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Abstract: Accurate and timely land surface phenology (LSP) provides essential information for
investigating the responses of terrestrial ecosystems to climate changes and quantifying carbon and
surface energy cycles on the Earth. LSP has been widely investigated using daily Visible Infrared
Imaging Radiometer Suite (VIIRS) or Moderate Resolution Imaging Spectroradiometer (MODIS)
observations, but the resultant phenometrics are frequently influenced by surface heterogeneity and
persistent cloud contamination in the time series observations. Recently, LSP has been derived from
Landsat-8 and Sentinel-2 time series providing detailed spatial pattern, but the results are of high
uncertainties because of poor temporal resolution. With the availability of data from Advanced
Baseline Imager (ABI) onboard a new generation of geostationary satellites that observe the earth
every 10–15 min, daily cloud-free time series could be obtained with high opportunities. Therefore,
this study investigates the generation of synthetic high spatiotemporal resolution time series by
fusing the harmonized Landsat-8 and Sentinel-2 (HLS) time series with the temporal shape of ABI
data for monitoring field-scale (30 m) LSP. The algorithm is verified by detecting the timings of
greenup and senescence onsets around north Wisconsin/Michigan states, United States, where cloud
cover is frequent during spring rainy season. The LSP detections from HLS-ABI are compared with
those from HLS or ABI alone and are further evaluated using PhenoCam observations. The result
indicates that (1) ABI could provide ~3 times more high-quality observations than HLS around spring
greenup onset; (2) the greenup and senescence onsets derived from ABI and HLS-ABI are spatially
consistent and statistically comparable with a median difference less than 1 and 10-days, respectively;
(3) greenup and senescence onsets derived from HLS data show sharp boundaries around the orbit-
overlapped areas and shifts of ~13 days delay and ~15 days ahead, respectively, relative to HLS-ABI
detections; and (4) HLS-ABI greenup and senescence onsets align closely to PhenoCam observations
with an absolute average difference of less than 2 days and 5 days, respectively, which are much
better than phenology detections from ABI or HLS alone. The result suggests that the proposed
approach could be implemented the monitor of 30 m LSP over regions with persistent cloud cover.

Keywords: geostationary satellite; ABI; HLS; field-scale land surface phenology; PhenoCam

1. Introduction

Land surface phenology (LSP) plays an important role in understanding the response
of terrestrial ecosystems to environmental changes [1,2]. Shifts in LSP have been frequently
linked to the variability of climate patterns with significant influences on the cycling of
land surface carbon, water and energy flows, and the interaction between different plant
species [3–6].
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Phenology of vegetated land surface has been widely observed by polar-orbiting
satellite data from regional to global scales over the past three decades as its capacity of
repeat monitoring with a worldwide coverage [7,8]. Coarse satellite images (≥500 m),
such as Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible In-
frared Imaging Radiometer Suite (VIIRS), provides LSP detections from regional [9–11],
national [12,13], continental [14,15], to global scales [16,17] because of their abilities to
provide global observations at daily wise. However, the resultant phenometrics could be of
high uncertainties in regions with persistent seasonal cloud-contaminations and mixture of
various vegetation types in heterogeneous areas [16,18,19]. Fine spatial resolution satellite
data, such as Landsat-8 as well as Sentinel-2A, Sentinel-2B data, are capable of characteriz-
ing vegetation seasonality and phenology properties at a field scale (30m) [20–24]. At such
spatial extent, the phenological behaviors of individual land cover type (i.e., specific crop
type or tree species) could be revealed [25]. However, these satellite observations are unable
to capture fast seasonal variations in vegetation development because of insufficient revisit
frequency, such as 16 days in Landsat-8 OLI imagery and ~5 days in Sentinel-2 satellite
(Sentinel-2A and -2B). Despite efforts have been put on the generation of harmonized
Landsat-8 and Sentinel-2 (HLS) data to improve revisit frequency (~3 days, varying along
latitudes) [20,26,27], it is still challenging to avoid missing-data or time series gaps arising
from persistent cloud cover and long-lasting rainy weather in local areas [24,28]. Indeed,
current polar-orbiting satellite observations are incapable of providing sufficient cloud-free
observations for LSP detections in persistent cloudy regions.

Data fusion techniques, fortunately, provides a solution for bridging between observa-
tions with high spatial resolution and high temporal resolution for phenological studies.
The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and its enhanced
versions (Enhanced-STARFM, and STAARCH-the Spatial Temporal Adaptive Algorithm
for mapping Reflectance Change, etc.) have been commonly used for predicting Landsat-
scale (30 m) images from MODIS data [29–32]. The fundamental assumption of STARFM
and STARFM-like methods in phenological applications is that the vegetation growth rate
for the same vegetation type is spatially synchronous [29,33]; however, the greenness mag-
nitude and phenological phases for the same neighboring vegetation type may greatly shift
because of different management practice (i.e., planting date lags) and microclimate [24].
More recently, a Spatiotemporal Shape-Matching Model (SSMM) has been developed to
generate synthetic time series of high spatiotemporal resolution satellite data [24]. The
SSMM makes full use of all spatiotemporally matched fine and coarse resolution data in
an entire time series to establish a temporally uniformed fusion model for a given fine
resolution pixel. Thus, it is able to effectively generate synthetic time series in all different
land cover types for LSP detections. All current data fusion algorithms make use of daily
MODIS or VIIRS data to improve the temporal observation in Landsat or Sentential-2
time series. However, MODIS or VIIRS data themselves are frequently contaminated by
clouds, where MODIS time series shows that more than 27% of the Earth’s land surface
could be consecutively affected by clouds for more than 16 days during vegetation growing
seasons [34]. The cloud-contaminated gap in MODIS data is often much longer than a week
during the rainy season [34,35]. Prolonged cloudy conditions during vegetation growing
seasons always induce poor accuracy in LSP detections [36].

Geostationary satellite sensors, such as the Spinning Enhanced Visible and InfraRed
Imager (SEVIRI, covering most parts of Africa and Europe) and the Advanced Himawari
Imager (AHI, covering the Asia–Pacific region), are able to increase the temporal sampling
of ground to sub-daily resolution and provide more than 50% cloud-free observations
comparing to MODIS and VIIRS in reconstruction of time series vegetation indices (VIs)
although there are no observations in high latitudes [28,37–40]. Moreover, the Earth
Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory
(DSCOVR) satellite observes global land surface once every 1–2 hours at 10 km spatial
resolution, but its coarser spatial resolution significantly limit the application of vegetation
phenology detections in high heterogeneous regions [41]. These high temporal observations
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greatly improve the capability of LSP detections [39,40]. The Advanced Baseline Imager
(ABI) onboard the new generation Geostationary Operational Environmental Satellite
(GOES) 16/17 is an advanced radiometer, which has red band (Band-2) of 500 m nadir
resolution, 1 km for most visible and near-infrared bands (Band-1,3, and 5) and 2 km for
other infrared bands, similar to those provided by MODIS and VIIRS [42]. ABI provides
temporal sampling every 10 to 15 minutes across North America and South America, which
has the ability to effectively avoid cloud-contaminations by peeking at the land surface
through the rarely occurring clear sky, even over the Amazon rainforests [43]. It has a
great potential for high-quality LSP detection in regions with long-lasting cloud-cover
and rainfalls.

With the availability of high temporal-sampling ABI images and high spatial resolution
HLS data, we in this study for the first time quantify the fused HLS-ABI time series for
enhancing field-scale LSP detections in seasonally persistent cloud covered regions. To
reach this goal, objectives of this study are to (1) generate synthetic high spatiotemporal
resolution HLS-ABI time series by fusing the HLS time series with the temporal shape
of ABI time series; (2) detect spring and autumn phenological transition dates (greenup
onset and senescence onset) from HLS-ABI, HLS, and ABI, separately; (3) compare the
HLS-ABI derived spring and autumn phenology with those from ABI and HLS alone
spatially and statistically; and (4) evaluate satellite-derived greenup and senescence onsets
using PhenoCam observations.

2. Materials and Methodology
2.1. Study Area and Data

We focused on an area located around the northern Michigan and Wisconsin states
(Figure 1), where typical rainy and cloudy weather happened frequently in early growing
season [18,25]. In this area, there are only about two-three months on average each year
without cloud cover (http://climexp.knmi.nl/ accessed on 1 November 2021). Optical
satellite observations in winter and early spring season are commonly contaminated by
clouds and snow, which significantly influence land surface monitoring.
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Figure 1. The study area map. Green rectangle area delineates two Harmonized Landsat Sentinel-2 (HLS) tiles (15TYM and
15TYL), orange rectangle area delineates two Advanced Baseline Imager (ABI) tiles (H14V02 and H15V02) covering both
HLS tiles. Right parts show the available 8 PhenoCam sites and the dominated land cover types from 30m Crop Data Layer
(CDL) (Section 2.1.1).
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2.1.1. Land Cover Data

Land cover type was extracted from the cropland data layer (CDL) produced by
the National Agricultural Statistics Service (NASS) of the US Department of Agriculture
(USDA). This product has a spatial resolution of 30 m covering the entire Continuous US
(CONUS) [44]. Based on the CDL in 2018, we identified locations of forest, wetland, and
all vegetation types (“all”) for further extracting corresponding onsets of greenup and
senescence dates. In the research area, the proportion of different land cover types was
showed below (Table 1).

Table 1. The proportion of land cover types in the study area.

Land Cover Proportion Details

Forest 52% deciduous forest (47%), evergreen forest (2%), mixed forest (3%)

Wetland 14% woody wetland (8%) and herbaceous wetland (6%)

Water 7% open water (7%)
Others 27% developed (25%), and a small area of croplands (<2%)

2.1.2. HLS NBAR Data

The HLS V1.4 dataset provides radiometrically “harmonized’ time series of surface
reflectance images, which currently covers the entire North American area and a few
selected tiles in other regions of the world. The integration of both Operational Land
Imager (OLI) instrument onboard Landsat 8 and the Multi-Spectral Instrument (MSI)
onboard Sentinel-2 is able to observe the ground at a field-scale (30 m) ~3 days varying
with latitude [27]. To generate HLS data, a set of process is applied to both Landsat-8 and
Sentinel-2 images, including consistent atmospheric correction [45], cloud screening and
snow detection [46], spatial co-registration and gridding [47], surface reflectance adjustment
using nadir bidirectional reflectance distribution function (BRDF) (NBAR) [48,49], and
spectral bandpass across sensors [26]. HLS imagery has a tile-dimension of ~110 km
(3660 by 3660 pixels) with the projection of the UTM-based Military Grid References
System (MGRS- https://hls.gsfc.nasa.gov/products-description/tiling-system/accessed
on 19 September 2018) and is available since 2013 (https://hls.gsfc.nasa.gov/data/v1.4
/accessed on 2 January 2021). The quality assurance (QA) flags are also included in HLS
product, such as snow/ice, clouds, cloud shadows, and water. In this study, two tiles
time series of HLS NBAR product (Figure 1. 15TYM and 15TYL) from 1 January 2018
to 31 December 2018 were acquired to produce high-quality time series EVI2 (two-band
enhanced vegetation index) [50]. The EVI2 has two main advantages: (1) less sensitive
to bare ground cover and higher sensitive to denser vegetation canopy than Normalized
Difference Vegetation Index (NDVI) [51,52], and (2) no requirement of blue band, which
could improve the applicability of EVI in spectroradiometers without blue bands [50]. The
EVI2 was calculated using equation 1. Note that the high-quality HLS time series means
the clouds and snow related abiotic contaminations are removed based on the QA flags.

EVI2 = G
(

ρNir − ρred
ρNir + C ∗ ρred + L

)
(1)

where ρNir and ρred are spectral reflectance in the near-infrared and red bands, respectively;
L (=1), C (=2.4), and G (=2.5) are scaling factors for canopy background adjustment, aerosol
resistance coefficient, and a gain factor.

2.1.3. GOES-16 ABI Data

The Top-of-Atmosphere (TOA) reflectance is one of the GOES-16 ABI products gener-
ated by Geostationary-NASA Earth Exchange (GeoNEX) project [42], in which the Bidi-
rectional Reflectance Factor (BRF) for Bands 1–6 are provided. This dataset is distributed
by a commonly defined tile-gridding in the geographic (latitude/longitude) projection,
which is chosen to facilitate intercomparisons between geostationary and polar-orbiting

https://hls.gsfc.nasa.gov/products-description/tiling-system/accessed
https://hls.gsfc.nasa.gov/data/v1.4/accessed
https://hls.gsfc.nasa.gov/data/v1.4/accessed
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sensors [53]. This gridding system starts from upper-left corner at (60◦N, 180◦W) to lower-
right corner (60◦S, 180◦E), in which the grid is divided into 6◦ × 6◦ tiles that are labelled
0–59 in the horizontal direction and 0–19 in the vertical direction. The pixels in this prod-
uct are produced into a nadir 500 m spatial resolution for red band (band-2) and 1 km
spatial resolution for near-infrared band (band-3). Note that (1) the 1 km near-infrared
and short-wave infrared bands are both resampled using nearest neighbor algorithm to
create compatible 500 m resolution images with native red band, and (2) the ABI TOA
data for 2018 has 15 minutes revisit frequency while it is 10 min in 2019 because of the
scan model changed. The ABI TOA product is available from 1 January 2018 to present at
https://data.nas.nasa.gov/geonex/data.php?dir=/geonexdata/ accessed on 27 May 2021.
In this study, we downloaded two tiles (Figure 1. h15v02 and h14v02) of time series ABI
TOA product since 1 January 2018 to 31 December 2018.

2.1.4. Time Series of PhenoCam Data

The PhenoCam network provides near-surface canopy phenology across hundreds of
sites distributed in various ecosystems of the United States and some parts of the world.
With its high spatial (single vegetation type to the whole canopy) and temporal resolution
(every half-hour), the canopy greenness indices derived from PhenoCam photographs have
become a robust tool to evaluate the satellite based LSP [54,55]. Unlike conventional remote
sensing, PhenoCam provides imagery that is continuous in time, free of contamination
by clouds and reasonably built a bridge between ground monitoring by human observers
and satellite based LSP detections due to its ability to capture the phenological signal
of either the individual organisms (i.e., specific tree/crop type) or the whole canopy
(landscape) [56]. The time series of PhenoCam images are freely available from http:
//klima.sr.unh.edu/accessed on 5 November 2021. In this study, the time series images of
7 PhenoCam sites, including five deciduous broadleaf (DB) and two wetland (WL) sites
(one was excluded because of no observations in 2018), from 1 January 2018 to 31 December
2018 were downloaded. The region of vegetated pixels was extracted by using graphical
user interface (GUI) tool from https://phenocam.sr.unh.edu/webcam/tools/accessed
on 5 November 2021. The 30-min green chromatic coordinate (GCC) was calculated
from digital numbers (DN) of red (R), green (G), and blue (B) color channels attached in
PhenoCam photographs:

GCC = G/(R + G + B) (2)

In a 3-day interval from 1 January 2018 to 31 December 2018, the GCC values at 30
minutes wise for these vegetated pixels were calculated and the 90th percentile approach
was applied to choose the representative GCC value. The 3-day composite could decrease
the influence of abnormal GCC values and variations due to weather conditions (such
as fogs) and illumination geometry [57]. Finally, the 3-day composite GCC time series
was utilized to track LSP using the same approach used for HLS-ABI LSP detections
(see Section 2.2.3).

2.2. Phenology Detection from HLS, ABI, and HLS-ABI Time Series
2.2.1. Generation of 3-day EVI2 Time Series for HLS and ABI

3-day time series of EVI2 from HLS NBAR product was generated. First, HLS observa-
tions were removed if the corresponding QA flags were labeled as cloud or snow, but the
remaining HLS data could still contain the impacts from residual snow and cloud, as well
as the inaccurate atmospheric correction. Then, the EVI2, normalized difference vegetation
index (NDVI) [51] and normalized difference water index (NDWI) [58] were calculated for
the days when HLS images were available, otherwise, they were assigned to a fill value
(e.g., 32,767). Because NDWI is sensitive to cloud/atmospheric effects and snow related
contamination and NDVI could be used to filter out the abnormal high values in the daily
EVI2 since the red band is very easily influenced by the cloud/aerosol, which results in
either irregular larger or lower red band reflectance [16,58–61], the EVI2 was further set to
fill value if NDWI > NDVI or EVI2 > NDVI [16]. Finally, 3-day composite was aggregated

https://data.nas.nasa.gov/geonex/data.php?dir=/geonexdata/
https://data.nas.nasa.gov/geonex/data.php?dir=/geonexdata/
http://klima.sr.unh.edu/accessed
http://klima.sr.unh.edu/accessed
https://phenocam.sr.unh.edu/webcam/tools/accessed
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from daily valid EVI2 from January 2018 to December 2018, which represents high quality
HLS EVI2 time series. The NDWI is calculated using the Equation (3):

NDWI =
ρnir − ρswir
ρnir + ρswir

(3)

where ρNir and ρswir are spectral reflectance in the near-infrared and short-wave near-
infrared (SWIR) bands, respectively.

Because there are no QA flags associated with ABI TOA product, we generated relative
high-quality 3-day EVI2 time series from ABI data based on the following steps. First,
we only acquired the ABI images obtained during 8 am to 5 pm within a 3-day period
and removed all the observations if NDWI > NDVI or EVI2 > NDVI in order to reduce
the snow and cloud-related noise. Then, we performed the 90th percentile approach to
the remaining EVI2 values within a 3-day period to select an observation to represent the
3-day EVI2. Finally, we calculated mean and standard deviation (SD) of EVI2 within a
7-point moving window and filtered out the corresponding EVI2 values that were less than
mean-SD because EVI2 contaminated by clouds is always abnormally low. Selecting this
window length was optimal based on our tests. Although different lengths could remove
more or less outliers, resultant time series remained very similar.

2.2.2. Fusion of EVI2 Time Series between HLS and ABI

A synthetic high spatiotemporal resolution HLS-VIIRS EVI2 time series was recon-
structed by fusing HLS and ABI data using a newly developed Spatiotemporal Shape-
Matching Model (SSMM) [24,62]. The fundamental assumption for this model is that the
temporal shape (phenological behavior) of both fine and coarse resolution time series is
closely comparable while their magnitudes may differ largely and phenological phases
may shift even for the same and neighboring vegetation species. Therefore, for a given
HLS pixel from 1 January 2018 to 31 June 2018 (one year), the HLS EVI2 temporal shape
could match with one neighboring ABI EVI2 time series though the seasonality and the
spatial coverages of both pixels could be different. Within a 5 km window around a given
HLS pixel, the HLS time series was compared to a set of the 500 m ABI time series using
the equations 4 and 5 (as following), which was called spatiotemporal matching, to select
the most similar ABI EVI2 time series as the reference shape model. This reference shape
model was then used to predict the gap observations in the time series of HLS high-quality
EVI2 that was obstructed by cloud or no overpasses, resulting in a synthetic 30 m HLS-ABI
time series.

HLS(t) = α× ABI(T) + γ (4)

T = γ(t + β) (5)
where t is the time in number of days starting from 1st January of the one-year fitting
window; HLS(t) is high quality EVI2 observations while ABI(T) is the selected high-quality
ABI observations; and α, β, γ, and λ are scaling factors. The detailed steps to calculate
these scaling factors are provided in a previous study [24]. Briefly, λ is set to 1 based on a
set of tests because the same growing season length in a given HLS pixel can most likely be
found from an ABI pixel within a window of 5 km under the same local weather condition.
By assuming that difference of phenological phase between HLS and ABI time series is
less than one month in a local area, β is selected from −30 to 30 days with a 3-day interval
once the minimum of mean squared deviation (MSD) and largest correlation coefficient
(R) between the observed HLS EVI2 and the predicted HLS-ABI EVI2 is obtained from
Equation (4).

2.2.3. Phenology Detection from EVI2 Time Series

A Hybrid Piecewise Logistic Model (HPLM) LSP detection (LSPD) algorithm was
applied to detect phenological transition dates from the HLS-ABI EVI2 time series. It
is because the HPLM-LSPD model directly links functional eigenvalues to biophysical
parameters. This model has been successfully applied to generate the phenology prod-
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uct from MODIS and VIIRS data [16,17]. The detail of this algorithm could be found
elsewhere [16,60] and here we only briefly outlined it.

After the cloud and snow contaminations in one-year HLS-ABI EVI2 time series
were removed in Sections 2.2.1 and 2.2.2, the Savitzy-Golay filter, the moving averaging
and moving median methods were first applied to the EVI2 time series to attenuate
irregular variations. Then, the greenup phase and the senescence phase were separated
by identifying the slope changes over five-point moving windows in EVI2 time series.
By integrating vegetation development under normal and stress conditions, the HPLM
was further developed to rebuild the seasonal trajectory of vegetation greenness [63,64].
Finally, the key phenometrics were automatically identified by detecting the local extremes
of curvature change rate in the HPLM reconstructed EVI2 time series. Vegetation greenup
onset during spring and senescence onset during autumn were retrieved because they are
the most important phenological transition dates in a vegetation growth cycle.

2.3. Intercomparisons among Remotely Sensed Greenup and Senescence Onsets

The quality of EVI2 time series was investigated as it is the major source of uncertainty
in phenology detections [36]. The number of cloud-free 3-day EVI2 composite from HLS
and ABI during spring (Astronomical spring from 20th March to 20th June, DOY from
79 to 171 in 2018) was counted and the related pixel frequency was calculated. Because
the HPLM model fitting is highly associated with high-quality observations [16] and the
cloudy and rainy weather always happens in this region, particularly in the spring period,
the reconstructed EVI2 time series for individual forest and wetland pixels from HLS, ABI,
and HLS-EVI2 were also compared.

The greenup and senescence onsets derived from HLS-ABI were evaluated by com-
paring with the detections from ABI and HLS spatially and statistically over the study
area in 2018. First, the overall spatial pattern of greenup and senescence onsets from the
three time series were visually examined to reveal their differences. Second, the differences
of greenup and senescence onset detections were separately analyzed over forest pixels,
wetland pixels, and all vegetated land surfaces. In the comparison process with ABI data,
the 30 m HLS or HLS-ABI LSP detections over a specified “pure” land cover pixel were
aggregated into 500 m by averaging the 30 m valid LSP dates in a given 500 m pixel.

2.4. Evaluation of HLS-ABI Greenup and Senescence Onsets Using PhenoCam Observations

The start-of-spring (SOS) and start-of-autumn (SOA) derived from PhenoCam GCC
time series was used to validate the satellite phenometrics from HLS-ABI, HLS, and ABI
respectively. The geometric mean functional regression (GMFR) model [65] was used to
quantify the difference of phenological timings between PhenoCam GCC derived LSP
in seven sites and satellite LSP separately. This model considers variances from both
independent (PhenoCam LSP) and dependent variables (satellite LSP) and their slopes
could manifest the uncertainty between the two variables. Besides, the average absolute
difference (AAD) and the root mean square difference (RMSD) were used to evaluate
the statistical dispersion and bias between near surface phenological observations and
satellite phenological detections. AAD measures their statistical dispersion by calculat-
ing the average absolute difference, while RMSD could measure the quadratic mean of
these differences.

3. Results
3.1. Differences in the Number of High-Quality Observations in Spring

Figure 2 shows the spatial variation of high-quality observation numbers from HLS
and ABI data in astronomical spring (from DOY 79 to 171) in 2018. Overall, the number
of high-quality observations for northern forest area was larger than central wetland area
either for ABI or HLS data (Figure 2a,b). ABI observations with high-quality increased from
15–19 in southern vegetated lands, to 22–25 in middle wetland, and to 29–33 in northern
forest areas (Figure 2a). Differences in HLS observations were apparent around the satellite
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overpass-orbits (southernwest to northerneast) where pixels within the area could have up
to 13 observations while the neighboring pixels only had less than 5 or even 3 observations
(Figure 2b). The number of high quality observations in HLS and ABI data varied most
in the central wetland area, which was 22–23 on average in ABI data but less than 5 in
HLS (Figure 2a,b). In other words, HLS only provided <5 high quality observations for
reconstructing the vegetation temporal trajectories in early spring period. The plots of
cumulative areal percentage further showed that ABI was able to provide on average
26.8 high quality observations, which was approximately 3 times higher than HLS even in
the HLS orbit overlapping area (Figure 2c,d). In addition, high quality observation was
less than 10 in more than 90% HLS pixels, while it was more than 20 in over 90% ABI pixels
(Figure 2c,d).
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3.2. EVI2 Time Series Reconstruction

Figures 3 and 4 present the reconstruction of EVI2 seasonal trajectories from HLS,
ABI, and HLS-ABI in one sample deciduous broadleaf pixel (46◦59′12′′N, 88◦30′36′′W) and
one sample wetland pixel (46◦06′06′′N, 90◦24′35′′W), respectively. Figures 3a and 4a show
the noise reduction in 10-15 minutes EVI2 observations. Clearly, a large amount of EVI2
contaminated by snow and cloud were removed using the condition of NDVI > NDWI
and the abiotic noise was further reduced by applying the condition of EVI2 < NDVI.
Figures 3b and 4b indicate that the resultant 3-day EVI2 time series, by performing 90th
percentile in a 3-day interval and a moving window to remove noise in the one-year
period, well captured the seasonal variation of forest and wetland plant growth. These
temporal ABI EVI2 values were considered as high-quality although some irregular fluc-
tuations existed, which were normal in satellite observations. The ABI seasonal trajec-
tory fitted by HPLM closely tracked the 3-day EVI2 values, which was more reason-
able than temporal HLS observations in charactering vegetation phenology development
(Figures 3b,c and 4b,c). For the sample forest pixel, there were only one high quality HLS
observation during the spring period of 20 March–18 May 2018, and sparse data after
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30 August 2018 (Figure 3c). For the sample wetland pixel, only one high-quality HLS
observation obtained during 1 Jan 2018 to 10 May of 2018 (Figure 4c).
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Figures 3d and 4d show the reconstruction of HLS-ABI EVI2 time series in the sample
deciduous forest and wetland pixels, respectively. For the sample forest pixel, around
the timing of vegetation greenup onset as denoted in the red circles, HLS EVI2 values
were cloud contaminated, which were not used to reconstruct the HLS-ABI time series
(Figure 3c), but the temporal shape was well defined in ABI EVI2. For the wetland pixel,
around the greenup onset and dormancy onset in 2018, as denoted in the red circles,
the high quality HLS observations were not properly used for capturing HLS phenology
due to the process of very sparse observations for background determination [64], but
they were well utilized in the fusion process for reconstructing HLS-ABI EVI2 time series
(Figure 4c,d). Thus, the fused HLS-ABI EVI2 time series was reasonably generated using
the SSMM algorithm (Figures 3d and 4d). The magnitude difference of HLS and ABI
EVI2 was as large as 0.2 for forest pixel from late spring to early autumn in 2018, while it
was smaller for wetland pixel (~0.05) in 2018 spring because of the difference in spatial
coverage and reflectance quality (particularly atmospheric effects in ABI data). Due to
the insufficient HLS observations, the seasonal shift between HLS and ABI time series
for both the forest and wetland pixel was unclear, while the spring and autumn phases
of HLS-ABI occurred earlier and later than ABI data, respectively (Figures 3d and 4d).
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The temporal shape of reconstructed HLS-ABI matched well with HLS high-quality ob-
servations and with those predicted using ABI EVI2 during the long-lasting HLS gaps
in spring (Figures 3d and 4d). However, the calculated background EVI2 from HLS-ABI
differed from ABI and HLS because actual background EVI2 was not available in HLS
observations (Figures 3b–d and 4b–d). Note that the calculated background EVI2 in the
annual time series represents a mixture of bare soil, green leaves (from evergreen plants),
and non-photosynthetic vegetation during vegetation dormancy. The background EVI2
could shift year by year and the calculation could be found in the reference [64].
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3.3. Spatial Pattern of Greenup and Senescence Onsets

Figures 5 and 6 show the spatial pattern of greenup onset and senescence onset dates
over vegetated land surface detected from HLS-ABI, HLS, and ABI data, respectively. The
HLS-ABI greenup onset and senescence onset were comparable to the pattern from ABI but
overall earlier than those from HLS alone. However, greenup onset and senescence onset
in HLS detections exhibited a significant late and early pattern, separately, in the northeast
area and a sharp boundary along the edges of adjacent satellite orbits (Figures 5b and 6b).
The difference of greenup onset along the orbit overlapping area was as large as 20 days.
Such large differences are likely caused by the spatial contrast in available high-quality
observations (Figure 2b). Compared to HLS-ABI and HLS detections, ABI greenup and
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senescence onsets covered a much larger spatial coverages (500–1000 m), resulting in a
smoother (coarser) pattern (Figures 5c and 6c). Because of the rich ABI observations, the
timing of detected greenup onset was earlier than HLS greenup onset (Figure 5c). In
addition, because of the effect of mixture pixels, there were some sparse and isolated lower
ABI greenup onset values and higher ABI senescence onset values neighboring to water
and around wetlands (Figures 5c and 6c), which were not appeared in HLS-ABI detections.
The spatial differences were much clear in the enlarged top panels, which further revealed
large uncertainties in HLS detections and lack of spatial detail in ABI detections, while
better quality with spatial details in HLS-ABI detections.
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3.4. Intercomparison of Phenology Detections from Different Time Series

Figures 7 and 8 present the intercomparisons of greenup and senescence onsets de-
tected from HLS, ABI, and fused HLS-ABI over pixels from forest, wetlands, and all
vegetation types (including forest, wetlands and other vegetation types), separately. For
greenup onset detections, ABI showed small bias to HLS-ABI detections over pixels of
forest and wetland with a median difference of 1 day earlier and 2 days later, respectively
(Figure 7a,c). In addition, the greenup difference between ABI and HLS-ABI detections
ranged from −6 to 6 days in more than 50% forest and wetland pixels (Figure 7a,c). The
HLS greenup onset, on the other hand, was later in forest and wetland areas with a median
difference of 12- and 18-days respectively, in comparison to ABI detections, and with a me-
dian difference of 14 and 15 days, respectively, relative to HLS-ABI detections (Figure 7a,c).
Moreover, the variation of greenup onset difference was larger in wetland pixels than
forest pixels (Figure 7a,c). Considering all vegetated pixels in this area, HLS detections
shifted towards later greenup onset relative to both ABI and HLS-ABI detections while
there was very small bias between ABI and HLS-ABI detections (Figure 7b). Specifically,
the difference of HLS detections with ABI and HLS-ABI detections was 9 to 18 days in
more than 50% pixels with a median difference close to 13 days. Compared with HLS-ABI
detections, ABI greenup onset showed a median difference of 1 day later and a mean
difference of 4 days earlier.

For senescence onset, the difference was distinguishable among the detections from
three time series of HLS, ABI, and HLS-ABI (Figure 8). The differences between ABI
and HLS-ABI in forest and wetland pixels were similar, with a median value of ~10 days
(Figure 8a,b). In all vegetation pixels, however, ABI detections showed a smaller bias
(5 days later) relative to HLS-ABI detections (Figure 8c). The HLS detections were earlier
than ABI and HLS-ABI with a median difference of ~25 and ~15. days, respectively, in both
forest and wetland pixels, and a median difference of 23 and 17 days, respectively, in all
vegetation pixels. Overall, the differences in senescence onset among the three times series
were larger than those in greenup onset (Figures 7 and 8).
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Figure 7. Boxplots showing the difference of greenup onset detected from three time series in
(a) forest pixels, (b) all vegetation pixels, and (c) wetland pixels, respectively. The fABI, fHLS, and
fHLSABI represent phenological timings from ABI, HLS, and HLS-ABI data, respectively. Black dots
denote the mean difference, while black crosses denote either the %1 or 99% percentile of differences.
Black crosses that out of the y-axis range are not displayed. Note that 30 m HLS and HLS-ABI data
were aggregated to 500 m for the comparison.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 8. Boxplots showing the difference of senescence onset detected from three time series in (a) 
forest pixels, (b) all vegetation pixels, (c) wetland pixels, respectively. The fABI, fHLS, and fHLSABI 
represent phenological timings from ABI, HLS, and HLS-ABI data, respectively. Black dots denote 
the mean difference, while black crosses denote either the %1 or 99% percentile of differences. Black 
crosses that out of the Y-axis range are not displayed. Note that 30 m HLS and HLS-ABI data were 
aggregated to 500 m for the comparison. 

3.5. Evaluation of Satellite Phenology Using PhenoCam Observations  
Figure 9 shows the evaluation of greenup onset and senescence onset detections from 

HLS, ABI, and HLS-ABI using 7 PhenoCam observations including five deciduous 
broadleaf and two wetland sites in 2018. 

Figure 8. Boxplots showing the difference of senescence onset detected from three time series in
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3.5. Evaluation of Satellite Phenology Using PhenoCam Observations

Figure 9 shows the evaluation of greenup onset and senescence onset detections
from HLS, ABI, and HLS-ABI using 7 PhenoCam observations including five deciduous
broadleaf and two wetland sites in 2018.
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For greenup onset, HLS detections were later than PhenoCam SOS with the sample-
pairs distributed above the 1:1 line and with an AAD of 8.4 days and RMSD of 27.2 days
(Figure 9a). The differences between ABI and PhenoCam detections were 4.2 days in AAD
and 12.8 days in RMSD, which were smaller than those between HLS and PhenoCam
detections (Figure 9b). HLS-ABI greenup onset, however, had a good agreement with Phe-
noCam SOS with a slope close to 1.0 and a correlation coefficient (R) of 0.89 (p-value < 0.001)
(Figure 9c). It had a small AAD (1.3 days) and RMSD (4.1 days) relative to PhenoCam SOS,
suggesting that the greenup detection from HLS or ABI alone was improved by fusing HLS
and ABI over this area.

For senescence onset, HLS detections were much earlier than PhenoCam SOA with
all the points below the 1:1 line, and their AAD and RMSD were 25.4 and 72.3 days,
respectively (Figure 9d). ABI detections showed an AAD of 4.6 days and RMSD of 25.6 days
relative to PhenoCam SOA detections, but a better correlation coefficient (R = 0.66) than that
between HLS and PhenoCam detections (R = 0.35) (Figure 9e). HLS-ABI senescence onset,
on the other hand, aligned well with PhenoCam SOA with 4.4 days in AAD and 15.2 days in
RMSD (Figure 9f). Both the slope (0.83) and correlation coefficient (R = 0.95, p-value < 0.001)
between senescence onset from HLS-ABI and PhenoCam SOA and correlation coefficient
(R = 0.95, p-value < 0.001) further indicated that HLS-ABI detection was more reliable than
those from HLS or ABI alone over this region.
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4. Discussion

This study is for the first-time to investigate the capability of geostationary satellite
observations (GOES ABI) to improve field scale phenology detections by fusing with
Landsat-8 and Sentinel-2 time series. The investigation was performed to detect the timing
of spring vegetation greenup onset and autumn vegetation senescence onset in 2018 over
the north Wisconsin/Michigan area, where polar-orbiting satellite observations are always
obstructed by persistent clouds during spring. In contrast, geostationary satellites provides
high-frequency observations, which can peek at land surface with more chances in rainy
and cloudy seasons [43]. Thus, geostationary satellite observations are particularly useful
for characterizing vegetation phenology in seasonally cloud persistent regions.

Observations from geostationary satellites have much higher effectiveness than MODIS
data to track the seasonality of vegetation growth and phenology detections [39,40,43,66].
As revealed in the previous studies, cloud contaminations are the major impacts on the
quality of EVI2 time series for phenology detections [16,36]. This obstruction was greatly
minimized by generating high-quality ABI EVI2 time series, which included the procedure
of selecting the time-window of daytime, applying the snow-cover and abiotic filters, per-
forming approaches of 90th percentile in a 3-day period, and removing noise in a moving
window. The reconstructed 3-day EVI2 time series was fairly neat with small fluctuations
(Figures 3b and 4b), which was able to detect greenup onset and senescence dates with a
reasonable accuracy (AAD of <5 days and RMSD <13 days for spring, AAD of <5 days and
RMSD ~25 days for autumn) in comparison with PhenoCam observations (Figure 9b,e).
This suggests that the method we provided here is promising to establish ABI EVI2 time
series for the description of seasonal vegetation greenness trajectory although the mag-
nitude EVI2 values from ABI TOA observations could be attenuated by atmosphere. Of
course, the result of phenology detection could be improved if ABI surface reflectance
(SR) product with systematic atmospheric correction and bidirectional effect adjustment
becomes available.

Field scale LSP has attracted increasing interest for agricultural and forest management
because it provides seasonal vegetation development for the same vegetation types or
species. Therefore, HLS or Senitinel-2A/B data alone has been increasingly employed to
detect phenometrics over various ecosystems, such as croplands [20,67,68], forests [20,24],
and grasslands [67,69]. However, the accuracy of phenometrics derived from HLS or
Sentinel-2 is relatively low with high uncertainties [24] because of insufficient temporal
sampling, particularly in areas with long-lasting cloud and rainfalls [25]. This is evident in
this study (Figures 3c and 4c, red circle), where the absence of high-quality observations in
HLS time series around greenup onset highly influenced the determination of background
EVI2 and further shifted the detected greenup onset date being later. This limitation has
further verified in this study that the number of high-quality observations during spring
rainy season was very limited (Figure 2b), and the HLS data alone could cause sharp
artificial boundaries in the spatial pattern of high-quality observation numbers (Figure 2b)
and phenological detections (Figures 5b and 6b) due to the overlap of different satellite
orbits of Landsat and Sentinel-2 in the HLS product. As a result, the HLS derived greenup
onset was of a high uncertainty, with a RMSD of >27 days and an AAD of 8.4 days over
the forest and wetland areas relative to PhenoCam observations (Figure 9a). This also
happened to the HLS derived senescence onset with a RMSD of >72 days and an AAD of
25 days (Figure 9d). Such high uncertainties are similar to other HLS phenology detections
that showed a difference of 2–4 weeks over deciduous broadleaf, evergreen needleleaf and
wetlands in comparison with PhenoCam detections [20].

The reconstructed HLS-ABI EVI2 time series outperforms EVI2 time series separately
generated from HLS and ABI. Relative to HLS, the HLS-ABI took the advantages of dense
observations in ABI that significantly minimized the effect of cloudy contaminations and
greatly reduced the uncertainties in phenological timings. Further, the HLS-ABI EVI2 time
series presented smaller irregular temporal variations and largely increased the spatial
details than the ABI time series because all the high-quality HLS observations were used to
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adjust the temporal shape of HLS-ABI. As a result, the HLS-ABI was able to successfully
detect phenometrics in isolated islands surrounded by water and small vegetation areas
in urban areas. This result was contrasted to the ABI detections that contained mixed
information from both vegetation and adjacent water bodies or neighboring buildings,
such as the earlier greenup onset and later senescence onset sparsely distributed around
water regions in ABI (Figures 5c and 6c). Comparison with PhenoCam observations also
demonstrated that HLS-ABI could provide best agreement (Figure 9).

The SSMM algorithm has been demonstrated, in this study, its capacity and strength
in establishing synthetic high spatiotemporal resolution time series from ABI and HLS
observations. Unlike STARFM and STARFM-like methods [29–32], the SSMM algorithm
does not require the magnitudes of greenness values in fine and coarse resolution obser-
vations to be equivalent. This is particularly important in fusing HLS and ABI-TOA time
series because the EVI2 values in these two data are not directly comparable. In the fusion
process, the SSMM used the advantages of HLS in high quality 30 m EVI2 values and the
benefits of ABI in high quality temporal shape. It should be noted that ABI EVI2 is able to
characterize well the temporal shape of vegetation greenness development although the
magnitude value could be weakened by the atmosphere. This study also supports the wide
applicability of SSMM algorithm that is able to handle the various responses of vegetation
to complex environments including phenological timing shifts and greenness magnitude
discrepancy between fine and coarse spatial resolution pixels [24].

It should be noted that datasets covering various ecosystems, wide geographical
regions, and multiple years are needed to better understand the advantages of HLS-
ABI time series for phenology detection. This study only conducted the comparison of
phenology detections from HLS-ABI, HLS, and ABI time series in one year and two HLS
tiles in the northern Michigan and Wisconsin states, and the evaluation of 7 PhenoCam sites.
As a result, the conclusion is not necessarily able to represent various complex ecoregions.

5. Conclusions

This study improved 30 m land surface phenology detections by fusing HLS data
with the temporal shape of geostationary satellite data over regions with persistent cloud
cover using a robust LSP detection approach. This method establishes high quality ABI
EVI2 time series from 10–15 min observations, generates synthetic high spatiotemporal
resolution EVI2 time series from HLS and ABI EVI2 time series using SSMM algorithm, and
detects greenup and senescence onsets using the HPLM approach. The resultant HLS-ABI
greenup and senescence onsets in this study successfully avoided the strip effects in HLS
and irregular small ABI LSP detections around water/wetlands and revealed a spatially
improved pattern of greenup and senescence onsets at 30 m resolution. The consistency of
HLS-ABI greenup and senescence onsets with PhenoCam observations further indicated
that the reliability and effectiveness of the proposed algorithm for monitoring 30 m veg-
etation dynamics over regions where polar-orbiting satellite phenological detections are
restricted by cloud impacts.
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