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Abstract: Surface upward longwave radiation (SULR) is an indicator of thermal conditions over
the Earth’s surface. In this study, we validated the simulated SULR from 51 Coupled Model Inter-
comparison Project (CMIP6) general circulation models (GCMs) through a comparison with ground
measurements and satellite-retrieved SULR from the Clouds and the Earth’s Radiant Energy System,
Energy Balanced and Filled (CERES EBAF). Moreover, we improved the SULR estimations by a
fusion of multiple CMIP6 GCMs using multimodel ensemble (MME) methods. Large variations
were found in the monthly mean SULR among the 51 CMIP6 GCMs; the bias and root mean squared
error (RMSE) of the individual CMIP6 GCMs at 133 sites ranged from −3 to 24 W m−2 and 22 to
38 W m−2, respectively, which were higher than those found between the CERES EBAF and GCMs.
The CMIP6 GCMs did not improve the overestimation of SULR compared to the CMIP5 GCMs. The
Bayesian model averaging (BMA) method showed better performance in simulating SULR than the
individual GCMs and simple model averaging (SMA) method, with a bias of 0 W m−2 and an RMSE
of 19.29 W m−2 for the 133 sites. In terms of the global annual mean SULR, our best estimation for
the CMIP6 GCMs using the BMA method was 392 W m−2 during 2000–2014. We found that the
SULR varied between 386 and 393 W m−2 from 1850 to 2014, exhibiting an increasing tendency of
0.2 W m−2 per decade (p < 0.05).

Keywords: surface upward longwave radiation (SULR); CMIP6; CMIP5; GCMs; Bayesian model
averaging; multimodel ensemble

1. Introduction

The surface energy budget is an important component in the energy exchange be-
tween the Earth’s surface and atmosphere, which affects the fluxes of sensible and latent
heat [1,2]. It is not only related to climate change [3] but also influences general oceanic
and atmospheric circulations [4,5]. Surface upward longwave radiation (SULR), a surface
radiation budget component [6–8], has been previously applied to determine ecologic and
hydrologic characteristics [9–11]. SULR indicates the thermal conditions over the Earth’s
surface and is the main component during the nighttime and during the majority of the
year over polar regions [12–14].

SULR can be acquired from ground measurements [15–17], general circulation models
(GCMs) [18–20], reanalysis data [21,22], and remote sensing [7,23,24]. Among these sources,
GCMs are one of the major tools applied to examine past and future climate changes
on Earth and provide opportunities to investigate long-term SULR variability [25,26].
It has been organized by the World Climate Research Programme (WCRP) in the last
several decades for the Coupled Model Intercomparison Project (CMIP) in various phases
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and contributed to the Intergovernmental Panel on Climate Change (IPCC) Assessment
Report (AR) [27–29]. The latest GCM version developed for CMIP6 was made available in
2016 [27,30–32] and includes improvements in the existing parameterizations, new physical
processes, and higher resolution in comparison with CMIP5 [20,25,26,33–37]. Evaluating
how well CMIP6 GCMs simulate SULR worldwide is vital for determining whether the
new models have improved their performance.

Considerable efforts have been made to evaluate surface downward longwave radi-
ation (SDLR) simulations from GCMs with ground measurements [35,38–40], while few
studies have assessed the performance of GCMs to simulate SULR. In earlier analyses,
Garratt [18] validated four GCMs in simulating annual SULR at 22 inland sites with an
average bias of −11 W m−2. In addition to the ground observations, satellite estimates are
also used to validate the GCMs. Although comparisons of surface downward shortwave
radiation (SDSR) in GCMs against satellite observations have been performed globally and
in specific regions [41–43], evaluations of SULR simulations from GCMs using satellite-
derived SULR products are rare. Positive biases of the CMIP5 GCMs SULR against the
Clouds and the Earth’s Radiant Energy System, Energy Balanced and Filled (CERES EBAF)
within Northern Eurasia and North America during the winter season (DJF) were found by
Li et al. [44]. With respect to CERES EBAF, the SULR simulations from the Coupled Earth
System Model version 1 with the Coupled Atmosphere Model version 5 (CESM1–CAM5)
were underestimated for each calendar month in a range of 58–70◦S over the ocean [45].
Overall, whether the SULR simulated by CMIP6 GCMs agrees well with ground and
satellite observations has not been investigated comprehensively.

Due to the complexity of the Earth’s climate system as well as the lack of a full
understanding of it, our limited computation abilities, and often sparse observational sites,
SULR simulations obtained from individual GCMs are subject to large uncertainties [46].
To reduce these structural uncertainties, the multimodel ensemble (MME) method was
developed; this method merges separate GCMs, such as the Bayesian model averaging
(BMA) method and simple model averaging (SMA) method [46,47]. It has been widely
utilized in climatic and hydrologic variable estimations [48–50], and previous studies
indicated that the uncertainties associated with individual GCMs can be decreased by using
the MME method [48,50–53]. For example, Zhang et al. [51] reported that the estimated
SDSR from 48 CMIP5 GCMs using the BMA method exhibited lower root mean squared
error (RMSE) and bias values than the SMA method and individual GCMs. Yao et al. [50]
applied the BMA method to merge latent heat flux simulations of CMIP5 GCMs, and found
that the RMSE of the BMA results decreased by more than 3 W m−2 compared to the SMA
results and individual GCMs.

Therefore, the purpose of this study is to assess the ability and applicability of MME
methods in the estimation of SULR based on CMIP6 GCMs. This research first evaluated
the performance of 51 CMIP6 GCMs in simulating SULR with ground measurements and
examined how well the MME methods performed in estimating SULR with CMIP6 GCMs.
Second, the SULR simulations from CMIP6 GCMs were compared to their counterparts
from CMIP5 GCMs and CERES EBAF. Finally, we detected the long-term global mean
SULR variability based on CMIP6 GCMs.

2. Data
2.1. CMIP5 and CMIP6 GCMs

Monthly SULR simulations from 45 CMIP5 GCMs and 51 CMIP6 GCMs, which
are available at the Earth System Grid Federation (ESGF), were applied in this research.
Detailed descriptions of the GCMs are summarized in Tables 1 and 2. The SULR sim-
ulations over the period of 1861–2005 from 45 CMIP5 GCMs under ensemble “r1i1p1”
employed “historical” experiments (https://esgf-node.llnl.gov/search/cmip5/, accessed
on 11 October 2021). As of March 2021, historical simulations on monthly SULR performed
by 51 GCMs under ensemble “r1i1p1f1” during 1850–2014 were available from CMIP6
(https://esgf-node.llnl.gov/search/cmip6/, accessed on 11 October 2021). The “histori-
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cal” experiments considered major anthropogenic and natural forcings, such as aerosol
loadings, greenhouse gases, solar radiation, and land use [29]. All 96 GCMs from CMIP6
and CMIP5 were interpolated to 1◦ × 1◦ grid resolution with a bilinear interpolation
algorithm before validation and comparison. GCMs have been interpolated to 1◦ × 1◦

resolution for comparison in many studies [26,31,50,51,54]. For example, Yao et al. [50]
resampled the CMIP5 GCMs to 1◦ × 1◦ by the bilinear interpolation method before evalu-
ating and merging GCMs with varying spatial resolutions. Zhang et al. [51] interpolated
the CMIP5 GCMs to the same resolution as the CERES EBAF of 1◦ × 1◦ using bilinear
interpolation. In a recent study, CMIP6 GCMs were interpolated to a resolution of 1◦ × 1◦

with bilinear interpolation before comparison [31]. Generally, bilinear interpolation is a
commonly used method for regridding data from lower resolutions to higher resolutions
without impacting climate signals [27].

Table 1. Detailed information on the 5th phase of the Coupled Model Intercomparison Project
(CMIP5) general circulation models (GCMs) used in this study.

ID Model Name Institute ID Time Resolution
1 ACCESS1-0 CSIRO-BOM 185001–200512 1.88◦ × 1.24◦
2 ACCESS1-3 CSIRO-BOM 185001–200512 1.88◦ × 1.24◦
3 BNU-ESM GCESS 185001–200512 2.81◦ × 2.81◦
4 CCSM4 NCAR 185001–200512 1.25◦ × 0.94◦
5 CESM1-BGC NSF-DOE-NCAR 185001–200512 1.25◦ × 0.94◦
6 CESM1-CAM5 NSF-DOE-NCAR 185001–200512 1.25◦ × 0.94◦
7 CESM1-FASTCHEM NSF-DOE-NCAR 185001–200512 1.25◦ × 0.94◦
8 CESM1-WACCM NSF-DOE-NCAR 185001–200512 2.50◦ × 1.88◦
9 CMCC-CESM CMCC 185001–200512 3.75◦ × 3.75◦

10 CMCC-CMS CMCC 185001–200512 1.88◦ × 1.88◦
11 CMCC-CM CMCC 185001–200512 0.75◦ × 0.75◦
12 CNRM-CM5-2 CNRM-CERFACS 185001–200512 1.41◦ × 1.41◦
13 CNRM-CM5 CNRM-CERFACS 185001–200512 1.41◦ × 1.41◦
14 CSIRO-Mk3-6-0 CSIRO-QCCCE 185001–200512 1.88◦ × 1.88◦
15 CanCM4 CCCMA 196101–200512 2.81◦ × 2.81◦
16 CanESM2 CCCMA 185001–200512 2.81◦ × 2.81◦
17 FGOALS-g2 LASG-CESS 185001–200512 2.81◦ × 3.00◦
18 GFDL-CM2p1 NOAA GFDL 186101–200512 2.50◦ × 2.00◦
19 GFDL-CM3 NOAA GFDL 186001–200512 2.50◦ × 2.00◦
20 GFDL-ESM2G NOAA GFDL 186101–200512 2.50◦ × 2.00◦
21 GFDL-ESM2M NOAA GFDL 186101–200512 2.50◦ × 2.00◦
22 GISS-E2-H-CC NOAA GISS 185001–201012 2.50◦ × 2.00◦
23 GISS-E2-H NOAA GISS 185001–200512 2.50◦ × 2.00◦
24 GISS-E2-R-CC NOAA GISS 185001–201012 2.50◦ × 2.00◦
25 GISS-E2-R NOAA GISS 185001–200512 2.50◦ × 2.00◦
26 HadCM3 MOHC 185912–200512 3.75◦ × 3.47◦
27 HadGEM2-CC MOHC 185912–200511 1.88◦ × 1.24◦
28 HadGEM2-ES MOHC 185912–200511 1.88◦ × 1.24◦
29 IPSL-CM5A-LR IPSL 185001–200512 3.75◦ × 1.88◦
30 IPSL-CM5A-MR IPSL 185001–200512 2.50◦ × 1.26◦
31 IPSL-CM5B-LR IPSL 185001–200512 3.75◦ × 1.88◦
32 MIROC-ESM-CHEM MIROC 185001–200512 2.81◦ × 2.81◦
33 MIROC-ESM MIROC 185001–200512 2.81◦ × 2.81◦
34 MIROC4h MIROC 195001–200512 0.56◦ × 0.56◦
35 MIROC5 MIROC 185001–201212 1.41◦ × 1.41◦
36 MPI-ESM-LR MPI-M 185001–200512 1.88◦ × 1.88◦
37 MPI-ESM-MR MPI-M 185001–200512 1.88◦ × 1.88◦
38 MPI-ESM-P MPI-M 185001–200512 1.88◦ × 1.88◦
39 MRI-CGCM3 MRI 185001–200512 1.13◦ × 1.13◦
40 MRI-ESM1 NCC 185101–200512 1.13◦ × 1.13◦
41 NorESM1-ME NCC 185001–200512 2.50◦ × 1.88◦
42 NorESM1-M NCC 185001–200512 2.50◦ × 1.88◦
43 bcc-csm1-1-m BCC 185001–201212 1.13◦ × 1.13◦
44 bcc-csm1-1 BCC 185001–201212 1.13◦ × 1.13◦
45 inmcm4 UNM 185001–200512 2.00◦ × 1.50◦
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Table 2. Detailed information on the CMIP6 GCMs used in this study.

ID Model Name Institute ID Time Resolution

1 ACCESS-CM2 CSIRO-ARCCSS 185001–201412 1.88◦ × 1.25◦

2 ACCESS-ESM1-5 CSIRO 185001–201412 1.88◦ × 1.24◦

3 AWI-CM-1-1-MR AWI 185001–201412 0.94◦ × 0.94◦

4 AWI-ESM-1-1-LR AWI 185001–201412 1.88◦ × 1.88◦

5 BCC-CSM2-MR BCC 185001–201412 1.13◦ × 1.13◦

6 BCC-ESM1 BCC 185001–201412 2.81◦ × 2.81◦

7 CAMS-CSM1-0 CAMS 185001–201412 1.13◦ × 1.13◦

8 CAS-ESM2-0 CAS 185001–201412 1.41◦ × 1.41◦

9 CESM2-FV2 NCAR 185001–201412 2.50◦ × 1.88◦

10 CESM2-WACCM-FV2 NCAR 185001–201412 2.50◦ × 1.88◦

11 CESM2-WACCM NCAR 185001–201412 1.25◦ × 0.94◦

12 CESM2 NCAR 185001–201412 1.25◦ × 0.94◦

13 CIESM THU 185001–201412 1.25◦ × 0.94◦

14 CMCC-CM2-HR4 CMCC 185001–201412 1.25◦ × 0.94◦

15 CMCC-CM2-SR5 CMCC 185001–201412 1.25◦ × 0.94◦

16 CMCC-ESM2 CMCC 185001–201412 1.25◦ × 0.94◦

17 CanESM5 CCCma 185001–201412 2.81◦ × 2.81◦

18 E3SM-1-0 E3SM-Project 185001–201412 1.00◦ × 1.00◦

19 E3SM-1-1-ECA E3SM-Project 185001–201412 1.00◦ × 1.00◦

20 E3SM-1-1 E3SM-Project 185001–201412 1.00◦ × 1.00◦

21 EC-Earth3-AerChem EC-Earth-Consortium 185001–201412 0.70◦ × 0.70◦

22 EC-Earth3-CC EC-Earth-Consortium 185001–201412 0.70◦ × 0.70◦

23 EC-Earth3-Veg-LR EC-Earth-Consortium 185001–201412 1.13◦ × 1.13◦

24 EC-Earth3-Veg EC-Earth-Consortium 185001–201412 0.70◦ × 0.70◦

25 EC-Earth3 EC-Earth-Consortium 185001–201412 0.70◦ × 0.70◦

26 FGOALS-f3-L CAS 185001–201412 1.25◦ × 1.00◦

27 FGOALS-g3 CAS 185001–201612 2.00◦ × 2.25◦

28 FIO-ESM-2-0 FIO-QLNM 185001–201412 1.25◦ × 0.94◦

29 GFDL-ESM4 NOAA-GFDL 185001–201412 1.25◦ × 1.00◦

30 GISS-E2-1-G-CC NASA-GISS 185001–201412 2.50◦ × 2.00◦

31 GISS-E2-1-G NASA-GISS 185001–201412 2.50◦ × 2.00◦

32 GISS-E2-1-H NASA-GISS 185001–201412 2.50◦ × 2.00◦

33 IITM-ESM CCCR-IITM 185001–201412 1.88◦ × 1.91◦

34 INM-CM4-8 INM 185001–201412 2.00◦ × 1.50◦

35 INM-CM5-0 INM 185001–201412 2.00◦ × 1.50◦

36 IPSL-CM5A2-INCA IPSL 185001–201412 3.75◦ × 1.88◦

37 IPSL-CM6A-LR-INCA IPSL 185001–201412 2.50◦ × 1.26◦

38 IPSL-CM6A-LR IPSL 185001–201412 2.50◦ × 1.26◦

39 KACE-1-0-G NIMS-KMA 185001–201412 1.88◦ × 1.25◦

40 KIOST-ESM KIOST 185001–201412 1.88◦ × 1.88◦

41 MIROC6 MIROC 185001–201412 1.41◦ × 1.41◦

42 MPI-ESM-1-2-HAM HAMMOZ-Consortium 185001–201412 1.88◦ × 1.88◦

43 MPI-ESM1-2-HR MPI-M 185001–201412 0.94◦ × 0.94◦

44 MPI-ESM1-2-LR MPI-M 185001–201412 1.88◦ × 1.88◦

45 MRI-ESM2-0 MRI 185001–201412 1.13◦ × 1.13◦

46 NESM3 NUIST 185001–201412 1.88◦ × 1.88◦

47 NorCPM1 NCC 185001–202912 2.50◦ × 1.88◦

48 NorESM2-LM NCC 185001–201412 2.50◦ × 1.88◦

49 NorESM2-MM NCC 185001–201412 1.25◦ × 0.94◦

50 SAM0-UNICON SNU 185001–201412 1.25◦ × 0.94◦

51 TaiESM1 AS-RCEC 185001–201412 1.25◦ × 0.94◦
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2.2. Ground-Measured Data

The ground-measured SULR data used in the present research were obtained from
133 sites across the world, including 7 sites from the Surface Radiation Budget Network
(SURFRAD) [17], 13 sites from the Baseline Surface Radiation Network (BSRN) [16] and
113 sites from FLUXNET2015 (FLUXNET) [55]. The BSRN, SURFRAD, and FLUXNET sites
record SULR measurements every 1, 3, and 30 min, respectively [16,56]. These stations
cover a wide latitudinal range between 82.490◦N and 89.983◦S and a longitudinal range
between 156.607◦W and 161.341◦E, with elevations in the range of −9–3233 m. The sites are
spread across separate climatic zones and encompass cropland, forest, grassland, desert,
bare land, and other land types. The sites applied in this study, which cover the period
from 1992 to 2014, are exhibited in Appendix A Table A1. Figure 1 shows the locations of
all 133 sites.
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2.3. ERA5

ERA5, which was released by the European Centre for Medium-Range Weather
Forecasts (ECMWF) in 2017, is the newest version of the reanalysis for global climate [57].
It was produced to replace ERA-Interim, with data ranging from 1979 to the present [58]. In
addition to the improved spatial resolution in comparison to ERA-Interim, ERA5 includes
many more ground measurements utilized for assimilation [30]. The SULR data applied in
the present research included monthly estimations at single levels with a spatial resolution
of 0.25◦ × 0.25◦ [59] from 1979 to 2014 (https://cds.climate.copernicus.eu/, accessed on 11
October 2021), which were resampled to a 1◦ × 1◦ spatial resolution before the comparison
between GCMs and ERA5.

2.4. CERES EBAF

CERES EBAF is conducted by the National Aeronautics and Space Administration
(NASA) for application in radiation budget estimation and climate model assessment,
with data available from 2000 to the present [22,60]. It utilizes data from the Aqua, Terra,
Suomi National Polar-orbiting Partnership (S-NPP) [61,62] and Joint Polar Satellite System
1 (JPSS-1) satellites [63] and merges the satellite data using the radiative transfer model
to estimate the surface energy budget [64]. The CERES EBAF uses more accurate cloud
information and is considered one of the most qualified gridded products [60]. Fifteen
years (2000–2014) of monthly mean SULR data of the CERES EBAF Ed4.1 dataset with a
spatial resolution of 1◦ × 1◦ [23] were applied in this research (https://ceres.larc.nasa.gov/,
accessed on 11 October 2021).

https://cds.climate.copernicus.eu/
https://ceres.larc.nasa.gov/
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3. Methods
3.1. Multimodel Ensemble (MME) Methods

In the present research, two MME approaches were utilized to merge individual
CMIP6 GCM SULR simulations. In the SMA method, the weights of all GCMs were equal
and set to 1/K, where K was the number of the models. This method provides SULR
estimations through the weighted averaging of individual GCMs. The BMA method is a
postprocessing approach that estimates SULR from multiple models [65]. The weights rep-
resent the models’ predictive abilities during the training period, which are determined by
the posterior probabilities of individual models [66]. These probabilities can be calculated
by maximizing the log-likelihood function through the expectation-maximization (EM)
algorithm [66,67]. The posterior probabilities of all participating models are nonnegative
values that sum to one [52]. The SULR values estimated based on the BMA method are
obtained through the weighted averaging of the multiple bias-corrected models, which can
be computed by the following equation. Detailed descriptions of the BMA method were
introduced by Raftery et al. [47]. In the present research, SULR measurements from 1992 to
2014 at 133 sites globally distributed in the world were utilized for BMA analysis.

Y =
K

∑
i=1

wi(ai + biyi) (1)

where yi and Y are the simulated SULR values from individual GCMs and estimated SULR
values using the BMA method, respectively. wi denotes the BMA weights for the individual
models. ai and bi are coefficients calculated through linear regression of observed and
simulated SULR values in the bias correction procedure.

3.2. Validation Metrics

The statistical metrics applied in this research include the mean bias error (bias), root mean
square error (RMSE), relative mean bias error (Rbias), relative root mean square error (RRMSE),
and correlation coefficient (R) values, which are expressed as the following equations:
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where ei and oi denote the simulated and observed SULR values, respectively, o represents
the average observed SULR values, and n indicates the amount of data.

Although five statistical metrics were used to validate the SULR simulations from
CMIP5 and CMIP6 GCMs, no individual metric can denote the overall accuracy. Thus, the
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global performance indicator (GPI) was utilized in the present research to evaluate the
overall model accuracy, which is calculated as follows [68]:

GPIk =
m

∑
j=1

Xj

(
Ỹj − Ykj

)
(7)

where Ỹj represents the median of the absolute values for metric j, Ykj represents the
absolute value for metric j of model k, and m denotes the number of metrics. Xj is set to −1
for R and set to 1 for other metrics. A higher GPI value indicates a better ability of model k.

4. Results and Analysis

This study evaluated CMIP6 and CMIP5 model performances with ground-measured
SULR as reference data. The GCM gridded SULR simulations were compared with respect
to the SULR measurements within the grids. Since both the CMIP6 and CMIP5 GCMs
utilized in the present research had different spatial resolutions, we regridded all GCMs to
1◦ × 1◦ using the bilinear interpolation method for a fair comparison.

4.1. Evaluation with Ground Measurements
4.1.1. CMIP6 GCMs SULR Evaluation

SULR observations (10,598 samples) collected at 133 sites from 1992 to 2014 were
utilized to assess the ability of 51 CMIP6 GCMs to simulate SULR. Figure 2 illustrates the
statistical metrics calculated for all 51 CMIP6 GCMs at the sites from SURFRAD, BSRN,
and FLUXNET. The RMSE (RRMSE) values at seven sites from the SURFRAD for the SULR
simulations varied from 19 to 33 W m−2 (5.1% to 8.6%), and the average RMSE (RRMSE)
value amounted to 26 W m−2 (6.9%). Twenty-three out of the 51 GCMs showed RMSE
(RRMSE) values within 25 W m−2 (6.6%). The biases (Rbias) at seven SURFRAD sites for the
individual GCMs ranged from −20 to 13 W m−2 (−5.2% to 3.3%). The SULR simulations
were underestimated by 36 GCMs, with an average bias (Rbias) of −4 W m−2 (−1.1%).
The SULR simulations had R values ranging between 0.85 and 0.96 at the SURFRAD sites,
and the average R value was 0.92. The R values exceeded 0.93 at 15 GCMs. With respect
to the SURFRAD sites, the majority of the GCMs (35 GCMs) showed GPI values above
−5, with an average GPI value of −0.5. Among the 51 CMIP6 GCMs, INM-CM5-0 was
the best model at the SURFRAD sites in comparison with other individual GCMs, with a
bias of −0.19 W m−2, an RMSE of 22.14 W m−2, an R of 0.927, and a maximum GPI value
of 14.526. The GISS-E2-1-G-CC SULR simulations exhibited the poorest ability at seven
SURFRAD sites, showing a bias of −19.60 W m−2, an RMSE of 32.14 W m−2, an R of 0.901,
and a minimum GPI value of −22.703.

We also evaluated the SULR simulations from 51 CMIP6 GCMs using 13 BSRN sites
within twenty-three years (1992–2014) of SULR records. The CMIP6 GCMs had RMSE
(RRMSE) values varying from 19 to 40 W m−2 (7.0% to 14.2%) with respect to 13 BSRN
sites, with an average RMSE (RRMSE) value of 26 W m−2 (9.2%). The RMSE (RRMSE)
values for 28 out of the 51 GCMs were less than 25 W m−2 (8.9%). The biases (Rbias) for
the individual GCMs ranged between −10 and 24 W m−2 (−3.3% and 8.5%). SULR was
overestimated by 41 out of the 51 GCMs, and the average bias (Rbias) was 4 W m−2 (1.5%).
The R values of the individual GCMs at 13 BSRN sites ranged from 0.93 to 0.98, with an
average R value of 0.96; this value was higher than that obtained at the SURFRAD sites.
All 51 GCMs had R values greater than 0.93. The GPI values at 13 sites from the BSRN
were higher than −5 at 36 out of the 51 GCMs, and the average GPI value amounted to
−3. CESM2-WACCM showed the best ability, with a bias of 1.70 W m−2, an RMSE of
19.94 W m−2, an R of 0.974, and a maximum GPI value of 10.571 for the 13 BSRN sites.
FGOALS-g3 demonstrated the poorest performance in simulating SULR at the BSRN sites,
exhibiting a bias of 23.71 W m−2, an RMSE of 39.97 W m−2, an R of 0.936, and a minimum
GPI value of −46.414, followed by MIROC6.
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To further validate the effects of the site selection and observation quality on the GCMs
in SULR, the above research was also repeated at 120 sites from FLUXNET. The RMSE
(RRMSE) values of the SULR simulations at the 120 sites varied between 21 and 39 W m−2

(5.7% and 10.4%), and the average RMSE (RRMSE) value was 25 W m−2 (6.8%). Thirty out
of the 51 GCMs had RMSE (RRMSE) values within 25 W m−2 (6.8%). The biases (Rbias)
averaged over 120 FLUXNET sites ranged from −1 to 26 W m−2 (−0.2% to 7.0%). The
SULR simulations were overestimated by 48 GCMs, with an absolute average bias (Rbias)
of 9 W m−2 (2.5%); this bias value was higher than those obtained at the sites for BSRN
and SURFRAD. This may be due to the lower temporal resolution of SULR measurements
at the FLUXNET sites [55]. The R values were in the range of 0.87–0.94 at the FLUXENT
sites, with an average R value of 0.92. Only three GCMs showed R values greater than
0.93. The GPI values for 32 out of the 51 GCMs were greater than −5 at the FLUXNET
sites, with an average GPI value of −3. CAMS-CSM1-0 agreed best with the FLUXNET
measurements, exhibiting a bias of 0.15 W m−2, an RMSE of 21.92 W m−2, an R of 0.924,
and a maximum GPI value of 12.588. In line with the validation results for BSRN sites,
FGOALS-g3 performed the worst to simulate SULR at the FLUXNET sites, with a bias of
25.78 W m−2, an RMSE of 38.47 W m−2, an R of 0.87, and a minimum GPI value of −41.022,
followed by MIROC6.
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Figures 2 and 3 show the ability of the CMIP6 GCMs to simulate SULR at all 133 sites
from SURFRAD, BSRN, and FLUXNET. The results indicated that the RMSE (RRMSE)
values with respect to the 133 sites for the individual GCMs varied between 22 and
38 W m−2 (6.3% and 10.8%), with an average RMSE (RRMSE) value of 26 W m−2 (7.2%).
Twenty-one out of the 51 GCMs displayed RMSE (RRMSE) values within 25 W m−2 (7.1%).
The biases (Rbias) of the various GCMs at 133 sites varied from −3 to 24 W m−2 (−0.8% to
6.6%). Forty-six out of the 51 CMIP6 GCMs overestimated the SULR. Overall, the CMIP6
GCMs showed an obvious tendency to overestimate the SULR at the selected 133 sites,
which had an average bias (Rbias) of 6 W m−2 (1.8%). The CMIP6 GCMs exhibited R
values between 0.91 and 0.96 at all 133 sites, and the average R value amounted to 0.95.
Most GCMs (50 GCMs) had R values above 0.93. Thirty-five out of the 51 GCMs exhibited
GPI values over −5, with an average GPI value of −3. Among the 51 CMIP6 GCMs, the
maximum GPI value was found in E3SM-1-1-ECA at values of 8.383, which had a higher
spatial resolution. FGOALS-g3, with a lower spatial resolution, exhibited the minimum
GPI value of −39.443, followed by MIROC6. However, the CMIP6 GCMs, which had
higher spatial resolutions, did not always show greater GPI values than those that had
lower spatial resolutions, such as CESM2, CESM2-WACCM, and CMCC-CM2-SR5.

We also applied the MME method to estimate SULR by fusing the 51 CMIP6 GCMs.
The weights obtained by the BMA method for individual GCMs, exhibited in Appendix B
Figure A1, varied between 0.017 and 0.022, and 35 out of the 51 GCMs displayed weights
in the range of 0.018–0.020. MRI-ESM2-0, with a maximum weight of 0.0215, which was
approximately 10% higher than the mean value (0.0196), greatly contributed to the SULR
ensemble. The weight of KACE-1-0-G was 0.0173, which was approximately 12% lower
than the mean value.

A Taylor diagram [69], which is suitable for evaluating the relative abilities of multiple
models, was utilized to validate the performances of the 51 CMIP6 GCMs and the MME
methods in simulating SULR compared to the ground-measured SULR. The comparison
results between the SULR estimations and the SULR measurements at the BSRN, SURFRAD,
FLUXNET, and all sites are shown in Figure 4, indicating that the MME methods performed
better than the individual GCMs in general. The validation results of the SULR estimated
by the MME methods at all 133 sites are also displayed in Figure 3. Notably, the SULR
estimations obtained based on the MME methods showed higher R, lower bias (Rbias),
and lower RMSE (RRMSE) values in comparison with the individual GCMs at all 133 sites.
The MME methods reduced the RMSE (RRMSE) by approximately 5–6 W m−2 (1.5–1.8%)
and increased the R by approximately 0.02 on average compared to the individual GCMs.
The BMA method showed a better ability to simulate SULR than the individual GCMs and
the SMA method, with a bias of 0 W m−2, an RMSE of 19.29 W m−2, and an R of 0.97 for
the 133 sites, owing to the bias correction before weighting the multiple models to closely
match the SULR measurements.
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4.1.2. Comparison with CMIP5

Most simulated SULR from CMIP6 and CMIP5 GCMs cover the periods 1850–2014 and
1861–2005, respectively, whereas the ground-measured SULR begins in 1992. There are only
61 sites with ground-measured SULR from 1992 to 2005. Therefore, SULR measurements
(3052 samples) during 1992–2005 at 61 sites were applied to compare the ability of the
51 CMIP6 GCMs to simulate SULR with that of the 45 CMIP5 GCMs. The results illustrated
that the CMIP5 GCMs showed an average bias (Rbias) of 2 W m−2 (0.7%), an average
RMSE (RRMSE) of 26 W m−2 (7.6%), and an average R of 0.95. For the CMIP6 GCMs, these
values were 4 W m−2 (1.2%), 26 W m−2 (7.6%), and 0.95, respectively, and did not show
better performance than the CMIP5 GCMs. Figure 5 shows the histogram of the statistical
metrics calculated for the 45 CMIP5GCMs and the 51 CMIP6 GCMs at all 61 sites. The
CMIP5 GCMs exhibited RMSE values from 22 to 34 W m−2. The RMSE values for 11 out
of the 45 CMIP5 GCMs varied from 24 to 26 W m−2. Twelve CMIP5 GCMs had RMSE
values less than 24 W m−2. The RMSE values were greater than 26 W m−2 at 22 CMIP5
GCMs. The RMSE values for the individual CMIP6 GCMs ranged from 22 to 36 W m−2.
Twenty-three out of the 51 CMIP6 GCMs had RMSE values between 24 and 26 W m−2. The
RMSE values were within 24 W m−2 at eight CMIP6 GCMs. A total of 20 CMIP6 GCMs
showed RMSE values above 26 W m−2. The biases for the individual CMIP5 GCMs ranged
between −10 and 15 W m−2, and the SULR simulations were overestimated by 29 out
of the 45 CMIP5 GCMs. The absolute biases of 25 CMIP5 GCMs were within 5 W m−2.
Sixteen CMIP5 GCMs reported biases above 5 W m−2. The biases for the four CMIP5
GCMs were within −5 W m−2. The biases for the individual CMIP6 GCMs varied from
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−10 to 20 W m−2 and were positive for 39 out of the 51 CMIP6 GCMs. Twenty-nine CMIP6
GCMs showed absolute biases of less than 5 W m−2. The biases for 20 CMIP6 GCMs were
above 5 W m−2. Only two CMIP6 GCMs had biases within −5 W m−2. The R values of
the various CMIP5 GCMs varied from 0.93 to 0.97. Nineteen out of the 45 CMIP5 GCMs
showed R values between 0.95 and 0.96. The R values were less than 0.95 at 25 CMIP5
GCMs. Only one CMIP5 GCM exhibited an R value above 0.96. The CMIP6 GCMs showed
R values in the range of 0.92–0.96. The R values for 27 out of the 51 CMIP6 GCMs ranged
from 0.95 to 0.96. Twenty-four CMIP6 GCMs had R values of less than 0.95, and there were
no individual CMIP6 GCMs with an R value greater than 0.96. Overall, the CMIP6 GCMs
did not perform better in simulating SULR than the CMIP5 GCMs.
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The SMA and BMA methods were also utilized to combine 45 CMIP5 GCMs to
estimate SULR. The validation result of the SMA method based on the CMIP5 GCMs had a
higher RMSE of 25.87 W m−2 and lower R of 0.94 than the SMA result based on the CMIP6
GCMs, while the bias of the SULR estimated by the SMA method using the CMIP5 GCMs
was approximately −1.91 W m−2, which was lower than that using the CMIP6 GCMs. The
estimated SULR of CMIP5 GCMs using the BMA method showed a bias of 0, an RMSE of
19.24, and an R of 0.97; this result was close to that of the CMIP6 GCMs obtained by the
BMA method. Compared to the SMA result of the CMIP5 GCMs, the BMA method still
exhibited better performance to estimate SULR by merging CMIP5 GCMs.

4.2. Evaluation with CERES EBAF

The SULR simulations from the CMIP6 GCMs were validated with 133 sites from
three observation networks across the world in Section 4.1.1; however, many oceanic and
land surface areas still lack representativeness. The CERES EBAF, which is considered
one of the most qualified gridded products [60], was utilized in this study. Compared to
the CMIP6 GCMs, it agreed better with the SULR measurements at the 133 sites during
2000–2014, with a bias of 0.04 W m−2, RMSE of 16.77 W m−2, R of 0.972, and GPI of 17.733.
Therefore, we validated the monthly SULR simulations from the 51 CMIP6 GCMs using
the CERES EBAF SULR from 2000 to 2014 at 1◦ × 1◦ grid scale, as shown in Table 3. The
start year of 2000 was chosen in the present research since the SULR data of the CERES
EBAF only began in 2000. The RMSE (RRMSE) values for the various GCMs in comparison
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with the CERES EBAF ranged between 14 and 31 W m−2 (3.9% and 8.5%), with an average
RMSE (RRMSE) value of 17 W m−2 (4.8%). Fifty out of the 51 GCMs exhibited RMSE
(RRMSE) values of less than 25 W m−2 (6.1%), except for FGOALS-g3. The biases (Rbias)
for the individual GCMs varied from −9 to 11 W m−2 (−2.4% to 3.1%). The majority
of the CMIP6 GCMs (39 GCMs) overestimated the monthly SULR, with an average bias
(Rbias) of 2 W m−2 (0.6%). The RMSE and biases for the GCMs with respect to the CERES
EBAF were lower than those between the GCMs and ground measurements. The CMIP6
GCMs showed R values in the range of 0.96–0.99, with an average R value of up to 0.99. In
addition to FGOALS-g3, almost all of the GCMs (50 GCMs) exhibited R values greater than
0.97. Forty out of the 51 GCMs had GPI values above −5, and the average GPI amounted
to −2. Among the 51 CMIP6 GCMs, FGOALS-g3 showed the poorest ability to simulate
SULR, with a bias of 10.74 W m−2, an RMSE of 30.17 W m−2, an R of 0.959, and a minimum
GPI value of −28.348 in comparison with the CERES EBAF. This result was similar to the
evaluation result exhibited in Section 4.1.1.

Table 3. Evaluation of global monthly SULR simulations from the 51 CMIP6 GCMs using the
Clouds and the Earth’s Radiant Energy System, Energy Balanced and Filled (CERES EBAF) data
from 2000 to 2014 at 1◦ × 1◦ grid scale (in units of W m−2 for RMSE and Bias, % for RRMSE and
RBias, respectively).

ID Model Name RMSE Bias RRMSE RBias R GPI

1 ACCESS-CM2 15.39 0.48 4.33 0.14 0.988 3.76
2 ACCESS-ESM1-5 15.60 4.18 4.39 1.17 0.989 −1.24
3 AWI-CM-1-1-MR 14.18 2.32 3.99 0.65 0.990 2.96
4 AWI-ESM-1-1-LR 15.64 −0.50 4.40 −0.14 0.988 3.41
5 BCC-CSM2-MR 16.04 2.96 4.51 0.83 0.987 −0.26
6 BCC-ESM1 18.11 3.13 5.09 0.88 0.984 −3.13
7 CAMS-CSM1-0 19.35 1.91 5.44 0.54 0.981 −3.16
8 CAS-ESM2-0 20.32 −0.53 5.71 −0.15 0.980 −2.63
9 CESM2-FV2 16.26 2.54 4.57 0.71 0.987 0.01

10 CESM2-WACCM-FV2 15.86 2.89 4.46 0.81 0.988 0.07
11 CESM2-WACCM 14.99 3.10 4.22 0.87 0.989 0.91
12 CESM2 15.30 4.02 4.30 1.13 0.989 −0.66
13 CIESM 17.17 6.40 4.83 1.80 0.987 −6.11
14 CMCC-CM2-HR4 14.80 2.96 4.16 0.83 0.989 1.35
15 CMCC-CM2-SR5 18.94 6.71 5.33 1.89 0.984 −8.77
16 CMCC-ESM2 17.57 5.15 4.94 1.45 0.986 −5.01
17 CanESM5 16.51 0.11 4.64 0.03 0.986 2.80
18 E3SM-1-0 16.38 2.94 4.61 0.83 0.987 −0.66
19 E3SM-1-1-ECA 16.36 1.07 4.60 0.30 0.987 1.75
20 E3SM-1-1 16.33 1.83 4.59 0.52 0.987 0.83
21 EC-Earth3-AerChem 17.41 5.15 4.90 1.45 0.986 −4.82
22 EC-Earth3-CC 19.49 8.75 5.48 2.46 0.985 −12.09
23 EC-Earth3-Veg-LR 18.12 2.81 5.09 0.79 0.984 −2.72
24 EC-Earth3-Veg 17.75 5.58 4.99 1.57 0.986 −5.80
25 EC-Earth3 18.10 5.53 5.09 1.56 0.985 −6.19
26 FGOALS-f3-L 16.49 −1.24 4.64 −0.35 0.986 1.38
27 FGOALS-g3 30.17 10.74 8.48 3.02 0.959 −28.35
28 FIO-ESM-2-0 14.27 −1.31 4.01 −0.37 0.990 4.13
29 GFDL-ESM4 14.08 0.85 3.96 0.24 0.990 4.96
30 GISS-E2-1-G-CC 16.99 1.04 4.78 0.29 0.986 1.00
31 GISS-E2-1-G 17.07 0.32 4.80 0.09 0.985 1.80
32 GISS-E2-1-H 17.82 5.33 5.01 1.50 0.985 −5.57
33 IITM-ESM 21.48 3.41 6.04 0.96 0.978 −7.80
34 INM-CM4-8 17.39 −0.88 4.89 −0.25 0.985 0.68
35 INM-CM5-0 15.32 −1.64 4.31 −0.46 0.988 2.36
36 IPSL-CM5A2-INCA 17.37 −1.25 4.89 −0.35 0.985 0.23
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Table 3. Cont.

ID Model Name RMSE Bias RRMSE RBias R GPI

37 IPSL-CM6A-LR-INCA 15.62 0.70 4.39 0.20 0.988 3.18
38 IPSL-CM6A-LR 15.29 −0.37 4.30 −0.10 0.988 4.04
39 KACE-1-0-G 16.05 2.32 4.51 0.65 0.987 0.56
40 KIOST-ESM 18.03 −1.40 5.07 −0.39 0.984 −0.80
41 MIROC6 21.07 7.62 5.92 2.14 0.981 −12.67
42 MPI-ESM-1-2-HAM 17.59 0.30 4.95 0.08 0.985 1.17
43 MPI-ESM1-2-HR 14.64 2.31 4.12 0.65 0.989 2.38
44 MPI-ESM1-2-LR 16.13 1.59 4.54 0.45 0.987 1.38
45 MRI-ESM2-0 14.75 1.84 4.15 0.52 0.989 2.83
46 NESM3 16.95 1.11 4.77 0.31 0.985 0.95
47 NorCPM1 20.64 −8.39 5.80 −2.36 0.983 −13.11
48 NorESM2-LM 16.54 4.25 4.65 1.20 0.987 −2.55
49 NorESM2-MM 14.91 0.76 4.19 0.21 0.989 4.03
50 SAM0-UNICON 16.25 −5.23 4.57 −1.47 0.989 −3.43
51 TaiESM1 15.15 −1.26 4.26 −0.36 0.990 3.07

4.3. Spatial Distribution and Seasonal Variations

For ERA5 and CERES EBAF, the monthly mean SULR estimations start in 1979 and
2000, respectively; in CMIP5 GCMs, most SULR simulations end in 2005. Thus, we applied
the BMA method, which performed better in estimating SULR, to construct a gridded
global SULR dataset (1◦ × 1◦) from 2000 to 2005 based on CMIP5 and CMIP6 GCMs.
Figures 6 and 7 exhibit the spatial variation in the SULR estimations from the CMIP6 GCMs
based on the BMA method during 2000–2005 worldwide. The Arctic has always been an
area with lower SULR values, equal to approximately 160–220 W m−2 in the local winter
season (DJF) and 250–320 W m−2 in the local summer season (JJA). Antarctica was another
area with lower SULR values, with values amounting to approximately 100–210 W m−2

in the local winter season (JJA) and 180–280 W m−2 in the local summer season (DJF). In
addition to the ocean surface regions, SULR was higher in some land surface areas over
tropical regions (440–490 W m−2), such as the Amazon rainforest, Central Africa, Arabian
Peninsula, Indian Peninsula, and North Australia (Figure 6); these findings were in line
with other studies [9,20]. Generally, SULR gradually decreased from tropical regions to
polar regions, ranging from 130 to 490 W m−2. At the same latitude, SULR was lower
in high-elevation areas than in low-elevation areas. For instance, SULR values as low as
360–410 W m−2 occurred in the Andes in the local summer season (DJF), while values as
low as 330–400 W m−2 were observed in the local winter season (JJA). Corresponding
features, with SULR values of 330–400 W m−2 in the local summer season (JJA) and
220–290 W m−2 in the local winter season (DJF), were found in the Qinghai–Tibet Plateau.

Figure 8 indicates the monthly variations in SULR from the CERES EBAF, ERA5,
51 CMIP6 GCMs, and MME methods during the period of 2000–2005 worldwide. The
results exhibited the monthly mean SULR throughout the world ranging between 382 and
419 W m−2, where the maximum SULR occurred in July and August (400–419 W m−2),
while the minimum SULR appeared in January and December (382–400 W m−2). FGOALS-
g3 had the highest global monthly mean SULR values, which varied from 399 to 419 W m−2.
The lowest SULR values, in the range of 382–402 W m−2, were observed in NorCPM1. Large
seasonal variations were found in MIROC6, with SULR values between 392 and 416 W m−2,
while GISS-E2-1-H showed small seasonal variations between 395 and 412 W m−2. The
maximum SULR in both the BMA and SMA methods was observed in July at values of 401
and 410 W m−2, respectively, and the minimum SULR occurred in January at values of 383
and 390 W m−2, respectively. Although the global monthly mean SULR obtained by the
MME methods exhibited similar monthly variability to the SULR values estimated by the
CERES EBAF and ERA5, the BMA results showed lower SULR values in comparison with
the CERES EBAF, while the SMA results displayed higher values than the CERES EBAF.
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BMA method, the ERA5 and the CERES EBAF from 2000 to 2005 (in units of W m−2).

The spatial pattern of the biases between the CMIP6 and CMIP5 GCMs for the annual
mean SULR estimated by the BMA method is illustrated in Figure 9a; these biases varied be-
tween −16 and 16 W m−2. Positive biases occurred in the Arctic, Antarctica, Qinghai–Tibet
Plateau, Sierra Nevada, Rocky Mountains, and Eastern Andes, while significant negative
biases were found in the Western Andes. The spatial dissimilarities of the CMIP6 GCMs
against ERA5 are shown in Figure 9b and ranged from −48 to 52 W m−2. The SULR values
of CMIP6 GCMs obtained by the BMA method were higher than ERA5 in the Himalayas,
Hengduan Mountains, Qilian Mountains, Altun Mountains, Kunlun Mountains, Tianshan
Mountains, and Western Andes, with a difference of more than 10 W m−2. In the Sierra
Nevada and the Eastern Andes, the annual SULR of CMIP6 GCMs was obviously lower
than that of ERA5, and the differences exceeded 20 W m−2. Figure 9c exhibits the spatial
differences in the CMIP6 GCMs minus the CERES EBAF, which ranged between −59
and 45 W m−2. The CMIP6 GCMs showed positive biases in Antarctica, Greenland, the
Southern Himalayas, and the Western Andes, where the biases exceeded 5 W m−2. Clear
negative biases above 25 W m−2 were found in the Northern Himalayas, Sierra Nevada,
and the Eastern Andes.
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4.4. Annual Mean and Long-Term Variabilities

Table 4 lists the global annual mean SULR for the CERES EBAF, ERA5, and the CMIP5
and CMIP6 GCMs based on the MME methods during different periods. The results
showed that the global annual mean SULR for the CMIP6 GCMs based on the BMA method
varied between 386 and 393 W m−2 from 1850 to 2014. The average SULR of 389 W m−2 and
median SULR of 388 W m−2 were lower than the SMA results of the CMIP6 GCMs, owing
to the overestimation of SULR in the CMIP6 GCMs. The CMIP5 GCMs had an annual
mean SULR estimated by the BMA method between 389 and 396 W m−2 in 1861–2005.
Both the average SULR value and the median SULR value were 392 W m−2, which were
higher than those from CMIP6 GCMs using the BMA method, and the differences were
approximately 4 W m−2. The SULR values from ERA5 varied from 394 to 398 W m−2

during 1979–2014, where the average SULR value and the median SULR value amounted
to 396 W m−2. Higher SULR values, varying between 397 and 400 W m−2 in 2000–2014,
were found in the CERES EBAF, with an average SULR of 399 W m−2 and a median SULR
of 399 W m−2. The SULR values in both ERA5 and CERES EBAF were higher than those in
the BMA results from CMIP6 GCMs and lower than those in the SMA results from CMIP6
GCMs; this may have been because the overestimation of SULR in the CMIP6 GCMs was
significantly improved by the BMA method. Overall, the best global annual mean SULR
estimation obtained by the CMIP6 GCMs using the BMA method was 392 W m−2 during
2000–2014.
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Table 4. Comparison of the global annual mean SULR of the CMIP6 GCMs, CMIP5 GCMs, ERA5,
and CERES EBAF over different periods (in units of W m−2).

CMIP6 GCMs CMIP5 GCMs
ERA5

CERES
EBAFSMA BMA SMA BMA

1850–2014

Mean 396.7 388.6 —— —— —— ——
Median 396.4 388.2 —— —— —— ——

Min 394.2 386.2 —— —— —— ——
Max 401.2 392.8 —— —— —— ——

1861–2005

Mean 396.6 388.4 394.9 392.0 —— ——
Median 396.4 388.2 394.7 391.8 —— ——

Min 394.2 386.2 392.3 389.5 —— ——
Max 400.1 391.7 398.7 395.7 —— ——

1979–2014

Mean 398.9 390.6 —— —— 396.4 ——
Median 398.8 390.5 —— —— 396.4 ——

Min 396.9 388.7 —— —— 394.7 ——
Max 401.2 392.8 —— —— 398.0 ——

2000–2014

Mean 400.4 392.0 —— —— 397.4 398.6
Median 400.3 392.0 —— —— 397.4 398.7

Min 399.4 391.1 —— —— 396.0 397.8
Max 401.2 392.8 —— —— 398.0 399.3

Figure 10 exhibits the variations in the global annual mean SULR from the CMIP6 and
CMIP5 GCMs based on the BMA method. The annual mean SULR from CMIP6 GCMs
exhibited an increasing tendency of 0.2 W m−2 per decade (p < 0.05) in 1850-2014. The
SULR decreased insignificantly (–0.05 W m−2 per decade, p > 0.05) from 1850 to 1899, but
during the period of 1900–1939, it showed an increasing tendency (0.3 W m−2 per decade,
p < 0.05). A slight decrease appeared in 1940–1979 at values of –0.04 W m−2 per decade
(p > 0.05). However, the SULR increased sharply by 1.2 W m−2 per decade (p < 0.05) after
1980. Consistent with the CMIP6 GCMs, the SULR increased at values of 0.2 W m−2 per
decade (p < 0.05) under the CMIP5 GCMs during 1861–2005. The annual variations in
SULR for the ERA5 and CERES EBAF are also displayed in Figure 10. The global mean
SULR showed an increasing trend of 0.8 W m−2 per decade (p < 0.05) under the ERA5
during the period 1979–2014, while under the BMA results of CMIP6 GCMs, the global
mean SULR increased significantly at a rate of 1.2 W m−2 per decade (p < 0.05) from 1979
to 2014. It can also be found that both the BMA results from CMIP6 GCMs (1.1 W m−2 per
decade, p < 0.05) and the ERA5 (0.7 W m−2 per decade, p < 0.05) showed an increasing
trend in the global mean SULR over the period 2000 to 2014. However, the global mean
SULR of the CERES EBAF decreased by 0.2 W m−2 per decade (p > 0.05) from 2000 to 2014.
This may be because the SULR data of the CERES EBAF only began in March 2000, and the
lack of data may have impacted the estimation of the annual mean SULR in 2000 and made
it impossible to explore the long-term variabilities in the SULR. Overall, the extent of the
increase was obviously larger than that of the decrease, resulting in an increment in SULR
from 1850 to 2014 throughout the world.
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The spatial variation in the annual mean SULR trend worldwide for CMIP6 GCMs
based on the BMA method is illustrated in Figure 11. The annual mean SULR showed an
increasing trend in the majority of regions around the world during 1850–2014, especially
in the Arctic, with the maximum increase rate being approximately 0.91 W m−2 per decade.
Additionally, in the Brazilian Plateau, Sahara Desert, and Arabian Peninsula, the annual
SULR values exhibited large increments higher than 0.40 W m−2 per decade. Decreasing
SULR trends appeared only on the North China Plain, with a maximum decrease rate of
−0.08 W m−2 per decade in 1850–2014.
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5. Discussion

The abilities of 51 CMIP6 GCMs to simulate SULR were validated with the SULR
observations derived from the SURFRAD, BSRN, and FLUXNET in this study. Various
validation metrics have been applied for the assessment of GCMs. In the present research,
we used six metrics to evaluate the performance of GCMs in simulating SULR. Out of the
six metrics, five were utilized earlier in the assessment of GCMs. It was found that the
rankings of the GCMs varied significantly according to these five metrics, so it is difficult
to make determinations based on the contradictory results. Moreover, it is questionable
to validate the ability of GCMs using an individual metric since single metrics cannot
denote the overall accuracy. The GPI combines the results acquired using the five metrics to
identify a solution with less human influence, so it can represent the overall model accuracy.
In a previous study, Qin et al. [68] used the global performance indicator (GPI), which is
calculated through the RMSE, RRMSE, mean absolute bias error (MAE), the relatively mean
absolute bias error (MAER), and R, to validate the overall model accuracy. The compromise
programming indicator (CPI), similar to GPI, was applied by Iqbal et al. [27] to rank the
CMIP6 GCMs by estimating the cumulative effects of multiple metrics. Therefore, we
believe that it was a good choice to use GPI to validate the CMIP6 GCMs.

Figure 8 shows that the monthly mean SULR estimated by the SMA method was
higher than ERA5, CERES EBAF, and half of the 51 CMIP6 GCMs, while the BMA results
exhibited lower SULR values in comparison with the EAR5, CERES EBAF, and the majority
of the 51 CMIP6 GCMs. This is due to the fact that the CMIP6 GCMs showed an obvious
tendency to overestimate the SULR. The SMA method provided SULR estimations through
a simple weighted averaging of individual GCMs, and there still exists the problem of
overestimation. However, the BMA method significantly improved the overestimation of
SULR, owing to the bias correction procedure using the ground-measured SULR. Therefore,
the BMA method showed lower SULR values than the SMA method. Compared to the
individual GCMs and SMA method, the BMA method performed better in simulating the
SULR, which was consistent with the validation results in Section 4.1.1.

The spatial variations in the SULR estimations from the CERES EBAF and ERA5
during 2000–2005 are exhibited in Figure 12. Both CERES EBAF and ERA5 showed SULR
values in the range of 120–520 W m−2, with SULR values higher than 460 W m−2 in some
land surface areas over tropical regions, such as Central Africa, the Arabian Peninsula, the
Indian Peninsula, and North Australia. The Antarctica was an area with lower SULR values,
equal to approximately 120–250 W m−2 and 120–260 W m−2 in the ERA5 and CERES EBAF,
respectively. The SULR was also lower in the Arctic, at values of 190–290 W m−2 and
200–290 W m−2 in the ERA5 and CERES EBAF, respectively. Figure 12 also shows the
spatial pattern of the biases between the CERES EBAF and ERA5 for the annual mean
SULR; these biases ranged from −44 to 51 W m−2. In the Qinghai–Tibet Plateau and
Andes, the positive biases were generally higher than 20 W m−2, and significant negative
biases greater than 10 W m−2 appeared in Antarctica and West Africa. Generally, the
spatial patterns were similar in ERA5 and CERES. However, the differences in SULR
were higher over the land surface than over the oceans, especially in high-altitude and
high-latitude regions.
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When CMIP6 and CMIP5 GCMs were compared, both the spatial and annual variation
showed some discrepancies; these differences may due to the better ability of the CMIP6
GCMs to understand the effect of clouds in climate sensitivity, improve the climate predic-
tion in the near term, and analyze the cryosphere changes caused by climate extremes and
climate changes [27]. The quantifications of the radiative forcing from different external
forcing factors, such as aerosol forcing and greenhouse gases (GHGs), may also result in
differences between the CMIP6 and CMIP5 GCMs [29]. The CMIP6 GCMs filled some
scientific gaps of the CMIP5 GCMs, including an improvement in the estimation of the
radiative forcing in the historical simulations, better identification of the climate response
to aerosol forcing over the historical period, and excellent computation of the effect of
short-term land use and forcing factors on climate [70]. These improvements in the CMIP6
GCMs compared to the CMIP5 GCMs lead to the discrepancy.

6. Conclusions

This research validated the ability of 51 CMIP6 GCMs to simulate SULR values with
ground measurements and examined how well the MME methods performed in estimating
the SULR with CMIP6 GCMs. The validation datasets included 133 sites (10,598 samples)
from SURFRAD, BSRN, and FLUXNET during 1992–2014. Large differences were found in
the monthly SULR among all 51 CMIP6 GCMs through a comparison between the CMIP6
GCM SULR simulations and the ground-measured SULR. The bias (Rbias), RMSE (RRMSE),
R, and GPI values for the individual CMIP6 GCMs at 133 sites ranged from −3 to 24 W m−2

(−0.8% to 6.6%), 22 to 38 W m−2 (6.3% to 10.8%), 0.91 to 0.96, and −40 to 9, respectively.
The CMIP6 GCMs showed an obvious tendency to overestimate the SULR. Forty-six out of
the 51 CMIP6 GCMs overestimated the SULR and showed positive biases for all 133 sites.
Among the CMIP6 GCMs, E3SM-1-1-ECA agreed best with the SULR measurements from
all 133 sites, exhibiting a bias of 1.28 W m−2, an RMSE of 22.56 W m−2, an R of 0.951, and
a maximum GPI value of 8.383. FGOALS-g3 performed the worst, with the lowest GPI
value at 133 sites, and its SULR simulations had poor performance for both the FLUXNET
and BSRN sites. The BMA method performed better in simulating the SULR than the
individual GCMs and SMA method, with a bias of 0 W m−2, an RMSE of 19.29 W m−2,
and an R of 0.97 for the 133 sites. This method increased the R by approximately 0.02
and reduced the RMSE by approximately 6 W m−2 on average in comparison with the
individual GCMs. Therefore, we recommend using the BMA method to estimate SULR by
merging CMIP6 GCMs.
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The SULR simulations derived from the CMIP6 GCMs were compared to their coun-
terparts from the CMIP5 GCMs according to the SULR measurements collected at 61 sites
(3052 samples) in 1992–2005. The results illustrated that the CMIP6 GCMs did not show
better performance when simulating SULR than the CMIP5 GCMs, with an average bias
(Rbias) of 4 W m−2 (1.2%), an average RMSE (RRMSE) of 26 W m−2 (7.6%), and an average
R of 0.95 for the 61 sites. Overall, the CMIP6 GCMs did not improve the overestimation of
SULR compared to the CMIP5 GCMs. The SULR values simulated by the CMIP6 GCMs
were also validated using the CERES EBAF. The RMSE and biases of the GCMs with
respect to the CERES EBAF were lower than those between the GCMs and ground measure-
ments. Similar to the validation results obtained using the SULR observations, FGOALS-g3
showed the poorest ability to simulate SULR in comparison with CERES EBAF.

Based on the CMIP6 GCMs, the BMA method was utilized to estimate a gridded global
SULR dataset (1◦ × 1◦) from 2000 to 2005. We discussed the spatial pattern and monthly
variations in SULR values throughout the world using the SULR dataset produced in the
present study. Generally, the SULR gradually decreased from tropical to polar regions,
ranging from 130 to 490 W m−2. At the same latitude, the SULR was lower in high-elevation
areas than in low-elevation areas. The maximum monthly mean SULR was observed in July
at values of 401 W m−2, and the minimum SULR value occurred in January at 383 W m−2.

In terms of the global annual mean SULR, our best estimation for the CMIP6 GCMs
using the BMA method was 392 W m−2 during 2000–2014. The SULR varied from 386 to
393 W m−2 from 1850 to 2014, exhibiting an increasing tendency of 0.2 W m−2 per decade
(p < 0.05). Regarding the spatial variations in the tendency of the annual mean SULR, the
SULR showed increasing trends in the majority of regions worldwide during 1850–2014,
especially in the Arctic, with the maximum increase rate being approximately 0.91 W m−2

per decade. Decreasing SULR trends appeared only on the North China Plain, with a
maximum decrease rate of −0.08 W m−2 per decade in 1850–2014.
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Appendix A

Table A1. Information of the sites from BSRN, SURFRAD, and FLUXNET used in this study.

Network Site ID Latitude Longitude Network Site ID Latitude Longitude

BSRN ALE 82.49◦N 62.42◦W FLUXNET DE-RuS 50.87◦N 6.45◦E
BSRN BAR 71.32◦N 156.61◦W FLUXNET DE-SfN 47.81◦N 11.33◦E
BSRN CAB 51.97◦N 4.93◦E FLUXNET DE-Spw 51.89◦N 14.03◦E
BSRN DOM 75.10◦S 123.38◦E FLUXNET DE-Tha 50.96◦N 13.57◦E
BSRN GOB 23.56◦S 15.04◦E FLUXNET DK-Sor 55.49◦N 11.64◦E
BSRN GVN 70.65◦S 8.25◦W FLUXNET FI-Hyy 61.85◦N 24.29◦E
BSRN NYA 78.93◦N 11.93◦E FLUXNET FI-Lom 68.00◦N 24.21◦E
BSRN PAY 46.82◦N 6.94◦E FLUXNET FR-Gri 48.84◦N 1.95◦E
BSRN SPO 89.98◦S 24.80◦W FLUXNET FR-LBr 44.72◦N 0.77◦W
BSRN SYO 69.01◦S 39.59◦E FLUXNET FR-Pue 43.74◦N 3.60◦E
BSRN TAT 36.06◦N 140.13◦E FLUXNET GF-Guy 5.28◦N 52.92◦W
BSRN TIK 71.59◦N 128.92◦E FLUXNET IT-BCi 40.52◦N 14.96◦E
BSRN TOR 58.25◦N 26.46◦E FLUXNET IT-CA1 42.38◦N 12.03◦E

SURFRAD BND 40.05◦N 88.37◦W FLUXNET IT-CA2 42.38◦N 12.03◦E
SURFRAD TBL 40.12◦N 105.24◦W FLUXNET IT-CA3 42.38◦N 12.02◦E
SURFRAD DRA 36.62◦N 116.02◦W FLUXNET IT-Col 41.85◦N 13.59◦E
SURFRAD FPK 48.31◦N 105.10◦W FLUXNET IT-Isp 45.81◦N 8.63◦E
SURFRAD GWN 34.25◦N 89.87◦W FLUXNET IT-La2 45.95◦N 11.29◦E
SURFRAD PSU 40.72◦N 77.93◦W FLUXNET IT-Lav 45.96◦N 11.28◦E
SURFRAD SXF 43.73◦N 96.62◦W FLUXNET IT-MBo 46.01◦N 11.05◦E
FLUXNET AT-Neu 47.12◦N 11.32◦E FLUXNET IT-Noe 40.61◦N 8.15◦E
FLUXNET AU-Ade 13.08◦S 131.12◦E FLUXNET IT-Ren 46.59◦N 11.43◦E
FLUXNET AU-ASM 22.28◦S 133.25◦E FLUXNET IT-Ro1 42.41◦N 11.93◦E
FLUXNET AU-Cpr 34.00◦S 140.59◦E FLUXNET IT-Ro2 42.39◦N 11.92◦E
FLUXNET AU-Cum 33.62◦S 150.72◦E FLUXNET IT-SR2 43.73◦N 10.29◦E
FLUXNET AU-DaP 14.06◦S 131.32◦E FLUXNET IT-SRo 43.73◦N 10.28◦E
FLUXNET AU-DaS 14.16◦S 131.39◦E FLUXNET IT-Tor 45.84◦N 7.58◦E
FLUXNET AU-Dry 15.26◦S 132.37◦E FLUXNET JP-MBF 44.39◦N 142.32◦E
FLUXNET AU-Emr 23.86◦S 148.47◦E FLUXNET JP-SMF 35.26◦N 137.08◦E
FLUXNET AU-Fog 12.55◦S 131.31◦E FLUXNET NL-Hor 52.24◦N 5.07◦E
FLUXNET AU-Gin 31.38◦S 115.71◦E FLUXNET NL-Loo 52.17◦N 5.74◦E
FLUXNET AU-GWW 30.19◦S 120.65◦E FLUXNET RU-Che 68.61◦N 161.34◦E
FLUXNET AU-How 12.49◦S 131.15◦E FLUXNET RU-Cok 70.83◦N 147.49◦E
FLUXNET AU-Lox 34.47◦S 140.66◦E FLUXNET RU-Fyo 56.46◦N 32.92◦E
FLUXNET AU-RDF 14.56◦S 132.48◦E FLUXNET SJ-Adv 78.19◦N 15.92◦E
FLUXNET AU-Rig 36.65◦S 145.58◦E FLUXNET SJ-Blv 78.92◦N 11.83◦E
FLUXNET AU-Rob 17.12◦S 145.63◦E FLUXNET US-AR1 36.43◦N 99.42◦W
FLUXNET AU-Stp 17.15◦S 133.35◦E FLUXNET US-AR2 36.64◦N 99.60◦W
FLUXNET AU-TTE 22.29◦S 133.64◦E FLUXNET US-ARM 36.61◦N 97.49◦W
FLUXNET AU-Tum 35.66◦S 148.15◦E FLUXNET US-GBT 41.37◦N 106.24◦W
FLUXNET AU-Wac 37.43◦S 145.19◦E FLUXNET US-GLE 41.37◦N 106.24◦W
FLUXNET AU-Whr 36.67◦S 145.03◦E FLUXNET US-Los 46.08◦N 89.98◦W
FLUXNET AU-Wom 37.42◦S 144.09◦E FLUXNET US-Me2 44.45◦N 121.56◦W
FLUXNET AU-Ync 34.99◦S 146.29◦E FLUXNET US-Me6 44.32◦N 121.61◦W
FLUXNET BE-Bra 51.31◦N 4.52◦E FLUXNET US-MMS 39.32◦N 86.41◦W
FLUXNET BE-Lon 50.55◦N 4.75◦E FLUXNET US-Ne1 41.17◦N 96.48◦W
FLUXNET BR-Sa3 3.02◦S 54.97◦W FLUXNET US-Ne2 41.16◦N 96.47◦W
FLUXNET CA-Qfo 49.69◦N 74.34◦W FLUXNET US-Ne3 41.18◦N 96.44◦W
FLUXNET CA-SF1 54.49◦N 105.82◦W FLUXNET US-NR1 40.03◦N 105.55◦W
FLUXNET CA-SF2 54.25◦N 105.88◦W FLUXNET US-ORv 40.02◦N 83.02◦W
FLUXNET CA-SF3 54.09◦N 106.01◦W FLUXNET US-Prr 65.12◦N 147.49◦W
FLUXNET CH-Cha 47.21◦N 8.41◦E FLUXNET US-SRG 31.79◦N 110.83◦W
FLUXNET CH-Dav 46.82◦N 9.86◦E FLUXNET US-SRM 31.82◦N 110.87◦W
FLUXNET CH-Fru 47.12◦N 8.54◦E FLUXNET US-Syv 46.24◦N 89.35◦W
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Table A1. Cont.

Network Site ID Latitude Longitude Network Site ID Latitude Longitude

FLUXNET CH-Oe1 47.29◦N 7.73◦E FLUXNET US-Tw1 38.11◦N 121.65◦W
FLUXNET CN-Cng 44.59◦N 123.51◦E FLUXNET US-Tw2 38.10◦N 121.64◦W
FLUXNET CZ-BK1 49.50◦N 18.54◦E FLUXNET US-Tw3 38.12◦N 121.65◦W
FLUXNET CZ-BK2 49.49◦N 18.54◦E FLUXNET US-Tw4 38.10◦N 121.64◦W
FLUXNET CZ-wet 49.02◦N 14.77◦E FLUXNET US-UMB 45.56◦N 84.71◦W
FLUXNET DE-Akm 53.87◦N 13.68◦E FLUXNET US-UMd 45.56◦N 84.70◦W
FLUXNET DE-Geb 51.10◦N 10.91◦E FLUXNET US-Var 38.41◦N 120.95◦W
FLUXNET DE-Gri 50.95◦N 13.51◦E FLUXNET US-WCr 45.81◦N 90.08◦W
FLUXNET DE-Hai 51.08◦N 10.45◦E FLUXNET US-Whs 31.74◦N 110.05◦W
FLUXNET DE-Kli 50.89◦N 13.52◦E FLUXNET US-Wkg 31.74◦N 109.94◦W
FLUXNET DE-Lkb 49.10◦N 13.30◦E FLUXNET ZA-Kru 25.02◦S 31.50◦E
FLUXNET DE-Obe 50.79◦N 13.72◦E FLUXNET ZM-Mon 15.44◦S 23.25◦E
FLUXNET DE-RuR 50.62◦N 6.30◦E
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