 𝛽𝛽𝑋𝑋�� ∈ 𝑅𝑅+2

 exist and 
the membership function of 𝑋𝑋�  is as follows: 

𝜇𝜇𝑋𝑋�(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧𝐿𝐿 �

𝑚𝑚1𝑋𝑋� − 𝑥𝑥
𝛼𝛼𝑋𝑋�

� ,𝑚𝑚1𝑋𝑋� ≥ 𝑥𝑥

1,𝑚𝑚1𝑋𝑋� ≤ 𝑥𝑥 ≤ 𝑚𝑚2𝑋𝑋�

𝑅𝑅 �
𝑥𝑥 −𝑚𝑚2𝑋𝑋�

𝛽𝛽𝑋𝑋�
� ,𝑚𝑚2𝑋𝑋� ≤ 𝑥𝑥

 (7) 

where 𝛼𝛼𝑋𝑋� > 0, 𝛽𝛽𝑋𝑋� > 0 are called the left and right spreads respectively. Symbolically, 𝑋𝑋�is 
denoted by �𝑚𝑚1𝑋𝑋� ,𝑚𝑚2𝑋𝑋� , 𝛼𝛼𝑋𝑋� , 𝛽𝛽𝑋𝑋��𝐿𝐿𝑅𝑅. 
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Let (TFN) 𝑋𝑋� be a trapezoidal fuzzy number. The parameterization of 𝑋𝑋�  is denoted 
by 𝑋𝑋� = (𝑥𝑥1𝑋𝑋� , 𝑥𝑥2𝑋𝑋� , 𝑥𝑥3𝑋𝑋� , 𝑥𝑥4𝑋𝑋�)𝑇𝑇𝑇𝑇𝑆𝑆 where 𝑥𝑥1𝑋𝑋� , 𝑥𝑥2𝑋𝑋� , 𝑥𝑥3𝑋𝑋�  and 𝑥𝑥4𝑋𝑋�  are called the center, inner di-
ameter, left outer radius and right outer radius respectively. The TFN 𝑋𝑋� is demonstrated 
in Figure 1. 

 
Figure 1. Parameterization of TFN. 

Let (TAN) 𝑋𝑋�  be a triangular fuzzy number. The expressed membership function for 
𝑋𝑋� = (𝑥𝑥𝑋𝑋�

𝐿𝐿 , 𝑥𝑥𝑋𝑋�
𝐶𝐶 , 𝑥𝑥𝑋𝑋�

𝑅𝑅)𝑇𝑇𝑇𝑇𝑆𝑆 is as follows: 

𝜇𝜇𝑋𝑋�(𝑥𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧0,                       𝑓𝑓𝑓𝑓𝑟𝑟  𝑥𝑥 ≤ 𝑥𝑥𝐿𝐿

𝑥𝑥 − 𝑥𝑥𝑋𝑋�
𝐿𝐿

𝑥𝑥𝑋𝑋�
𝐶𝐶 − 𝑥𝑥𝑋𝑋�

𝐿𝐿 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑥𝑥𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝐶𝐶

𝑥𝑥𝑋𝑋�
𝑅𝑅 − 𝑥𝑥

𝑥𝑥𝑋𝑋�
𝑅𝑅 − 𝑥𝑥𝑋𝑋�

𝐶𝐶 , 𝑓𝑓𝑓𝑓𝑟𝑟  𝑥𝑥𝐶𝐶 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑅𝑅

0,                       𝑓𝑓𝑓𝑓𝑟𝑟 𝑥𝑥 ≥ 𝑥𝑥𝑅𝑅

 (8) 

We will present various metrics of papers [24–33]. 

2.2. Various Metrics for Symbolic Numbers 
Suppose 𝑥𝑥�𝑖𝑖  and 𝑣𝑣�𝑖𝑖  are two symbolic numbers in 𝑝𝑝  dimensions space, 𝑥𝑥�𝑖𝑖 =

�𝑥𝑥�𝑖𝑖,1, 𝑥𝑥�𝑖𝑖,2,⋯ , 𝑥𝑥�𝑖𝑖,𝑝𝑝�, 𝑥𝑥�𝑖𝑖,𝑗𝑗 = �𝛼𝛼𝑥𝑥�𝑖𝑖,𝑗𝑗 ,𝛽𝛽𝑥𝑥�𝑖𝑖,𝑗𝑗
�
𝑆𝑆𝑆𝑆

 for 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝  and 𝑣𝑣�𝑖𝑖 = �𝑣𝑣�𝑖𝑖,1, 𝑣𝑣�𝑖𝑖,2,⋯ , 𝑣𝑣�𝑖𝑖,𝑝𝑝�, 𝑣𝑣�𝑖𝑖,𝑗𝑗 =

�𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�𝑆𝑆𝑆𝑆
 for 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝. 

Dissimilarity defined for symbolic numbers in [24] is as follows: 

𝑑𝑑2(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = ��
(1 − 𝑧𝑧)2 �𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗�

2

+𝑧𝑧2 �𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�
2 �

𝑝𝑝

𝑗𝑗=1

 (9) 

where 0 ≤ 𝑧𝑧 ≤ 0.5 is center distance weight. In [25,26], dissimilarity defined for symbolic 
numbers can be obtained from the following equation: 

𝑑𝑑2(𝑥𝑥�𝑘𝑘 , 𝑣𝑣�𝑖𝑖) = �𝛾𝛾𝑗𝑗 �
�𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗�

2

+ �𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�
2�

𝑝𝑝

𝑗𝑗=1

 (10) 

where 𝛾𝛾𝑗𝑗 is weight vector and 𝛱𝛱𝑗𝑗=1
𝑝𝑝 𝛾𝛾𝑗𝑗 = 1. In the section Allocation step: definition of the 

best partition of [25,26], dissimilarity is defined as follows: 
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𝑑𝑑2(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = �𝛾𝛾𝑖𝑖,𝑗𝑗 �
�𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗�

2

+ �𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�
2�

𝑝𝑝

𝑗𝑗=1

 (11) 

where 𝛱𝛱𝑗𝑗=1
𝑝𝑝 𝛾𝛾𝑖𝑖,𝑗𝑗 = 1. The last dissimilarity defined for symbolic numbers is suggested in 

[27] as follows: 

𝑑𝑑2(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = ��
�𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗�

2

+ �𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�
2�

𝑝𝑝

𝑗𝑗=1

 (12) 

2.3. Various Metrics for Fuzzy Numbers 
Suppose we have two LR-type fuzzy numbers 𝑥𝑥�𝑖𝑖 and 𝑣𝑣�𝑖𝑖 in a 𝑝𝑝 dimensions space, 

𝑥𝑥�𝑖𝑖 = �𝑥𝑥�𝑖𝑖,1, 𝑥𝑥�𝑖𝑖,2,⋯ , 𝑥𝑥�𝑖𝑖,𝑝𝑝� , 𝑥𝑥�𝑖𝑖,𝑗𝑗 = �𝑚𝑚1𝑥𝑥�𝑖𝑖,𝑗𝑗
,𝑚𝑚2𝑥𝑥�𝑖𝑖,𝑗𝑗

, 𝛼𝛼𝑥𝑥�𝑖𝑖,𝑗𝑗
, 𝛽𝛽𝑥𝑥�𝑖𝑖,𝑗𝑗

�
𝐿𝐿𝑅𝑅

for  𝑗𝑗 = 1,2,⋯ , 𝑝𝑝  and 𝑣𝑣�𝑖𝑖 =

�𝑣𝑣�𝑖𝑖,1, 𝑣𝑣�𝑖𝑖,2,⋯ , 𝑣𝑣�𝑖𝑖,𝑝𝑝�, 𝑣𝑣�𝑖𝑖,𝑗𝑗 = �𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�𝐿𝐿𝑅𝑅
for 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝. Yang et al. [29,30,32] ex-

pressed the metric 𝑑𝑑(𝑥𝑥�𝑘𝑘 , 𝑣𝑣�𝑖𝑖) with the following definition: 

𝑑𝑑2(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = �𝑑𝑑2�𝑥𝑥�𝑘𝑘,𝑗𝑗 , 𝑣𝑣�𝑖𝑖,𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

 

𝑑𝑑2�𝑥𝑥�𝑘𝑘,𝑗𝑗 , 𝑣𝑣�𝑖𝑖,𝑗𝑗� = �𝑚𝑚1𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗�
2

+ �𝑚𝑚2𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗�
2

+ 

��𝑚𝑚1𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑙𝑙𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗� − �𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑙𝑙𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗�� 2  +  ��𝑚𝑚2𝑥𝑥�𝑘𝑘,𝑗𝑗 + 𝑟𝑟𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗� − �𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑟𝑟𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗��
2
 

(13) 

where 𝑙𝑙 = ∫ 𝐿𝐿−1(𝑒𝑒)𝑑𝑑𝑒𝑒1
0  and 𝑟𝑟 = ∫ 𝑅𝑅−1(𝑒𝑒)𝑑𝑑𝑒𝑒1

0 . 
In the TFN numbers case, the Yang distance definition for two TFN numbers 𝑥𝑥�𝑖𝑖 and 

𝑣𝑣�𝑖𝑖  in 𝑝𝑝  dimensions space, 𝑥𝑥�𝑖𝑖 = �𝑥𝑥�𝑖𝑖,1, 𝑥𝑥�𝑖𝑖,2,⋯ , 𝑥𝑥�𝑖𝑖,𝑝𝑝� , 𝑥𝑥�𝑖𝑖,𝑗𝑗 = �𝑥𝑥1𝑥𝑥�𝑖𝑖,𝑗𝑗
, 𝑥𝑥2𝑥𝑥�𝑖𝑖,𝑗𝑗

, 𝑥𝑥3𝑥𝑥�𝑖𝑖,𝑗𝑗
, 𝑥𝑥4𝑥𝑥�𝑖𝑖,𝑗𝑗

�
𝑇𝑇𝑇𝑇𝑆𝑆

 

for 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝  and 𝑣𝑣�𝑖𝑖 = �𝑣𝑣�𝑖𝑖,1, 𝑣𝑣�𝑖𝑖,2,⋯ , 𝑣𝑣�𝑖𝑖,𝑝𝑝� , 𝑣𝑣�𝑖𝑖,𝑗𝑗 = �𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗�𝑇𝑇𝑇𝑇𝑆𝑆
 for 𝑗𝑗 =

1,2,⋯ , 𝑝𝑝 , is obtained from (13) by setting 𝑙𝑙 = 𝑟𝑟 = 1
2

, 𝑚𝑚1 = 2𝑥𝑥1−𝑥𝑥2
2

, 𝑚𝑚2 = 2𝑥𝑥1+𝑥𝑥2
2

, 𝛼𝛼 = 𝑥𝑥3  and 
𝛽𝛽 = 𝑥𝑥4 as follows: 

𝑑𝑑2(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = �𝑑𝑑2�𝑥𝑥�𝑘𝑘,𝑗𝑗 , 𝑣𝑣�𝑖𝑖,𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

 

𝑑𝑑2�𝑥𝑥�𝑘𝑘,𝑗𝑗 , 𝑣𝑣�𝑖𝑖,𝑗𝑗� = �
2𝑥𝑥1𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑥𝑥2𝑥𝑥�𝑘𝑘,𝑗𝑗

2 −
2𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗

2 �
2

+ 

+

⎝

⎜
⎛
�

2𝑥𝑥1𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑥𝑥2𝑥𝑥�𝑘𝑘,𝑗𝑗

2 −
1
2 𝑥𝑥3𝑥𝑥�𝑘𝑘,𝑗𝑗� −

�
2𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗

2 −
1
2 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗� ⎠

⎟
⎞

2

             

+

⎝

⎜
⎛
�

2𝑥𝑥1𝑥𝑥�𝑘𝑘,𝑗𝑗 + 𝑥𝑥2𝑥𝑥�𝑘𝑘,𝑗𝑗

2 +
1
2 𝑥𝑥4𝑥𝑥�𝑘𝑘,𝑗𝑗� −

�
2𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗

2 +
1
2
𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗� ⎠

⎟
⎞

2

 

(14) 

Dissimilarity defined for two TFN numbers 𝑥𝑥�𝑖𝑖, 𝑣𝑣�𝑖𝑖 in [28] is as follows: 

𝑑𝑑2(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = �
�𝑥𝑥1𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗�

2
+ �𝑥𝑥2𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗�

2

+ �𝑥𝑥3𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗�
2

+ �𝑥𝑥4𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗�
2

𝑝𝑝

𝑗𝑗=1

   (15) 

In the next state for LR-type fuzzy numbers suppose 𝑚𝑚1𝑥𝑥�𝑖𝑖,𝑗𝑗
= 𝑚𝑚2𝑥𝑥�𝑖𝑖,𝑗𝑗

= 𝑚𝑚𝑥𝑥�𝑖𝑖,𝑗𝑗
 and 

𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 = 𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 = 𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 . The Yang distance definition for this state is as follows: 
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𝑑𝑑2(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = 

∑

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �𝑚𝑚𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗�

2

+ ��𝑚𝑚𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑙𝑙𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗� − �𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑙𝑙𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗��
2

.

+�
�𝑚𝑚𝑥𝑥�𝑘𝑘,𝑗𝑗 + 𝑟𝑟𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗�

− �𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑟𝑟𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�
�

2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑝𝑝
𝑗𝑗=1    (16) 

To achieve the robust clustering method versus noisy input numbers, Yang et al. in 
[31] define an exponential based metric. Dissimilarity defined for LR-type fuzzy number 
𝑥𝑥� and prototype 𝑣𝑣� in [31] is as follows: 

𝑑𝑑2(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = 1 − 𝑒𝑒𝑥𝑥𝑝𝑝�−𝑏𝑏𝑑𝑑2(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖)� (17) 

where 𝑑𝑑2(𝑥𝑥�𝑖𝑖, 𝑣𝑣�𝑖𝑖) is obtained from (16) and 𝑏𝑏 is a fixed coefficient [see [31]]. 
In [33] Rong et al. offer two metrics for triangular fuzzy numbers. Dissimilarity de-

fined for triangular-type fuzzy numbers 𝑥𝑥�𝑖𝑖  and 𝑣𝑣�𝑖𝑖  in 𝑝𝑝  dimensions space, 𝑥𝑥�𝑖𝑖 =
�𝑥𝑥�𝑖𝑖,1, 𝑥𝑥�𝑖𝑖,2,⋯ , 𝑥𝑥�𝑖𝑖,𝑝𝑝�, 𝑥𝑥�𝑖𝑖,𝑗𝑗 = �𝑥𝑥𝑖𝑖,𝑗𝑗

𝐿𝐿 , 𝑥𝑥𝑖𝑖,𝑗𝑗
𝐶𝐶 , 𝑥𝑥𝑖𝑖,𝑗𝑗

𝑅𝑅 �
𝑇𝑇𝑇𝑇𝑆𝑆

 for  𝑗𝑗 = 1,2,⋯ , 𝑝𝑝  and 𝑣𝑣�𝑖𝑖 =

�𝑣𝑣�𝑖𝑖,1, 𝑣𝑣�𝑖𝑖,2,⋯ , 𝑣𝑣�𝑖𝑖,𝑝𝑝�, 𝑣𝑣𝑖𝑖,𝑗𝑗 = �𝑣𝑣𝑖𝑖,𝑗𝑗𝐿𝐿 , 𝑣𝑣𝑖𝑖,𝑗𝑗
𝐶𝐶 , 𝑣𝑣𝑖𝑖,𝑗𝑗

𝑅𝑅 �
𝑇𝑇𝑇𝑇𝑆𝑆

 for 𝑗𝑗 = 1,2,⋯ ,𝑝𝑝, is as follows: 

𝑑𝑑2�𝑥𝑥�𝑘𝑘,𝑗𝑗 , 𝑣𝑣�𝑖𝑖,𝑗𝑗� =
𝛼𝛼1
6 �𝑥𝑥𝑘𝑘,𝑗𝑗

𝐿𝐿 − 𝑣𝑣𝑖𝑖,𝑗𝑗𝐿𝐿 �
2 + �

𝛼𝛼1
6 + 𝛼𝛼2 +

𝛼𝛼3
6
� �𝑥𝑥𝑘𝑘,𝑗𝑗

𝐶𝐶 − 𝑣𝑣𝑖𝑖𝐶𝐶�
2 +

𝛼𝛼3
6 �𝑥𝑥𝑘𝑘,𝑗𝑗

𝑅𝑅 − 𝑣𝑣𝑖𝑖,𝑗𝑗𝑅𝑅 �
2 

+
𝛼𝛼1
6
��𝑥𝑥𝑘𝑘,𝑗𝑗

𝐿𝐿 + 𝑥𝑥𝑘𝑘,𝑗𝑗
𝐶𝐶 � − �𝑣𝑣𝑖𝑖,𝑗𝑗𝐿𝐿 + 𝑣𝑣𝑖𝑖,𝑗𝑗𝐶𝐶 ��

2
+
𝛼𝛼3
6
��𝑥𝑥𝑘𝑘,𝑗𝑗

𝑅𝑅 + 𝑥𝑥𝑘𝑘,𝑗𝑗
𝐶𝐶 � − �𝑣𝑣𝑖𝑖,𝑗𝑗𝑅𝑅 + 𝑣𝑣𝑖𝑖,𝑗𝑗𝐶𝐶 ��

2
 

𝑑𝑑12(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = �𝑑𝑑2�𝑥𝑥�𝑘𝑘,𝑗𝑗 , 𝑣𝑣�𝑖𝑖,𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

(18− 1) 

𝑑𝑑22(𝑥𝑥�𝑘𝑘 ,𝑣𝑣�𝑖𝑖) = 1 − 𝑒𝑒𝑥𝑥𝑝𝑝�−𝑏𝑏.𝑑𝑑12(𝑥𝑥�𝑘𝑘 , 𝑣𝑣�𝑖𝑖)� (18 − 2) 

(18) 

where 𝛼𝛼1, 𝛼𝛼2 and 𝛼𝛼3 are positive, fixed and known coefficients while 𝛼𝛼1 + 𝛼𝛼2 + 𝛼𝛼3 = 1 
and b is a fixed coefficient also. 

The main key point in the proposed Vector Fuzzy c-Spherical Shells (VFCSS) Clus-
tering is how to define crisp vectors from parameters of affected numbers. According to 
any used metric, we define a crisp vectors set 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2,⋯ , 𝑦𝑦𝑛𝑛} a corresponding input 
numbers set (𝑋𝑋�  for non-crisp numbers and 𝑋𝑋 for crisp numbers) and 𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2,⋯ ,𝑒𝑒𝑐𝑐} 
and a corresponding centers set (𝑉𝑉�  for non-crisp numbers and 𝑉𝑉  for crisp numbers). 
These definitions allow us to demonstrate a distance and a Lagrange function in the pro-
posed VFCSS as follows: 

𝑑𝑑2 = (‖𝑦𝑦𝑘𝑘 − 𝑒𝑒𝑖𝑖‖2 − 𝑟𝑟𝑖𝑖2)2 = ((𝑦𝑦𝑘𝑘 − 𝑒𝑒𝑖𝑖)𝑇𝑇(𝑦𝑦𝑘𝑘 − 𝑒𝑒𝑖𝑖) − 𝑟𝑟𝑖𝑖2)2 (19) 

𝐿𝐿(𝑊𝑊,𝑈𝑈, 𝜆𝜆) = ��𝑢𝑢𝑖𝑖,𝑘𝑘𝑚𝑚 ((𝑦𝑦𝑘𝑘 − 𝑒𝑒𝑖𝑖)𝑇𝑇(𝑦𝑦𝑘𝑘 − 𝑒𝑒𝑖𝑖) − 𝑟𝑟𝑖𝑖2)2
𝑐𝑐

𝑖𝑖=1

𝑛𝑛

𝑘𝑘=1

+ �𝜆𝜆𝑘𝑘 ��𝑢𝑢𝑖𝑖,𝑘𝑘

𝑐𝑐

𝑖𝑖=1

− 1�
𝑛𝑛

𝑘𝑘=1

 (20) 

By this definition, similar to the crisp case and (5), the membership value of 𝑢𝑢𝑖𝑖,𝑖𝑖 can 
update from the next equation in the proposed VFCSS: 

𝑢𝑢𝑖𝑖,𝑘𝑘 = ���
𝑑𝑑2(𝑦𝑦𝑘𝑘 ,𝑒𝑒𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑑𝑑2�𝑦𝑦𝑘𝑘,𝑒𝑒𝑗𝑗 , 𝑟𝑟𝑗𝑗�

�

1
𝑚𝑚−1

𝑐𝑐

𝑗𝑗=1

�

−1

 

=

⎝

⎜
⎛
��

((𝑦𝑦𝑘𝑘 − 𝑒𝑒𝑖𝑖)𝑇𝑇(𝑦𝑦𝑘𝑘 − 𝑒𝑒𝑖𝑖) − 𝑟𝑟𝑖𝑖2)

��𝑦𝑦𝑘𝑘 − 𝑒𝑒𝑗𝑗�
𝑇𝑇�𝑦𝑦𝑘𝑘 − 𝑒𝑒𝑗𝑗� − 𝑟𝑟𝑗𝑗2�

�

2
𝑚𝑚−1𝑐𝑐

𝑗𝑗=1

⎠

⎟
⎞

−1

    

(21) 

Let the independent parameters of the 𝑖𝑖th center (except radius𝑟𝑟𝑖𝑖) be denoted by the 
set {𝑂𝑂𝑖𝑖}. After creating the Lagrange function (20), we must calculate the derivation of the 
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Lagrange function with respect to parameters 𝑂𝑂𝑖𝑖, 𝑟𝑟𝑖𝑖 and set the resulting equation equal 
to zero for all 𝑂𝑂𝑖𝑖’s as follows: 

𝜕𝜕𝐿𝐿
𝜕𝜕𝑂𝑂𝑖𝑖� = 𝜕𝜕𝐿𝐿

𝜕𝜕𝑒𝑒𝑖𝑖� . 𝜕𝜕𝑒𝑒𝑖𝑖
𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
� = 0,𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑂𝑂𝑖𝑖

𝜕𝜕𝐿𝐿
𝜕𝜕𝑟𝑟𝑖𝑖� = 𝜕𝜕𝐿𝐿

𝜕𝜕𝑒𝑒𝑖𝑖� . 𝜕𝜕𝑒𝑒𝑖𝑖
𝑇𝑇

𝜕𝜕𝑟𝑟𝑖𝑖
� = 0

�  𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2,⋯ , 𝑐𝑐 (22) 

As 𝑂𝑂𝑖𝑖s are independent and we have 𝜕𝜕𝐿𝐿 𝜕𝜕𝑒𝑒𝑖𝑖
� . 𝜕𝜕𝑒𝑒𝑖𝑖

𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
� = 0 for all 𝑂𝑂𝑖𝑖s, furthermore 

𝜕𝜕𝐿𝐿
𝜕𝜕𝑒𝑒𝑖𝑖
�  is fixed while 𝜕𝜕𝑒𝑒𝑖𝑖

𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
�  is changing because of changing the metric (in fixed 𝑂𝑂𝑖𝑖), 

therefore from (22) we can conclude that  𝜕𝜕𝐿𝐿 𝜕𝜕𝑒𝑒𝑖𝑖� = 0 . Suppose the vectors 
{𝑒𝑒𝑖𝑖}𝑖𝑖=1

𝑐𝑐  and {𝑦𝑦𝑘𝑘}𝑘𝑘=1𝑛𝑛  are 𝑝𝑝�-dimensional, then we can extract the updating relation of 𝑒𝑒𝑖𝑖 
and 𝑟𝑟𝑖𝑖 similar to 𝑣𝑣𝑖𝑖 and 𝑟𝑟𝑖𝑖 in the crisp numbers case as follows: 

⎩
⎨

⎧𝑒𝑒𝑖𝑖 = −
1
2 �𝑞𝑞𝑖𝑖,1, 𝑞𝑞𝑖𝑖,2, … , 𝑞𝑞𝑖𝑖,𝑝𝑝��

𝑇𝑇

𝑟𝑟𝑖𝑖 = �𝑒𝑒𝑖𝑖𝑇𝑇𝑒𝑒𝑖𝑖 − 𝑞𝑞𝑖𝑖,𝑝𝑝�+1
, 𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 1,2,⋯ , 𝑐𝑐  (23a) 

𝑊𝑊ℎ𝑒𝑒𝑟𝑟𝑒𝑒:

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑞𝑞𝑖𝑖 = −

1
2𝐻𝐻𝑖𝑖

−1𝜔𝜔𝑖𝑖       

𝐻𝐻𝑖𝑖 = �𝑢𝑢𝑖𝑖,𝑘𝑘𝑚𝑚 𝑔𝑔𝑘𝑘𝑔𝑔𝑘𝑘𝑇𝑇
𝑛𝑛

𝑘𝑘=1

 

𝜔𝜔𝑖𝑖 = �𝑢𝑢𝑖𝑖,𝑘𝑘𝑚𝑚 𝑠𝑠𝑘𝑘

𝑛𝑛

𝑘𝑘=1

       

𝑠𝑠𝑘𝑘 = 2�𝑦𝑦𝑘𝑘𝑇𝑇𝑦𝑦𝑘𝑘�𝑔𝑔𝑘𝑘 , 𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 1,2, … ,𝑛𝑛   

𝑔𝑔𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2, … ,𝑦𝑦𝑘𝑘,𝑝𝑝�, 1�𝑇𝑇 , 𝑓𝑓𝑓𝑓𝑟𝑟  𝑖𝑖 = 1,2, … ,𝑛𝑛   

 

(23b) 

(23c) 

(23d) 

(23e) 

(23f) 

Subsequently by multiplying both sides of the first phrase of (23a) ( 𝑒𝑒𝑖𝑖 =

−
1

2
�𝑞𝑞𝑖𝑖,1, 𝑞𝑞𝑖𝑖,2, … , 𝑞𝑞𝑖𝑖,𝑝𝑝��

𝑇𝑇) by 𝜕𝜕𝑒𝑒𝑖𝑖
𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
� , we can get the updating equation of the 𝑂𝑂𝑖𝑖parameter. For simplic-

ity, we replace𝜕𝜕𝑒𝑒𝑖𝑖
𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
�  by 𝜉𝜉𝑂𝑂𝑖𝑖, that is the normalized vector of the 𝜕𝜕𝑒𝑒𝑖𝑖

𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
�  vector. There-

fore, the updated relation for the 𝑂𝑂𝑖𝑖 parameter can be obtained as follows: 

𝜉𝜉𝑡𝑡𝑖𝑖 = 𝑆𝑆𝑓𝑓𝑟𝑟𝑚𝑚 �𝜕𝜕𝑒𝑒𝑖𝑖
𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
� � , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑂𝑂𝑖𝑖𝑠𝑠 𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑖 = 1,2,⋯ , 𝑐𝑐 (24) 

𝜉𝜉𝑡𝑡𝑖𝑖𝑒𝑒𝑖𝑖 = −
1
2 𝜉𝜉𝑡𝑡𝑖𝑖�𝑞𝑞𝑖𝑖,1, 𝑞𝑞𝑖𝑖,2, … , 𝑞𝑞𝑖𝑖,𝑝𝑝��

𝑇𝑇 ⇒ 𝑂𝑂𝑖𝑖 =? , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑂𝑂𝑖𝑖𝑠𝑠 𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑖 = 1,2,⋯ , 𝑐𝑐. (25) 

To complete the VFCSS description, we will apply the proposed VFCSS clustering 
method over various crisp and non-crisp numbers. 

In this part, we apply the proposed VFCSS clustering of Section 4 over crisp and var-
ious non-crisp numbers with the metrics that are introduced in Section 3. 

2.4. VFCSS Applied to Crisp Numbers 
The VFCSS can be applied over crisp numbers. In this state according to the definition 

of Euclidean distance, the definition of the 𝑌𝑌 and 𝑊𝑊 sets are as follows: 

𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛},𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,⋯ ,𝑦𝑦𝑘𝑘,𝑝𝑝�
𝑇𝑇 ,𝑦𝑦𝑘𝑘,𝑗𝑗 = 𝑥𝑥𝑘𝑘,𝑗𝑗 

𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2, . . . ,𝑒𝑒𝑐𝑐},𝑒𝑒𝑖𝑖 = �𝑒𝑒𝑖𝑖,1,𝑒𝑒𝑖𝑖,2,⋯ ,𝑒𝑒𝑖𝑖,𝑝𝑝�
𝑇𝑇 ,𝑒𝑒𝑖𝑖,𝑗𝑗 = 𝑣𝑣𝑖𝑖,𝑗𝑗 

(26) 

where 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 𝑖𝑖 = 1,2,⋯ , 𝑐𝑐 and𝑗𝑗 = 1,2,⋯ , 𝑝𝑝. In this case 𝑌𝑌 = 𝑋𝑋 and 𝑊𝑊 = 𝑉𝑉. There-
fore, we can conclude 𝑝𝑝� = 𝑝𝑝. In this case 𝜉𝜉𝑂𝑂𝑖𝑖 = 𝑆𝑆𝑓𝑓𝑟𝑟𝑚𝑚 �𝜕𝜕𝑒𝑒𝑖𝑖

𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
� � =

𝜕𝜕𝑒𝑒𝑖𝑖
𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
�  that is obtained from 

Table 1. 
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Table 1. 𝜉𝜉 for VFCSS applying over crisp numbers. 

d𝑂𝑂𝑖𝑖 𝑣𝑣𝑖𝑖,𝑗𝑗, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 

𝜉𝜉𝑡𝑡𝑖𝑖 = 𝑆𝑆𝑓𝑓𝑟𝑟𝑚𝑚 �𝜕𝜕𝑒𝑒𝑖𝑖
𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
� � = 𝜕𝜕𝑒𝑒𝑖𝑖𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
�  �0,0,⋯ ,0�����

(𝑗𝑗−1)

, 1, 0,0,⋯ ,0�����
(𝑝𝑝−𝑗𝑗)

� 

Then using (25), parameter 𝑂𝑂𝑖𝑖 can be obtained as (5). We can conclude the VFCSS 
applied over crisp numbers is equivalent with this concept in the first equation of (5a). 

2.5. The VFCSS Applied to Fuzzy Numbers 
In this part, we apply VFCSS clustering to various introduced fuzzy type numbers, 

see Section 3. 

2.5.1. The VFCSS Applied to LR-Type Fuzzy Numbers 
For LR-type fuzzy numbers, when the metric (13) is used, we define Y and 𝑊𝑊 sets as 

below: 
𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛},𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,⋯ ,𝑦𝑦𝑘𝑘,𝑝𝑝�

𝑇𝑇 ,𝑦𝑦𝑘𝑘,𝑗𝑗  

= �𝑚𝑚1𝑥𝑥�𝑘𝑘,𝑗𝑗,𝑚𝑚2𝑥𝑥�𝑘𝑘,𝑗𝑗,𝑚𝑚1𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑙𝑙𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗,𝑚𝑚2𝑥𝑥�𝑘𝑘,𝑗𝑗 + 𝑟𝑟𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗�
𝑇𝑇
 

𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2, … ,𝑒𝑒𝑐𝑐},𝑒𝑒𝑖𝑖 = �𝑒𝑒𝑖𝑖,1,𝑒𝑒𝑖𝑖,2,⋯ ,𝑒𝑒𝑖𝑖,𝑝𝑝�
𝑇𝑇 ,𝑒𝑒𝑖𝑖,𝑗𝑗 

= �𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑙𝑙𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑟𝑟𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�
𝑇𝑇
 

(27) 

where 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛, 𝑖𝑖 = 1,2,⋯ , 𝑐𝑐 and𝑗𝑗 = 1,2,⋯ , 𝑝𝑝. It is observed in this case𝑝𝑝� = 4𝑝𝑝. In 
this case, for all 𝑂𝑂𝑖𝑖s (𝑂𝑂𝑖𝑖 ∈ �𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�𝑗𝑗=1

𝑝𝑝
), 𝜕𝜕𝑒𝑒𝑖𝑖

𝑇𝑇

𝜕𝜕𝑂𝑂𝑖𝑖
�  and 𝜉𝜉𝑂𝑂𝑖𝑖are obtained in Tables 2 and 

3. 

Table 2.  𝜕𝜕𝑒𝑒𝑇𝑇
𝜕𝜕𝑂𝑂 �  for VFCSS applying over LR-type fuzzy numbers when metric (13) is used. 

𝑂𝑂𝑖𝑖 𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 

𝜕𝜕𝑒𝑒𝑖𝑖𝑇𝑇
𝜕𝜕𝑂𝑂𝑖𝑖
�  �0,0,⋯ ,0�����

4(𝑗𝑗−1)

, 1,0,1,0, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)

, 0,1,0,1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)+2

,−𝑙𝑙, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)+1

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)+3

, 𝑟𝑟, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� 

Table 3. 𝜉𝜉 for VFCSS applying over LR-type fuzzy numbers when metric (13) is used. 

𝑂𝑂𝑖𝑖 𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 

𝜉𝜉𝑡𝑡𝑖𝑖  �0,0,⋯ ,0�����
4(𝑗𝑗−1)

, 1,0,1,0, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)

, 0,1,0,1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)+2

, 1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)+1

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)+3

, 1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� 

Finally, we can arrive at updated relations of parameters 𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 and 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗  
from (25) as follows: 

𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
4 �𝑞𝑞𝑖𝑖,4𝑗𝑗−3 + 𝑞𝑞𝑖𝑖,4𝑗𝑗−1� +

𝑙𝑙
2𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗

𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
4 �𝑞𝑞𝑖𝑖,4𝑗𝑗−2 + 𝑞𝑞𝑖𝑖,4𝑗𝑗� −

𝑟𝑟
2𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗

𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 =
1
2𝑙𝑙 𝑞𝑞𝑖𝑖,4𝑗𝑗−1 +

1
𝑙𝑙 𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗

𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1

2𝑟𝑟
𝑞𝑞𝑖𝑖,4𝑗𝑗 −

1
𝑟𝑟
𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 ⎭

⎪
⎪
⎬

⎪
⎪
⎫

𝑓𝑓𝑓𝑓𝑟𝑟 �𝑖𝑖 = 1,2,⋯ , 𝑐𝑐
𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 (28) 

In the other state of LR-type fuzzy numbers, suppose 𝑚𝑚1𝑥𝑥�𝑖𝑖,𝑗𝑗
= 𝑚𝑚2𝑥𝑥�𝑖𝑖,𝑗𝑗

= 𝑚𝑚𝑥𝑥�𝑖𝑖,𝑗𝑗
 and 

𝑚𝑚1𝑣𝑣�𝑖𝑖,𝑗𝑗 = 𝑚𝑚2𝑣𝑣�𝑖𝑖,𝑗𝑗 = 𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 . Regarding the Yang distance definition of (16), 𝑌𝑌 and 𝑊𝑊 are de-
fined as follows: 

𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛},𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,⋯ ,𝑦𝑦𝑘𝑘,𝑝𝑝�
𝑇𝑇 (29) 
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,𝑦𝑦𝑘𝑘,𝑗𝑗 = �𝑚𝑚𝑥𝑥�𝑘𝑘,𝑗𝑗 ,𝑚𝑚𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑙𝑙𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗 ,𝑚𝑚𝑥𝑥�𝑘𝑘,𝑗𝑗 + 𝑟𝑟𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗�
𝑇𝑇
 

𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2, … ,𝑒𝑒𝑐𝑐},𝑒𝑒𝑖𝑖 = �𝑒𝑒𝑖𝑖,1,𝑒𝑒𝑖𝑖,2,⋯ ,𝑒𝑒𝑖𝑖,𝑝𝑝�
𝑇𝑇  

,𝑒𝑒𝑖𝑖,𝑗𝑗 = �𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑙𝑙𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗,𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑟𝑟𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�
𝑇𝑇
 

In this case �̂�𝑝 = 3𝑝𝑝. For this case 𝜉𝜉𝑂𝑂𝑖𝑖 and updated relations of 𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 and 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗are 
as in Table 4 and (30). 

Table 4. 𝜉𝜉 for VFCSS applying over LR-type fuzzy numbers when metric (16) is used. 

𝑂𝑂𝑖𝑖 𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 

𝜉𝜉𝑡𝑡𝑖𝑖 �0,0,⋯ ,0�����
3(𝑗𝑗−1)

, 1,1,1, 0,0,⋯ ,0�����
3(𝑝𝑝−𝑗𝑗)

� �0,0,⋯ ,0�����
3(𝑗𝑗−1)+1

, 1, 0,0,⋯ ,0�����
3(𝑝𝑝−𝑗𝑗)+1

� �0,0,⋯ ,0�����
3(𝑗𝑗−1)+2

, 1, 0,0,⋯ ,0�����
3(𝑝𝑝−𝑗𝑗)

� 

 

𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
6 �𝑞𝑞𝑖𝑖,3𝑗𝑗−2 + 𝑞𝑞𝑖𝑖,3𝑗𝑗−1 + 𝑞𝑞𝑖𝑖,3𝑗𝑗� +

𝑙𝑙
3𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 −

𝑟𝑟
3𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗

𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 =
1
2𝑙𝑙 𝑞𝑞𝑖𝑖,3𝑗𝑗−1 +

1
𝑙𝑙 𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗

𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1

2𝑟𝑟 𝑞𝑞𝑖𝑖,3𝑗𝑗 −
1
𝑟𝑟 𝑚𝑚𝑣𝑣�𝑖𝑖,𝑗𝑗 ⎭

⎪
⎬

⎪
⎫

𝑓𝑓𝑓𝑓𝑟𝑟 � 𝑖𝑖 = 1,2,⋯ , 𝑐𝑐        
𝑗𝑗 = 1,2,⋯ , 𝑝𝑝           (30) 

As we cannot define Y and W to match (17) to (19), therefore the proposed VFCSS 
cannot be applied on (19). 

2.5.2. The VFCSS Applied to TFN-Type Fuzzy Numbers 
For TFN numbers, when the metric (14) is used, we define Y and 𝑊𝑊 sets as below: 

𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛},𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,⋯ ,𝑦𝑦𝑘𝑘,𝑝𝑝�
𝑇𝑇 ,𝑦𝑦𝑘𝑘,𝑗𝑗

= �
2𝑥𝑥1𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑥𝑥2𝑥𝑥�𝑘𝑘,𝑗𝑗

2 ,
2𝑥𝑥1𝑥𝑥�𝑘𝑘,𝑗𝑗 + 𝑥𝑥2𝑥𝑥�𝑘𝑘,𝑗𝑗

2 ,
2𝑥𝑥1𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑥𝑥2𝑥𝑥�𝑘𝑘,𝑗𝑗 − 𝑥𝑥3𝑥𝑥�𝑘𝑘,𝑗𝑗

2 ,
2𝑥𝑥1𝑥𝑥�𝑘𝑘,𝑗𝑗 + 𝑥𝑥2𝑥𝑥�𝑘𝑘,𝑗𝑗 + 𝑥𝑥4𝑥𝑥�𝑘𝑘,𝑗𝑗

2 �
𝑇𝑇

 

𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2, . . . ,𝑒𝑒𝑐𝑐},𝑒𝑒𝑖𝑖 = �𝑒𝑒𝑖𝑖,1,𝑒𝑒𝑖𝑖,2,⋯ ,𝑒𝑒𝑖𝑖,𝑝𝑝�
𝑇𝑇 ,𝑒𝑒𝑖𝑖,𝑗𝑗

= �
2𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗

2 ,
2𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗

2 ,
2𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗

2 ,
2𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗

2 �
𝑇𝑇

   

(31) 

It is observed �̂�𝑝 = 4𝑝𝑝. In this case 𝜉𝜉𝑂𝑂𝑖𝑖and updated relations of 𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗and 
𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗are as in Table 5 and (32). 

Table 5. 𝜉𝜉 for VFCSS applying over TFN-type fuzzy numbers when metric (14) is used. 

𝑂𝑂𝑖𝑖 𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 

𝜉𝜉𝑡𝑡𝑖𝑖  �0,0,⋯ ,0�����
4(𝑗𝑗−1)

, 1,1,1,1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)

,−1,1,−1,1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)+2

, 1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)+1

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)+3

, 1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� 

 

𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
8
�𝑞𝑞𝑖𝑖,4𝑗𝑗−3 + 𝑞𝑞𝑖𝑖,4𝑗𝑗−2 + 𝑞𝑞𝑖𝑖,4𝑗𝑗−1 + 𝑞𝑞𝑖𝑖,4𝑗𝑗 − 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗�

𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
4
�−𝑞𝑞𝑖𝑖,4𝑗𝑗−3 + 𝑞𝑞𝑖𝑖,4𝑗𝑗−2 − 𝑞𝑞𝑖𝑖,4𝑗𝑗−1 + 𝑞𝑞𝑖𝑖,4𝑗𝑗 + 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗 + 𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗�

𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗 = 𝑞𝑞𝑖𝑖,4𝑗𝑗−1 + 2𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗
𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗 = −𝑞𝑞𝑖𝑖,4𝑗𝑗 − 2𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 − 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 ⎭

⎪⎪
⎬

⎪⎪
⎫

𝑓𝑓𝑓𝑓𝑟𝑟 �𝑖𝑖 = 1,2,⋯ , 𝑐𝑐
𝑗𝑗 = 1,2,⋯ , 𝑝𝑝  (32) 

For TFN numbers when metric (15) is used, we define the Y and 𝑊𝑊 sets as follows: 

𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛},𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,⋯ ,𝑦𝑦𝑘𝑘,𝑝𝑝�
𝑇𝑇 ,𝑦𝑦𝑘𝑘,𝑗𝑗 = �𝑥𝑥1𝑥𝑥�𝑘𝑘,𝑗𝑗,𝑥𝑥2𝑥𝑥�𝑘𝑘,𝑗𝑗 ,𝑥𝑥3𝑥𝑥�𝑘𝑘,𝑗𝑗,𝑥𝑥4𝑥𝑥�𝑘𝑘,𝑗𝑗�

𝑇𝑇
  

𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2, . . . ,𝑒𝑒𝑐𝑐},𝑒𝑒𝑖𝑖 = �𝑒𝑒𝑖𝑖,1,𝑒𝑒𝑖𝑖,2,⋯ ,𝑒𝑒𝑖𝑖,𝑝𝑝�
𝑇𝑇 ,𝑒𝑒𝑖𝑖,𝑗𝑗 = �𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗, 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗�

𝑇𝑇
 

(33) 
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In this case  �̂�𝑝 = 4𝑝𝑝 , furthermore 𝜉𝜉𝑂𝑂𝑖𝑖  and updated relations of 𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗 and 
𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗  are as in Table 6 and (34). 

Table 6. 𝜉𝜉 for VFCSS over applying over TFN-type fuzzy numbers when metric (14) is used. 

𝑂𝑂𝑖𝑖 𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 

𝜉𝜉𝑡𝑡𝑖𝑖  �0,0,⋯ ,0�����
4(𝑗𝑗−1)

, 1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)+3

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)+1

, 1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)+2

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)+2

, 1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)+1

� �0,0,⋯ ,0�����
4(𝑗𝑗−1)+3

, 1, 0,0,⋯ ,0�����
4(𝑝𝑝−𝑗𝑗)

� 

 

𝑣𝑣1𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
2
𝑞𝑞𝑖𝑖,4𝑗𝑗−3

𝑣𝑣2𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
2
𝑞𝑞𝑖𝑖,4𝑗𝑗−2

𝑣𝑣3𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
2
𝑞𝑞𝑖𝑖,4𝑗𝑗−1

𝑣𝑣4𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
2
𝑞𝑞𝑖𝑖,4𝑗𝑗 ⎭

⎪
⎪
⎬

⎪
⎪
⎫

𝑓𝑓𝑓𝑓𝑟𝑟 �𝑖𝑖 = 1,2,⋯ , 𝑐𝑐
𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 (34) 

2.5.3. The VFCSS Applied to TAN-Type Fuzzy Numbers 
If we use (18.1) as the metric when we apply VFCSS over TAN numbers, the defini-

tion of Y and 𝑊𝑊 is as follows: 

𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛},𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,⋯ ,𝑦𝑦𝑘𝑘,𝑝𝑝�
𝑇𝑇 ,𝑦𝑦𝑘𝑘,𝑗𝑗 = ��𝛼𝛼1

6
𝑥𝑥𝑘𝑘,𝑗𝑗
𝐿𝐿 ,�𝛼𝛼1

6
+ 𝛼𝛼2 + 𝛼𝛼3

6
𝑥𝑥𝑘𝑘,𝑗𝑗
𝐶𝐶 ,�𝛼𝛼3

6
𝑥𝑥𝑘𝑘,𝑗𝑗
𝑅𝑅 ,�𝛼𝛼1

6
�𝑥𝑥𝑘𝑘,𝑗𝑗

𝐿𝐿 + 𝑥𝑥𝑘𝑘,𝑗𝑗
𝐶𝐶 �,�𝛼𝛼3

6
�𝑥𝑥𝑘𝑘,𝑗𝑗

𝑅𝑅 + 𝑥𝑥𝑘𝑘,𝑗𝑗
𝐶𝐶 ��

𝑇𝑇

  

𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2, . . . ,𝑒𝑒𝑐𝑐},𝑒𝑒𝑖𝑖 = �𝑒𝑒𝑖𝑖,1,𝑒𝑒𝑖𝑖,2,⋯ ,𝑒𝑒𝑖𝑖,𝑝𝑝�
𝑇𝑇 ,𝑒𝑒𝑖𝑖,𝑗𝑗 = ��

𝛼𝛼1
6 𝑣𝑣𝑖𝑖,𝑗𝑗𝐿𝐿 ,�

𝛼𝛼1
6 + 𝛼𝛼2 +

𝛼𝛼3
6 𝑣𝑣𝑖𝑖,𝑗𝑗𝐶𝐶 ,�

𝛼𝛼3
6 𝑣𝑣𝑖𝑖,𝑗𝑗𝑅𝑅 ,�

𝛼𝛼1
6 �𝑣𝑣𝑖𝑖,𝑗𝑗𝐿𝐿 + 𝑣𝑣𝑖𝑖,𝑗𝑗𝐶𝐶 �,�

𝛼𝛼3
6 �𝑣𝑣𝑖𝑖,𝑗𝑗𝑅𝑅 + 𝑣𝑣𝑖𝑖,𝑗𝑗𝐶𝐶 ��

𝑇𝑇

 
(35) 

In this case𝑝𝑝� = 5𝑝𝑝, furthermore 𝜉𝜉𝑂𝑂𝑖𝑖  and updated relations of 𝑣𝑣𝑖𝑖,𝑗𝑗
𝐿𝐿 , 𝑣𝑣𝑖𝑖,𝑗𝑗

𝐶𝐶  and 𝑣𝑣𝑖𝑖,𝑗𝑗
𝑅𝑅  are as 

in Table 7 and (36). 

Table 7. 𝜉𝜉 for VFCSS applying over TAN-type fuzzy numbers when metric (18.1) is used. 

𝑂𝑂𝑖𝑖 𝑣𝑣𝑖𝑖,𝑗𝑗𝐿𝐿 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑣𝑣𝑖𝑖,𝑗𝑗𝐶𝐶 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝑣𝑣𝑖𝑖,𝑗𝑗𝑅𝑅 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 

𝜉𝜉𝑡𝑡𝑖𝑖 �0,0,⋯ ,0�����
5(𝑗𝑗−1)

, 1,00,1,0, 0,0,⋯ ,0�����
5(𝑝𝑝−𝑗𝑗)

� �0,0,⋯ ,0�����
5(𝑗𝑗−1)

, 0,1,0,�
𝛼𝛼1

𝛼𝛼1 + 6𝛼𝛼2 + 𝛼𝛼3
,�

𝛼𝛼3
𝛼𝛼1 + 6𝛼𝛼2 + 𝛼𝛼3

, 0,0,⋯ ,0�����
5(𝑝𝑝−𝑗𝑗)

� �0,0,⋯ ,0�����
5(𝑗𝑗−1)

, 0,0,1,0,1, 0,0,⋯ ,0�����
5(𝑝𝑝−𝑗𝑗)

 

 

𝑣𝑣𝑖𝑖,𝑗𝑗𝐿𝐿 = −�
3

8𝛼𝛼1
�𝑞𝑞𝑖𝑖,5𝑗𝑗−4 + 𝑞𝑞𝑖𝑖,5𝑗𝑗−1� −

1
2
𝑣𝑣𝑖𝑖,𝑗𝑗𝐶𝐶

𝑣𝑣𝑖𝑖,𝑗𝑗𝐶𝐶 = −
√6

4(𝛼𝛼1 + 3𝛼𝛼2 + 𝛼𝛼3) ��
(𝛼𝛼1 + 6𝛼𝛼2 + 𝛼𝛼3)𝑞𝑞𝑖𝑖,5𝑗𝑗−3 +�𝛼𝛼1𝑞𝑞𝑖𝑖,5𝑗𝑗−1 + �𝛼𝛼3𝑞𝑞𝑖𝑖,5𝑗𝑗� −

𝛼𝛼1𝑣𝑣𝑖𝑖,𝑗𝑗𝐿𝐿 + 𝛼𝛼3𝑣𝑣𝑖𝑖,𝑗𝑗𝑅𝑅

2(𝛼𝛼1 + 3𝛼𝛼2 + 𝛼𝛼3)

𝑣𝑣𝑖𝑖,𝑗𝑗𝑅𝑅 = −�
3

8𝛼𝛼1
�𝑞𝑞𝑖𝑖,5𝑗𝑗−2 + 𝑞𝑞𝑖𝑖,5𝑗𝑗� −

1
2
𝑣𝑣𝑖𝑖,𝑗𝑗𝐶𝐶

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

  (36) 

However, the proposed VFCSS cannot be implemented for the exponential based 
metric of (18.1). 

2.6. The VFCSS over Symbolic Numbers 
Using the VFCSS method, the definition of the 𝑌𝑌 and 𝑊𝑊 crisp vectors for dissimi-

larity definitions of (12) is as follows: 
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𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛},𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,⋯ ,𝑦𝑦𝑘𝑘,𝑝𝑝�
𝑇𝑇 ,  𝑦𝑦𝑘𝑘,𝑗𝑗 = �𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗,𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗�

𝑇𝑇
 

𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2, . . . ,𝑒𝑒𝑐𝑐},𝑒𝑒𝑖𝑖 = �𝑒𝑒𝑖𝑖,1,𝑒𝑒𝑖𝑖,2,⋯ ,𝑒𝑒𝑖𝑖,𝑝𝑝�
𝑇𝑇 ,  𝑒𝑒𝑖𝑖,𝑗𝑗 = �𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 ,𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�

𝑇𝑇
 

(37) 

In this case𝑝𝑝� = 2𝑝𝑝. For this case 𝜉𝜉𝑂𝑂𝑖𝑖 and updated relations of 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗  and 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗are as in 
Table 8 and equation (38). 

Table 8. 𝜉𝜉 for VFCSS applying over symbolic numbers when metric (12) is used. 

𝑂𝑂𝑖𝑖 𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 

𝜉𝜉𝑡𝑡𝑖𝑖  �0,0,⋯ ,0�����
2(𝑗𝑗−1)

, 1, 0,0,⋯ ,0�����
2(𝑝𝑝−𝑗𝑗)+1

� �0,0,⋯ ,0�����
2(𝑗𝑗−1)+1

, 1, 0,0,⋯ ,0�����
2(𝑝𝑝−𝑗𝑗)

� 

 

𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
2 𝑞𝑞𝑖𝑖,2𝑗𝑗−1

𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗 = −
1
2 𝑞𝑞𝑖𝑖,2𝑗𝑗

� 𝑓𝑓𝑓𝑓𝑟𝑟 �𝑖𝑖 = 1,2,⋯ , 𝑐𝑐
𝑗𝑗 = 1,2,⋯ , 𝑝𝑝  (38) 

Using the VFCSS method, the definition of the 𝑌𝑌 and 𝑊𝑊 vectors for metric (9) is as 
follows: 

𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛},𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,⋯ ,𝑦𝑦𝑘𝑘,𝑝𝑝�
𝑇𝑇 ,𝑦𝑦𝑘𝑘,𝑗𝑗 = �(1 − 𝑧𝑧)𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗, 𝑧𝑧𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗�

𝑇𝑇
 

        𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2, . . . ,𝑒𝑒𝑐𝑐},𝑒𝑒𝑖𝑖 = �𝑒𝑒𝑖𝑖,1,𝑒𝑒𝑖𝑖,2,⋯ ,𝑒𝑒𝑖𝑖,𝑝𝑝�
𝑇𝑇 ,𝑒𝑒𝑖𝑖,𝑗𝑗 = �(1 − 𝑧𝑧)𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 , 𝑧𝑧𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗�

𝑇𝑇
 

(39) 

Using these definitions, dissimilarity between two symbolic numbers 𝑥𝑥�𝑖𝑖, 𝑣𝑣�𝑖𝑖  is ob-
tained from the Euclidean distance between the two crisp vectors 𝑦𝑦𝑖𝑖,𝑒𝑒𝑖𝑖. As the constraint 
0 ≤ 𝑧𝑧 ≤ 0.5 is added to constraint (3), therefore the Lagrange function (20) will change in 
this case. Similar to the mentioned case, we can get the updated relations by performing 
the same procedure. 

For dissimilarity definitions of (10), using the VFCSS method, the definition of 𝑌𝑌 and 
𝑊𝑊 vectors are as follows: 

𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑛𝑛},𝑦𝑦𝑘𝑘 = �𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,⋯ ,𝑦𝑦𝑘𝑘,𝑝𝑝�
𝑇𝑇 ,𝑦𝑦𝑘𝑘,𝑗𝑗 = ��𝛾𝛾𝑗𝑗𝛼𝛼𝑥𝑥�𝑘𝑘,𝑗𝑗 ,�𝛾𝛾𝑗𝑗𝛽𝛽𝑥𝑥�𝑘𝑘,𝑗𝑗�

𝑇𝑇
 

𝑊𝑊 = {𝑒𝑒1,𝑒𝑒2, . . . ,𝑒𝑒𝑐𝑐},𝑒𝑒𝑖𝑖 = �𝑒𝑒𝑖𝑖,1,𝑒𝑒𝑖𝑖,2,⋯ ,𝑒𝑒𝑖𝑖,𝑝𝑝�
𝑇𝑇 ,𝑒𝑒𝑖𝑖,𝑗𝑗 = ��𝛾𝛾𝑗𝑗𝛼𝛼𝑣𝑣�𝑖𝑖,𝑗𝑗 ,�𝛾𝛾𝑗𝑗𝛽𝛽𝑣𝑣�𝑖𝑖,𝑗𝑗� 

(40) 

Using these definitions, dissimilarity between two symbolic numbers 𝑥𝑥�𝑖𝑖, 𝑣𝑣�𝑖𝑖  is ob-
tained from the Euclidean distance between two crisp vectors𝑦𝑦𝑖𝑖,𝑒𝑒𝑖𝑖 . As the constraint 
𝛱𝛱𝑗𝑗=1
𝑝𝑝 𝛾𝛾𝑗𝑗 = 1 is added to constraint (3), therefore the Lagrange function (20) will change in 

this case. Similar to the mentioned case, we can get the updated relations by performing 
the same procedure. 

For dissimilarity definitions of (11), we cannot define two crisp vectors 𝑦𝑦𝑖𝑖,𝑒𝑒𝑖𝑖 such 
that 𝑑𝑑2�𝑦𝑦𝑖𝑖,𝑒𝑒𝑖𝑖� = 𝑑𝑑2(𝑥𝑥�𝑖𝑖, 𝑣𝑣�𝑖𝑖). 

In the last two items, regarding the change in the Lagrange function caused by add-
ing other constraints to (3), we cannot use (25) for accessing updating relations. We must 
rewrite the Lagrange function for each case separately. After this, we must solve the re-
sulting system of equations from corresponding derivations. Finally, we can obtain up-
dating relations of parameters similar to the introduced case in this paper. 

3. Results and Discussion 
Each presented non-crisp type number above with any of the corresponding metrics 

can be simulated. In this section, we apply the VFCSS clustering method over LR-type 
fuzzy numbers, while the Yang metric of (13) is used. Simulations are performed using 
MATLAB software. 
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In LR-type fuzzy numbers, decreasing functions of 𝐿𝐿(𝑥𝑥) and 𝑅𝑅(𝑥𝑥) are presumed 
linear (𝐿𝐿(𝑥𝑥) = 𝑅𝑅(𝑥𝑥) = 1 − 𝑥𝑥). In order to create fuzzy numbers, we use 2-dimension crisp 
numbers𝑋𝑋 = {𝑥𝑥𝑘𝑘}𝑘𝑘=1𝑛𝑛  that are produced randomly on the boundary of circles with a few 
alternates and these are named crisp equivalents (CE) of fuzzy numbers, while 0 ≤ 𝑥𝑥𝑘𝑘,𝑗𝑗 ≤
1 for 𝑗𝑗 = 1,2 (𝑗𝑗 represents each dimension). An LR-type fuzzy number 𝑥𝑥�𝑖𝑖 is generated 
as follows: 

𝑥𝑥�𝑘𝑘,𝑗𝑗 = �𝑥𝑥𝑘𝑘,𝑗𝑗 − 0.01,𝑥𝑥𝑘𝑘,𝑗𝑗 + 0.01,0.02𝑥𝑥𝑘𝑘,𝑗𝑗 , 0.02𝑥𝑥𝑘𝑘,𝑗𝑗�𝐿𝐿𝑅𝑅           (41) 

The noise added to crisp numbers has a max absolute of 0.1 times the corresponding 
circle radius. This is for performance evaluation of the proposed VFCSS performance ver-
sus noise. In demonstration of LR-type fuzzy numbers in simulation result figures, the 
distance between 𝑚𝑚1,𝑚𝑚2 is in bold while 𝛼𝛼,𝛽𝛽 are demonstrated normally. To evaluate 
the VFCSS clustering accuracy we use a Confusion Matrix (CM). A CM is a 𝑐𝑐 × 𝑐𝑐 matrix, 
where 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗) is the number of numbers from the 𝑖𝑖th class that are clustered as the𝑗𝑗th 
cluster. Furthermore, in the resulting membership grade matrix (𝑈𝑈), it is assumed any 
input number belongs to a cluster that has the maximum membership of it. In this paper, 
VFCSS is applied to analyzed numbers in various states and results are reported as fol-
lows. 

State 1. In the first state, in the first step the proposed VFCSS is applied to four classes 
of numbers that are overlapping. The simulation result for this step is provided in Figure 
2. In the second step, VFCSS is applied to four classes of numbers that are complex and 
overlapping. The simulation result for this step is provided in Figure 3. The CM of these 
two steps is expressed in Table 9. 

State 2. In this state, the input fuzzy numbers are not symmetric. On the other hand, 
we do not use from (41) to create fuzzy numbers. The procedure for producing fuzzy 
numbers in this state is as follows: 

 𝑥𝑥�𝑘𝑘,𝑗𝑗 = �𝑥𝑥𝑘𝑘,𝑗𝑗 − 0.01,𝑥𝑥𝑘𝑘,𝑗𝑗 + 0.03,0.04𝑥𝑥𝑘𝑘,𝑗𝑗 , 0.02𝑥𝑥𝑘𝑘,𝑗𝑗�𝐿𝐿𝑅𝑅    (42) 

In this state, we apply VFCSS clustering over LR-type fuzzy numbers with the same 
conditions as for state 1. Simulation results of the corresponding two steps of this state are 
demonstrated in Figures 4 and 5. The CM of these two steps is expressed in Table 10. 

State 3. In the third state, as we can represent an LR-type fuzzy number with its mean 
((𝑚𝑚1 + 𝑚𝑚2) 2⁄  from 41) as a crisp number, we apply a similar condition as for the two 
previous states for crisp numbers. Therefore, conventional FCSS is applied over input 
crisp numbers. Simulation results for the corresponding two steps of this state are demon-
strated in Figures 6 and 7. The CM of these two steps is expressed in Table 11. 

In this state it is observed, in the first step, the performance of the proposed VFCSS 
(first step of state 3) and FCSS (first step of state 5) clustering methods are similar. While 
in the second step, the proposed VFCSS can cluster input numbers well, while the con-
ventional FCSS cannot do this as well. Although in the simulation results the procedure 
of producing fuzzy numbers is very simple and primary. Performance of the proposed 
VFCSS can be improved further by a change in the procedure of producing fuzzy numbers 
(41), as well. 
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Figure 2. Proposed VFCSS clustering over input LR-type fuzzy numbers include four interference classes red, blue, black 
and green with (20,20,20,20) members, (first step of state 1). 

 
Figure 3. Proposed VFCSS clustering over input LR-type fuzzy numbers include four complexity interference classes red, 
blue, black and green with (20,20,20,20) members, (second step of state 1). 
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Figure 4. Proposed VFCSS clustering over input non-symmetric LR-type fuzzy numbers include four interference classes 
red, blue, black and green with (20,20,20,20) members, (first step of state 2). 

 
Figure 5. Proposed VFCSS clustering over input non-symmetric LR-type fuzzy numbers include four complexity interfer-
ence classes red, blue, black and green with (20,20,20,20) members (second step of state 2). 

 
Figure 6. Conventional FCSS clustering over crisp input numbers include four interference classes red, blue, black, and 
green with (20,20,20,20) members, (first step of state 3). 
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Figure 7. Conventional FCSS clustering over crisp input numbers include four complexity interference classes red, blue, 
black and green with (20,20,20,20) members (second step of state 3). 

Table 9. CM of VFCSS applied over LR-type fuzzy numbers of Figures 2 and 3 (first and second 
steps of state 1). 

Step 
Output Clusters 

First Step Second Step 

Confusion Matrix �

20,0,0,0
1,18,0,1
0,0,20,0
0,1,0,19

� �

20,0,0,0
0,20,0,0
2,1,16,1
0,1,1,18

� 

Table 10. CM of VFCSS applied over LR-type fuzzy numbers of Figures 4 and 5 (first and second 
steps of state 2). 

Step 
Output Clusters   First Step Second Step 

Confusion Matrix �

18,1,0,1
0,19,0,1
0,0,20,0
0,0,0,20

� �

20,0,0,0
0,19,0,1
1,2,15,2
0,1,2,17

� 

Table 11. CM of VFCSS applied over crisp numbers of Figures 6 and 7 (first and second steps of 
state 3). 

Step 
Output Clusters   First Step Second Step 

Confusion Matrix �

20,0,0,0
1,18,0,1
0,0,20,0
0,1,0,19

� �

8,7,4,1
7,8,3,2
1,0,19,0
0,1,1,18

� 

State 4. In the last state, the application of the proposed model is illustrated in real 
life. Geomorphology science and remotely sensed images are selected for simulation in 
this state. Geomorphology is the study of landforms dealing with the terrain relief. It is 
the morphology of the earth surface that works as the basic element separating geomor-
phology into an autonomous science in the Earth sciences. By analyzing the geometry of 
landforms, it is possible to study the relief and its properties from a validated perspective 
using mathematical apparatus [34]. Furthermore, remotely sensed imagery has been used 
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widely in geomorphology due to the availability of satellite data, with its value measura-
ble by the point to which it can meet the investigative needs of geomorphologists. Geo-
morphologists are therefore concerned with the Earth surface geometry and composition 
of the terrain relief. They use this information to determine presently operating processes, 
as well as predictive prior landforms and the events. They try to model geomorphological 
processes and use a wide range of techniques to predict future land surface change [35]. 
Therefore, in this paper, three georeferenced satellite images (obtained using Google 
maps) illustrated in Figure 8 are utilized, where they are related to the US  with coordi-
nates (Upper Left: 37.24.10. N, 105.35.12. W and Lower Right: 37.22.30. N, 105,32,35 W). 
These images are used to estimate the area of the agricultural fields (by estimating the 
circle radius values). For this purpose, using Arc GIS 10.5 software, the circles are ex-
tracted with the clip tool. 

 
(a) 

 
(b) 
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(c) 

Figure 8. Three georeferenced satellite images (obtained using Google maps) obtained over three 
different dates (a) 23-10-2011 (b) 09-09-2016 (c) 30-12-2018 (used for state 4). 

If we demonstrate the extracted circles from images (a), (b) and (c) of Figure 8 by red, 
green and blue color respectively, the resulting circles are as in Figure 9. It can be ob-
served, some of the resulting circles are non-overlapping while in some areas, as in the 
worst case, all 3 circles are in contact and are specified by red, green, and blue colors. In 
some area, two colors from RGB overlap and combined and cyan, yellow, and pink colors 
result. Finally, in rare cases, by complete overlapping of the circles, white color results. 
For this case, the resulting radius by conventional FCSS is reported in Table 12. We can 
observe various values for each circle are obtained by conventional FCSS (in an un-regular 
manner, it means the resulting radius from the first image in some cases is the min value, 
in other cases is the max value, etc.). This ambiguity will be increased, by increasing the 
number of available images. Furthermore, computational complexity will be increased by 
growing the number of available images as well. For this reason, FCSS must be applied 
on image circles separately. 

 
Figure 9. The extracted circles from images (a), (b) and (c) Figure 8 represented by red, green and 
blue colors, respectively. 
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However, on the other side, the proposed VFCSS method is applied on the resulting 
fuzzy numbers and circles for three images of Figure 9 (considering the fuzzification pro-
cess of [36] and associated interval-symbolic numbers for each circle’s pixels). Simulation 
results (reported in Table 12) show only one acceptable and moderate value for each circle; 
even by increasing the available images that leads to more exact and nearer to the true 
radius value (see [36]). Furthermore, the computation complexity in the proposed method 
is very low, fixed, and equivalent with one time applying the FCSS, even by increasing 
the available number of images. 

Table 12. Simulation results for state 4 and comparison of resulting radii with FCSS and VFCSS 
algorithms. 

Circle No Radius 1 2 3 4 5 6 7 8 
Result by applying FCSS on image (a) 

Figure 8 
205 377 301 310 250 285 201 268 

Result by applying FCSS on image (b) 
Figure 8 

212 380 307 314 258 297 211 279 

Result by applying FCSS on image (c) 
Figure 8 

210 385 315 318 257 291 209 274 

Result by VFCSS 209 381 306 315 255 293 208 274 

For more remote sensing applications, Figure 10 shows the proposed model results 
on a fish farm satellite image which is captured as Aquaculture farms off the coast of 
Greece by Bernhard Lang [37]. The extracted circles and simulation results for circles radii 
with VFCSS algorithm are shown. It should be noted that the fuzzy-related works can be 
utilized without accessing a big dataset and just by a single image. These models can be 
applied directly without any training and validation processes. The proposed model is a 
new fuzzy clustering model which can be utilized for remote sensing applications. This 
fuzzy model can be helpful for designing smart image processing systems. For lower-
quality images, it just is needed to add some simple preprocessing (noise removal, adjust-
ment, etc.) to have a high-quality image for the proposed model. 

  
Figure 10. A fish farm satellite image (Left) and the extracted circles from the image and radii results 
(Right) using VFCSS algorithm. 

4. Conclusions 
In this paper, a vector form of fuzzy c-spherical shells clustering (VFCSS) has been 

proposed. We can cluster non-crisp numbers that have spherical shells form using the 
proposed VFCSS. These non-crisp numbers can be available, or we can produce them from 
crisp number. It has been shown that we can improve the performance of conventional 
fuzzy c-spherical shells clustering over crisp numbers using the proposed VFCSS. This 
fact can be obtained by choosing a suitable procedure for producing non-crisp (fuzzy) 
numbers from crisp numbers. Furthermore, simulation results show better performance 
and low-cost computational complexity of the proposed VFCSS method versus the 
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conventional FCSS in real life application in morphology science. We implement our clus-
tering model over various types of geomorphology images for extracting the radii of cir-
cular agricultural fields using remotely sensed images and, we applied our model on these 
types of images to show that this clustering model can be utilized for remote sensing ap-
plications. To apply new deep learning models on an application we need a big and 
proper dataset to train, valid and test the models. The main uniqueness of fuzzy-related 
works is that we can utilize them without accessing a big dataset. We can use these models 
directly without any training and validation processes. Our model is a new fuzzy cluster-
ing model which can be utilized for remote sensing wapplications. 
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