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Abstract: Terrestrial evapotranspiration (ET) is a critical component of water and energy cycles, and
improving global land evapotranspiration is one of the challenging works in the development of land
surface models (LSMs). In this study, we apply a bias correction approach into the Community Land
Model version 5.0 (CLM5) globally by utilizing the remote sensing-based ET dataset. Results reveal
that the correction approach can alleviate both overestimation and underestimation of ET by CLM5
over the globe. The adjustment to overestimation is generally effective, whereas the effectiveness
for underestimation is determined by the ET regime, namely water-limited or energy-limited. In
the areas with abundant precipitation, the underestimation is effectively corrected by increasing ET
without the water supply limit. In areas with rare precipitation, however, increasing ET is limited
by water supply, which leads to an undesirable correction effect. Compared with the ET simulated
by CLM5, the bias correction approach can reduce the global-averaged relative bias (RB) and the
root mean square error (RMSE) by 51.8% and 65.9% against Global Land Evaporation Amsterdam
Model (GLEAM) ET data, respectively. Meanwhile, the correlation coefficient (CC) can also be
improved from 0.93 to 0.98. Continentally, the most substantial ET improvement occurs in Asia, with
the RB and RMSE decreased by 69.7% (from 7.04% to 2.14%) and 70.2% (from 0.312 mm day−1 to
0.093 mm day−1, equivalent to from 114 mm year−1 to 34 mm year−1), and the CC increased from
0.92 to 0.99, respectively. Consequently, benefiting from the improvement of ET, the simulations of
runoff and soil moisture are also improved over the globe and each of the six continents, and the
improvement varies with region. This study demonstrates that the use of satellite-based ET products
is beneficial to hydrological simulations in land surface models over the globe.

Keywords: remote sensing; evapotranspiration; community land model; bias correction

1. Introduction

Evapotranspiration (ET) is a critical component in the Earth’s system in linking the
energy, water, carbon, and nitrogen cycles. Over half of precipitation on the land surface
is returned to the atmosphere through ET [1,2]. There are two different concepts on ET:
potential evapotranspiration and actual evapotranspiration. The former is the measure
of the ability of the atmosphere to transfer water from the surface by evaporation and
transpiration assuming no control on the water supply. In contrast, the latter is the amount
of water evaporating from the terrestrial surface and transpiring from plants, which is
limited by the amount of water stored in these reservoirs. ET here refers to actual ET, and
it mainly consists of plant transpiration, soil evaporation and interception loss. Accurate
quantification of global terrestrial ET is necessary for understanding variability in the
global water cycle [3]. However, it is challenging to accurately measure and simulate ET,
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especially at a large scale, due to the highly heterogeneous land surface conditions. The
conventional measures, such as lysimeter, eddy covariance, and the Bowen ratio method,
are able to obtain ET estimates at point and local scales [4]. However, it is unrealistic
to directly measure ET at the global scale due to the limited instrument coverage and
complex spatial heterogeneity of the global land surface [5]. The development of the remote
sensing technology enables large scale observations of E- related variables and becomes
a promising tool to estimate ET. As a result, numerous remote sensing-based approaches
and methods are developed [4–6], and a variety of ET products are generated [6–13].
Most of these products are applied at the regional and watershed scales. At the global
scale, there are two primary remote-sensing based approaches. One is based on the
Penman-Monteith (PM) equation [14,15], and the other is based on the Priestley-Taylor (PT)
equation [16]. The PM-based approach estimates ET by combining the thermodynamic
and aerodynamic aspects of the ET process, which is the weighted linear combination
of the net available radiation on the land surface and the vapor pressure deficit between
the land surface and the overlying air [17]. The PT-based approach simplified the PM
method by proposing an empirical coefficient related to the surface environment, and the
method is widely used in a variety of underlying surface conditions [18]. However, there
are some weaknesses existing in the remote sensing-based methods. For instance, the
methods only provide static ET estimations instead of depicting the dynamic process of
ET. In addition, owing to the uncertainties of multiple input sources, the remote sensing
data may lead to errors in the closure of the water balance [19]. Therefore, it is necessary to
develop an approach which can not only describe the physical process of ET in detail but
also consider the closure of the water balance. The emergence of the land surface models
(LSMs) provides a powerful help towards the purpose. LSMs comprehensively simulate
physical, biological and biogeochemical processes [6]. ET plays an important role in linking
these processes [20,21]. Great efforts have been made to improve the model performance
by upgrading the parameterization schemes of terrestrial processes and utilizing more
accurate forcing and land surface data, of which the ET simulations are also improved in the
meanwhile. For example, the Community Land Model (CLM) has been updated from the
original version 2 to the latest version 5 [22–27], including more realistic parameterizations
of land key physical processes and a more comprehensive and explicit representation of
model data structure. To better simulate ET, the Community Land Model version 5 (CLM5)
introduces a dry surface layer-based soil evaporation resistance parameterization and a
revised canopy interception parameterization [28]. The continuous development of LSMs
enhances confidence for a better understanding and simulation of global land ET.

Despite considerable progress [29–34], substantial differences in quantifying the mag-
nitude of terrestrial ET and its temporal and spatial patterns still exist in LSMs. Since
different LSMs usually adopt different parameterization schemes of the land surface pro-
cess, they show diverse performances in ET simulations at different spatial scales [35]. The
range of the model-based global land multi-year averaged ET is wide, which changes from
415 to 586 mm year−1 [36]. The Joint UK Land Environment Simulator (JULES), the coupled
Canadian Land Surface Scheme-Canadian Terrestrial Ecosystem Model (CLASS-CTEM)
usually overestimate ET while the Lund-Potsdam-Jena-Wald Schnee Landschaft (LPJ-wsl)
and the Land surface Processes and eXchanges (LPX-Bern) is prone to underestimate ET
over the global scale [37]. The large discrepancy among different models may result from
the deficient model parameterization, the lack of observational constraint, the uncertainty
in driven meteorological data, and the inconsistent spatial and temporal resolutions.

LSMs can be improved by taking advantages of the remote sensing-based ET products.
Lu, et al. [38] improved the performance of soil moisture and energy flux simulations
over the Tibetan Plateau (TP) by merging the remote sensing-based Microwave Scanning
Radiometer for EOS (AMSR-E) brightness temperatures and the general circulation model
(GCM) output into a LSM. The results demonstrated the improved LSM can simulate
a more reasonable spatial distribution of the Bowen Ratio during the monsoon season.
Che, et al. [39] developed a snow data assimilation system by applying an ensemble
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filter approach to assimilate remote sensing brightness temperature data into a snow
model within the LSM framework, and the validation results indicated that snow depth
estimations can be substantially ameliorated during the accumulation period. A novel
lateral flow scheme using remote sensing data was proposed by Lee and Choi [40] to
improve the runoff predictions in an LSM. The result showed that the improved lateral flow
scheme outperforms the original scheme, and it can more effectively capture the seasonal
variation in daily streamflow. As for the improvement to ET, Marshall, et al. [41] used a
straight forward method to incorporate remote sensing products into the Laboratory at
National Weather Service Land Surface Model (GNOAH) to improve ET estimates in sub-
Saharan Africa. Results suggested that the hybrid model greatly improves ET simulations
at humid sites with dense vegetation compared with the baseline model. Parr, et al. [42]
proposed an approach to reduce model biases and applied this method into the Variable
Infiltration Capacity (VIC) model over the Connecticut River Basin in America. Different
from the previous methods, the approach of Parr, et al. [42] assumes that the relationship
between the model ET and observational ET remains unchanged from one period to
another. As such, the relationship calculated in the calibration period can be transferred
to other periods to correct the biases in ET simulations or predictions. They reported that
the systematic biases can be effectively reduced by using this correction approach, which
promotes a reliable projection of future drought and flood risk. Wang, et al. [43] applied
this approach and incorporated the remote sensing-based product into the CLM version
4.5 over the Continental United States (CONUS) to investigate the correction effectiveness
of this method. The results demonstrate that this correction method can substantially
ameliorate the model simulations over most of the CONUS and provide valuable guidance
for the development of LSMs. In general, the aforementioned studies on improvements
to LSMs via taking advantage of remote sensing data are mostly at the continental or
watershed scale, while few are at the global scale.

Compared with CLM4.5 used in the previous study (Wang et al. 2017), CLM5 has
been updated with substantial changes. In hydrology, a revised canopy interception pa-
rameterization is developed by considering the impact of wind and freezing temperatures,
and a dry surface layer-based soil evaporation resistance parameterization is introduced to
improve the simulation of the water budget on the land surface. To understand whether
the correction approach used in Parr et al., (2015) and Wang et al., (2017) is transferable
from one region to others and whether it is effective for a new land surface model, we apply
the same approach to CLM5 at the global scale. In this study, the Global Land Evaporation
Amsterdam Model (GLEAM) ET is taken as both the calibration data and the validation
data. The other global ET data, runoff data, and soil data are used as the independent refer-
ences for model assessments. The paper is structured as follows. In Section 2, the model
and bias correction approach are briefly described. Section 3 introduces the reference data
used in this study. The model evaluations are presented in Section 4. Section 5 provides
the summary and conclusions of this study.

2. Materials and Methods
2.1. Model and Forcing Data

The CLM is the land component of the Community Earth System Model (CESM),
which was developed through continuous updates and improvements by the National
Center for Atmospheric Research (NCAR) of America. The model is structured as follows:
each grid cell within CLM is classified into multiple subgrid land units, and each land unit
consists of multiple snow/soil columns occupied with diverse plant functional types (PFTs).
The land surface processes for each subgrid land unit, column, and PFT are simulated
independently and each subgrid unit maintains its own prognostic variables.

CLM5 is the latest version of the CLM. Scientific justification and evaluation related
to CLM5 have been conducted [28]. In this study, CLM5 in its offline mode with the
prescribed vegetation phenology is used. The surface datasets required in the CLM5 were
obtained from a variety of sources. Both the percent PFTs and the prescribed PFT leaf area
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index was derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite
data [44]. Prescribed canopy top and bottom heights were retrieved from Bonan [22] as
described in Bonan et al. [23]. The soil color was obtained from Lawrence and Chase [45],
and the soil texture was derived based on International Geosphere-Biosphere Programme
(IGBP) soil dataset, which includes approximately 5000 soil mapping units. The maximum
fractional saturated area, slope, and elevation were all retrieved from the USGS HYDRO1K
1-km dataset [46]. The description and model code of CLM5 are available from https:
//www.cesm.ucar.edu/models/clm, accessed on 20 May 2020.

In CLM, ET mainly consists of 3 major components, namely interception loss, plant
transpiration, and soil evaporation in the vegetated areas. Snow sublimation is also a
component of ET, but its magnitude is much smaller than the 3 major component in most
areas of global land surface. Hence, the bias correction approach is applied to interception
loss, plant transpiration, and soil evaporation only.

The forcing data used in this study is the WATCH Forcing Data methodology applied
to ERA5 (WFDE5). It was generated by applying the sequential elevation and the monthly
bias correction approach to half-degree aggregated ERA5 reanalysis products. Evaluations
against meteorological observations at station sites show that WFDF5 perform better than
the ERA interim-based WFDEI for all variables [47]. The application to an uncalibrated
hydrological model (WaterGAP) over several large river basins indicates that the use
of WFDF5 can lead to more plausible global hydrological water balance components
compared with the raw ERA5 data for model forcing [47]. In this study, the WFDE5 data
from 1980 to 2018 at the hourly temporal resolution and 0.5◦ spatial resolution are selected
as the driving force for CLM5, as the 1979 data is not complete.

2.2. Methodology

Land surface model is capable of capturing the general pattern of ET. However, the
substantial biases still exist due to the uncertainties in meteorological forcing data, surface
data, and model structure and parameters [42,43,48]. The bias in ET may further propagate
to other variables through the terrestrial hydrothermal processes. Following Parr et al. [42]
and Wang et al. [43], we improve the simulations of CLM5 by utilizing remote sensing-
based ET over the globe. The technical process consists of 3 parts, as shown in Figure 1. In
the first part, namely ET calibration, we simulate ET using the default CLM5 and obtain
the ET climatology for an historical period. The GLEAM based ET is rescaled to match the
resolution of model simulations. The ET scaling factor is then calculated as the ratio of
the corresponding rescaled GLEAM-based ET to the modeled ET for the same historical
period. This calculation is implemented for each month and each grid cell. In the second
part, namely ET correction, we obtain a modeled ET for any other period (historical or
future) by running the default CLM5 and a correct modeled ET by multiplying the scaling
factor for each grid. Then, the corrected ET is fed into CLM5 to replace the modeled ET
for the same period, and the simulated hydrological processes are adjusted accordingly.
Subject to the physical mechanisms in the model, the ET and other hydrological variables
are adjusted in the model automatically. In the third part, the corrected ET, corrected
runoff, and soil moisture are output, which are validated against the reference data. The
underlying assumption is that the relationship between GLEAM-based ET and modeled
ET remain unchanged from one period to the other, but it has a unique seasonal cycle and
spatial variability. To implement the method, we carry out 2 types of simulations, namely
“CLM” and “CLMET”, respectively. The former denotes that simulation with the default
CLM5 configuration, while the latter denotes that simulation in which the model-generated
ET is replaced with the corrected ET. In the CLM, the modeled ET components, namely
vegetation transpiration, soil evaporation, and interception loss, are recorded at the PFT
level for every time step (1 h). Then, these 3 components are corrected by multiplying the
scaling factor. In the CLMET simulation, the CLM5 is re-run for the same period as CLM,
but the 3 ET components are overwritten by the corresponding corrected ones. Therefore,
it should be noted that the correction method is actually applied to the calculation in every

https://www.cesm.ucar.edu/models/clm
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time step of CLM5. The hourly simulation is aggregated into the temporal averages at
different time scales (namely monthly, seasonally, and annually), which are evaluated in
the following analysis.
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denotes the GLEAM-based ET value for specific time period, ETmod demotes the model-based value for the same time
period with GLEAM-based ET, and ETi denotes the simulated ET components for each time step in the default CLM5 over
the time of ET correction. SM denotes soil moisture.

In this study, due to the span of the meteorological forcing data (1980–2018), we evenly
divide the entire duration into 2 periods, namely 1980–1999 and 2000–2018. For each
period, the first 6-year run is disregarded as spinup to ensure that the model reaches to the
equilibrium state. The 1986–1999 is taken as the calibration period and 2006–2018 as the
validation period. Firstly, the CLM type simulation is conducted in a 20-year (1980–1999)
period with the first 6-year run disregarded as spinup. Then, we conduct both CLM type
and CLMET type simulations during the validation period with the initial condition of 1st
January 2000 recorded from the calibration period. It is worth noting that the overwriting
process for ET may break the water balance. If that happens, we check whether the water
stored in the vegetation canopy meets the demand for interception loss and whether the
water stored in the soil meets the demand for soil evaporation and plant transpiration
throughout the model time step. If not, the interception loss (soil evaporation and plant
transpiration) rate is set to be equal to the available water stored in the vegetation canopy
(soil) divided by the model time step. Figure 1 illustrates a schematic diagram describing
the workflow of implementing the ET bias correction approach into CLM5.

Four statistics, namely bias, relative bias (RB), root-mean-square error (RMSE), and
correlation coefficient (CC) are selected to evaluate the performance of the 2 types of
simulations by comparing the modeled variables with the reference datasets. The statistics
are calculated as follows:

Bias =
1
N

i=N

∑
i=1

(
Si − Ri

)
(1)

RB = 100 × 1
N

i=N

∑
i=1

(
Si − Ri

Ri

)
(2)

RMSE =

√√√√ 1
N

i=N

∑
i=1

(
Si − Ri

)2 (3)

CC =
cov
(
Si, Ri

)
σSi

σRi

(4)
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where N represents the total number of grid cells, Si and Ri represent the spatial mean
of the modeled and reference values for grid cell i, respectively. cov

(
Si, Ri

)
represents

the covariance between Si and Ri, σSi
and σRi

represent the standard deviation of Si

and Ri, respectively. Meanwhile, RMSE and -CC are also used to evaluate the temporal
performance of the two types of model simulations.

3. Data

Two remote sensing-based ET products, GLEAM ET and MODIS ET [7,10], and
observation-based FLUXNET Multi-Tree Ensemble (MTE) ET [11,49] are used in this study
for model calibration or validation. The GLEAM ET during 1980–1999 is used to derive
ET scaling factors, and this data during 2000–2018 is used to assess the effectiveness of the
correction method. MODIS ET and MTE ET are adopted as the independent data for model
assessments. The observation-based runoff data University of New Hampshire—Global
Runoff Data Centre (GRDC) and the Soil Moisture Active Passive (SMAP) are also taken
as the reference data to assess the impact of the correction method on the hydrological
processes. We upscale the finer resolution data to 1◦ grid cells to be in line with the model
output by the simple arithmetic average.

3.1. Remote Sensing-Based ET Products
3.1.1. GLEAM ET

The GLEAM version 3.5a [6,50,51] is used to calculate the ET scaling factors and
to validate the simulated ET in the two types of simulations. It was derived based on
reanalysis radiation and air temperature, a combination of gauge-based reanalysis and
satellite-based precipitation, and satellite-based vegetation optical depth, spanning the
time period from 1980 to 2020. The potential evaporation in GLEAM 3.5a was calculated
using the PT equation based on observations of surface net radiation and near-surface
air temperature, and is converted into actual evaporation based on the evaporative stress
factor [52,53]. Recent evaluations showed the GLEAM ET product performs better than
other remote-sensed ET products in estimating land surface evapotranspiration [6,32]. The
GLEAM dataset is provided at a spatial resolution of 0.25◦ and daily, monthly, and yearly
time scale.

3.1.2. MODIS ET and FLUXNET-MTE ET

To evaluate the improvement effectiveness, MODIS ET and MTE ET are also used
for independent assessments of the performance of the two types of simulations. The
MODIS-based ET dataset used in this study was developed by the Numerical Terrady-
namic Simulation Group (NTSG), University of Montana. The monthly MODIS-based ET
product is available from 2000 to 2014 with a spatial resolution of 0.5◦. The MTE ET dataset
was derived from upscaling eddy covariance measurements based on the global network
of eddy covariance flux towers. It has been used to improve the simulation of soil evapora-
tion, evaluate the performance of ecosystem models, and assess the evapotranspiration
variability [28,54,55]. The monthly MTE ET product is available from 1982 to 2011 at the
0.5◦ resolution. In this study, both of the two ET datasets are applied to independently
validate the model performance.

3.2. University of New Hampshire-GRDC Runoff

The climatological monthly runoff over the globe used in this study is the University
of New Hampshire—Global Runoff Data Centre (GRDC) Composite Runoff Fields V1.0. It
was derived by combining the observed gauge river discharge data from the GRDC with
outputs of a water balance model driven by the observational forcing meteorology data.
The combined runoff fields preserve the accuracy of the discharge measurements as well
as the spatial and temporal distribution, and is considered “best estimate” of terrestrial
runoff over the globe [56]. The GRDC runoff data provides multi-year averaged annual
and monthly runoff with a spatial resolution of 0.5◦.
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3.3. SMAP Soil Moisture

The Soil Moisture Active Passive (SMAP) mission [57] was designed to provide a
global-scale mapping of soil moisture measured by L-band (1.41 GHz) passive and active
microwave sensors since 2015. Since the L-band is more sensitive to soil moisture and more
easily penetrates vegetation layers than other bands, the SMAP dataset is considered one
of the most promising products for soil moisture. SMAP generates a range of products and
soil moisture retrievals [58]. In this study, the surface soil layer (0–5 cm) and root zone soil
layer (0–100 cm) soil moisture data of SMAP L4 EASE-Grid (version 5) from April 2015 to
December 2018 with a 9 km spatial resolution are adopted to evaluate the performance in
simulating soil moisture in these two layers [59].

4. Results
4.1. ET Scaling Factor

According to the methods described in Section 2, the ET scaling factors for each month
over the global land are calculated based on the CLM simulation and the GLEAM data
in the period 1986–1999, and their spatial patterns and continental averages are shown in
Figure 2 and Table 1, respectively. It should be noted that the GLEAM-derived dew may
not be consistent with the CLM-modeled dew in some areas of the high latitudes in the
northern hemisphere, which results in a negative scaling factor. If that happens, we do
not scale ET and mask these areas out in Figure 2. In general, during the boreal summer
such as May, June, and July, the scaling factors are approximately 1.0, indicating the model
simulations are in line with GLEAM estimations. By contrast, the differences between
simulations and GLEAM estimations are large during the boreal winter, and the scaling
factors are substantially larger than 1.0, especially for December and January. Overall, the
global land averaged ET simulated by CLM are lower than GLEAM estimations, as the ET
scaling factors are greater than 1.0 for all 12 months. Despite the overall underestimation
on the global average, overestimations still occur in some months over several continents.
For example, overestimations are pronounced during May, June, and July over Asia and
Europe. The magnitudes of the scaling factors remarkably vary with continent and season.
For instance, the area-averaged scaling factors for January are 1.50, 3.30, 0.90, 1.99, 3.50,
and 1.04 for Africa, Asia, Australia, Europe, and North America and South America,
respectively. For the same continent, the difference in the scaling factors among different
months is large, for example, the maximum value in January is almost four times as large as
the minimum value in May over Asia. Overall, the scaling factors vary greatly with month
and continent, which indicates that the difference is evident between GLEAM ET and
CLM-simulated ET. Therefore, there is a strong potential to improve CLM in simulating ET.

Table 1. Scaling factor (ratio of the GLEAM-estimated ET to CLM-simulated ET for each month during 1986–1999) of
area-averaged values over the globe except for main Greenland and Antarctica, and over six continents.

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Global 2.28 1.89 1.48 1.12 1.03 1.05 1.03 1.09 1.23 1.28 1.53 2.17
Africa 1.50 1.33 1.45 1.31 1.35 1.22 1.11 1.16 1.53 1.65 1.65 2.01
Asia 3.30 2.56 1.71 1.11 0.88 0.88 0.94 1.02 1.18 1.09 1.28 2.51

Australia 0.90 0.94 0.87 0.88 1.05 1.19 1.17 0.99 0.83 0.80 0.85 0.93
Europe 1.99 2.00 1.39 0.99 0.95 0.97 0.96 1.05 1.36 1.73 2.04 2.31

North America 3.50 2.63 1.69 1.05 0.92 1.04 0.97 1.03 1.12 1.23 2.10 2.92
South America 1.04 1.07 1.08 1.17 1.27 1.37 1.36 1.38 1.25 1.15 1.08 1.04
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4.2. Evaluation

The performance of CLM and CLMET are evaluated based on various reference
datasets described in Section 3. Four statistical metrics, namely bias, RB, RMSE, and CC
are used as the quantitative criterion. In the following evaluations, Greenland, Antarctica,
Sahara, Arabian Peninsula, and Taklimakan are excluded in the analysis and masked out
in the following figures, as some of the reference data do not cover these areas.

4.2.1. ET

Table 2 presents the temporal evolution of simulated ET from types of simulations
(CLM and CLMET) over the globe against GLEAM-based ET during the period of 2006–
2018. It can be seen that the overestimations in CLM generally exist during this period,
and the most notable overestimation occurs in 2018, with the RB of 9.3% (Table 2). CLMET
effectively improve the performance in ET simulation by alleviating the general overesti-
mations, and the RBs of most years are within 4%. The RMSE are also significantly reduced
during this period. Spatially, Figure 3 illustrates the multi-year averages (2006–2018) of
ET derived from GLEAM, simulated by the CLM and CLMET, and the RBs of these two
simulations against GLEAM. Generally, both the CLM and CLMET reasonably capture
the spatial patterns of ET compared with the GLEAM data, e.g., higher ET in Amazonia,
central Africa, Indonesia islands, and lower ET in western America, Alaska, north Siberia,
and southeast Australia, as shown in Figure 3a–c. In addition, the global-averaged ET
are almost the same among GLEAM, CLM, and CLMET. However, both overestimation
and underestimation do exist at the regional scale in CLM; the areas with overestimation
and underestimation are nearly half and half (Figure 3e). CLMET effectively alleviates
both the overestimation and underestimation, obtaining ET values closer to GLEAM. The
global-averaged RB in CLM is 5.27%, with a substantial portion of areas where RBs exceed
10%. In CLMET, the global-averaged RB is reduced to 2.54%, and RBs are within 10% in
most areas of the global land. The RMSE value in CLM is 0.346 mm day−1 (126 mm year−1),
which is reduced to 0.118 mm day−1 (43 mm year−1) in CLMET. Likewise, the CC is
improved from 0.93 in CLM to 0.98 in CLMET. The improvement is more remarkable over
Asia and North America than other continents, with the RMSE reduced by 70.2% and
67.8%, respectively (Table 3). The latitudinal profiles of averaged RMSE values of CLM
and CLMET against GLEAM on different temporal scales during the period 2006–2018
are presented in Figure 4. The largest RMSE value of CLM-simulated ET against GLEAM
occurs near the equator where the magnitude of ET is relatively larger. The value gradu-
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ally decreases with the latitude increasing towards the two poles. CLMET significantly
reduces RMSE at almost all latitudes, with a greater improvement in low-latitude areas.
The statistics of the two types of simulations during different seasons over six continents
are shown in Table 3, and the relative difference of multi-year seasonal averaged ET is
presented in Figure 5. It can be seen that the CLM overestimates the global-averaged ET
in March–April–May (MAM) and June–July–August (JJA), while it underestimates ET in
September–October–November (SON) and December–January–February (DJF). The RBs
are 16.39%, 6.84%, −4.56% and −12.68% for MAM, JJA, SON, and DJF, respectively. At
the continental scale, the largest overestimation occurs in Asia during MAM, with an RB
as large as 23.95%, whereas the largest underestimation occurs in North America during
DJF, with an RB of −39.87%. CLMET significantly ameliorates the model’s performance,
as almost all the statistics in CLMET are superior to those in the CLM. The improvement
from CLM to CLMET is more substantial for JJA and SON than DJF and MAM. The RB is
reduced from 6.84% in CLM to 3.51% in CLMET during JJA, and from −4.56% in CLM to
−1.56% in CLMET during SON. As for continents, the greatest improvement occurs over
Asia, with the RB and RMSE reduced by 69.6% (from 7.04% in CLM to 2.14% in CLMET)
and 70.2% (from 0.312 mm day−1 in CLM to 0.093 mm day−1 in CLMET, equivalent to
from 114 mm year−1 to 34 mm year−1), respectively. Meanwhile, the CC over Asia is also
significantly improved.

Table 2. Temporal evolution of simulated ET from two types of simulations (CLM and CLMET)
against GLEAM-based ET over the globe during the period of 2006–2018.

Year
Bias (mm Day−1) RB (%) RMSE (mm Day−1) CC

CLM CLMET CLM CLMET CLM CLMET CLM CLMET

2006 0.002 0.049 6.44 3.40 0.330 0.101 0.94 0.97
2007 −0.127 −0.125 −2.58 −4.06 0.395 0.147 0.92 0.97
2008 −0.019 0.018 5.22 2.42 0.343 0.110 0.93 0.97
2009 −0.031 −0.012 4.37 1.87 0.348 0.112 0.91 0.98
2010 −0.023 −0.006 5.16 2.14 0.349 0.122 0.93 0.99
2011 −0.028 0.012 4.39 1.69 0.344 0.123 0.93 0.99
2012 −0.018 0.009 6.40 3.31 0.349 0.117 0.93 0.98
2013 0.006 0.005 6.85 3.94 0.334 0.113 0.93 0.99
2014 −0.011 0.026 6.20 3.11 0.340 0.112 0.93 0.96
2015 −0.022 0.014 4.91 2.35 0.346 0.122 0.93 0.98
2016 0.002 0.048 5.83 3.24 0.341 0.121 0.93 0.97
2017 −0.014 0.013 6.22 3.61 0.351 0.125 0.93 0.98
2018 0.022 0.021 9.31 5.99 0.330 0.112 0.91 0.98
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Figure 3. Multi-year averaged ET derived from (a) GLEAM, (b) CLM, and (c) CLMET, the relative
bias (RB) between (d) CLMET and CLM, (e) CLM and GLEAM, (f) CLMET and GLEAM, and (g) the
difference between the absolute value of (e) and absolute value of (f) during the period of 2006–2018.
The number in each title represents the global average.
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Table 3. Spatial evaluations of simulated ET from two types of simulations (CLM and CLMET) against GLEAM-based
ET over the globe and six continents annually and seasonally during the period 2006–2018. March–April–May (MAM);
June–July–August (JJA); September–October–November (SON); December–January–February (DJF).

Season Region Bias (mm Day−1) RB (%) RMSE (mm Day−1) CC

CLM CLMET CLM CLMET CLM CLMET CLM CLMET

Annual

Global −0.019 0.007 5.27 2.54 0.346 0.118 0.93 0.98
Africa 0.097 0.086 12.33 5.70 0.404 0.175 0.90 0.98
Asia −0.008 −0.013 7.04 2.14 0.312 0.093 0.92 0.99

Australia 0.074 −0.006 8.23 −0.13 0.231 0.087 0.89 0.94
Europe −0.059 −0.010 −2.41 −0.57 0.188 0.074 0.85 0.95

North America −0.035 0.013 4.69 4.54 0.286 0.092 0.89 0.98
South America −0.180 −0.014 −3.88 0.76 0.538 0.176 0.89 0.98

MAM

Global 0.000 0.037 16.39 12.26 0.426 0.158 0.88 0.98
Africa 0.063 0.125 15.95 13.17 0.448 0.225 0.91 0.97
Asia 0.046 0.020 23.95 15.23 0.418 0.149 0.88 0.97

Australia 0.106 0.014 13.01 1.57 0.227 0.096 0.90 0.93
Europe 0.011 0.052 14.10 9.30 0.276 0.104 0.87 0.97

North America 0.014 0.049 19.42 18.72 0.345 0.134 0.88 0.96
South America −0.304 −0.036 −7.27 0.15 0.656 0.191 0.88 0.98

JJA

Global 0.041 0.011 6.84 3.51 0.479 0.164 0.86 0.97
Africa 0.129 0.088 8.96 6.48 0.463 0.218 0.89 0.96
Asia 0.046 −0.018 10.22 2.92 0.478 0.158 0.79 0.96

Australia 0.039 0.035 8.61 9.85 0.251 0.102 0.66 0.83
Europe 0.087 0.002 6.53 1.14 0.425 0.142 0.68 0.93

North America 0.070 0.027 7.43 2.94 0.482 0.150 0.83 0.96
South America −0.189 −0.013 −8.73 2.40 0.579 0.178 0.90 0.98

SON

Global −0.070 −0.020 −4.56 −1.56 0.393 0.125 0.93 0.98
Africa 0.128 0.040 12.42 3.21 0.513 0.200 0.89 0.97
Asia −0.087 −0.041 −7.83 −3.87 0.322 0.098 0.94 0.99

Australia 0.125 −0.021 18.89 −4.96 0.319 0.138 0.83 0.92
Europe −0.228 −0.058 −28.21 −7.55 0.308 0.121 0.67 0.87

North America −0.127 −0.015 −6.73 1.35 0.329 0.097 0.89 0.98
South America −0.113 −0.001 −1.36 1.68 0.562 0.220 0.88 0.97

DJF

Global −0.048 −0.002 −12.68 −8.27 0.338 0.132 0.96 0.99
Africa 0.069 0.090 14.65 11.43 0.409 0.208 0.93 0.97
Asia −0.039 −0.012 −8.63 −0.48 0.251 0.072 0.96 0.99

Australia 0.027 −0.052 4.07 −5.12 0.282 0.147 0.89 0.93
Europe −0.107 −0.038 −31.44 −28.60 0.190 0.101 0.71 0.72

North America −0.098 −0.010 −39.87 −29.74 0.258 0.095 0.88 0.94
South America −0.112 −0.005 0.17 0.33 0.598 0.212 0.81 0.95
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We also assess CLM and CLMET with two independent reference datasets of ET,
MODIS-based, and MTE-based ET during the overlap period (2006–2011) between MODIS
and MTE. Figure 6 shows the global map of the multi-year averaged ET in CLM and
CLMET and their RBs against either MODIS- or MTE-based ET. In terms of global averaged
ET, both CLM and CLMET perform similarly relative to the reference data, with the
RBs less than 2%. However, it can be seen that the RBs in CLMET are smaller than
those in CLM, and the CCs in the former are also higher than those in the latter, when
comparing with MODIS or MTE in most continents (Table 4). For example, the evident ET
underestimation occurs in Europe with an RB of −6.303% and an RMSE of 0.127 against
MTE, and CLMET substantially reduces the RB and RMSE by 32.2% and 23.6%, respectively.
Meanwhile, the CC is improved from 0.92 in CLM to 0.96 in CLMET. This is consistent
with the result obtained from the validation against the GLEAM-based ET. Additionally,
the latitudinal profiles of multi-year averaged RMSE values during the overlap period
(2006–2018) between CLM-/CLMET-simulated ET and MODIS-/MTE-derived ET are
provided in Figure A1. At the seasonal time scale, the CLM overestimates the global-
averaged ET in MAM and JJA, while it underestimates ET in the other seasons compared
to MODIS- and MTE-based ET (Figures A2 and A3 and Tables A1 and A2), which is also in
line with the results obtained from the comparison with the GLEAM-based ET. CLMET
reduces biases for all seasons except for MAM when the reference dataset is MTE. The
difference between model-simulated ET and remote sensing-derived ET remains large
during DJF, nevertheless, the improvement is still significant for most continents during
this season.
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Table 4. Spatial evaluations of simulated ET from two types of simulations (CLM and CLMET) against two reference data
(MODIS- and MTE-based) over the globe and six continents annually during the time period 2006–2011.

Reference Region
Bias (mm Day−1) RB (%) RMSE (mm Day−1) CC

CLM CLMET CLM CLMET CLM CLMET CLM CLMET

MODIS

Global −0.008 0.017 0.81 −0.30 0.297 0.192 0.95 0.98
Africa 0.127 0.124 9.23 6.58 0.355 0.265 0.93 0.97
Asia −0.042 −0.050 −2.35 −0.98 0.286 0.155 0.93 0.98

Australia 0.139 0.070 14.01 7.34 0.245 0.156 0.92 0.94
Europe −0.045 −0.007 −3.69 −1.75 0.146 0.110 0.89 0.94

North America −0.013 0.022 0.62 1.47 0.235 0.152 0.93 0.97
South America −0.088 0.095 −1.02 5.16 0.435 0.407 0.92 0.95

MTE

Global −0.013 0.012 −0.08 −1.11 0.243 0.179 0.96 0.96
Africa 0.108 0.105 9.95 6.02 0.332 0.246 0.93 0.97
Asia −0.036 −0.044 −2.02 −0.70 0.222 0.131 0.96 0.98

Australia 0.090 0.021 9.98 3.31 0.197 0.134 0.93 0.94
Europe −0.068 −0.031 −6.30 −4.27 0.127 0.097 0.92 0.96

North America −0.024 0.011 −1.11 −0.19 0.202 0.120 0.94 0.98
South America −0.064 0.119 −3.19 3.32 0.320 0.288 0.94 0.97

Furthermore, we analyze climatological seasonal cycles of ET from the two types of
simulations and GLEAM over the global land and six continents to validate the improve-
ment from CLM to CLMET, as shown in Figure 7. Globally, the CLMET simulation is closer
to GLEAM compared with CLM, with an RMSE value reduced from 0.06 to 0.02 (Figure 7a),
which demonstrates the efficient correction effect. The improvement can be attributed
to CLMET’s ability in mitigating the underestimation for SON and overestimation for
JJA in most continents in the CLM simulation. The model performance varies with the
continent. For instance, the improvement effectiveness is relatively low in the areas where
the seasonal ET variability is small, such as Africa and Australia, whereas the effectiveness
is high in the areas where the ET seasonality is strong, such as Asia, Europe, and North
America. The time series of the simulated ET in the CLM and CLMET against GLEAM and
the corresponding spatial RMSE values over the globe and six continents is illustrated in
Figure 8. The correction effectiveness of the proposed method for overestimation existing
in CLM is usually efficient over most continents and most seasons, which is consistent with
the finding of Wang et al., (2017). However, the effectiveness for underestimations depends
on whether the area is dominated by water limit regime or not, which can be verified by
the comparison between South America and Australia. In South America (Figure 8g), ET
is high all year around with the value of greater than 2.0 mm day−1 (Figure 7g) because
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of the abundant rainfall and radiation. With sufficient water supply, ET can be increased
in CLMET without water limit, which corrects the ET underestimation in CLM. However,
the adjustment from lower values to higher values are restricted by the water supply in
water-limited regimes in Australia (Figure 8d). When this adjustment is implemented, the
model checks whether water stored in the soil layer and vegetation canopy can satisfy the
demand for elevating ET. The extent of increasing ET relies on the availability of water
stored in these reservoirs. As a result, the limited bias correction for underestimation
in Australia may result from the limited water supply. The correction effectiveness is
largely determined by the water supply-controlled mechanism and varies with continents.
Figure 9 shows the boxplots of RMSE of monthly ET simulated from CLM and CLMET
against GLEAM during the period 2006–2018 globally and over six continents. Both me-
dians and ranges of RMSE in CLM over six continents are very different. The median in
Australia is 0.16 mm day−1 (4.87 mm month−1), whereas the value in South America is
as large as 0.47 mm day−1 (14.30 mm month−1). The ranges in these two continents are
0.39 mm day−1 (11.86 mm month−1) and 1.33 mm day−1 (40.45 mm month−1), respectively.
The values of the medians and RMSE are greatly reduced by CLMET. For instance, the
range of RMSE in South America becomes 0.40 mm day−1 (12.17 mm month−1), which is a
71% reduction from CLM to CLMET. The improvement in ET simulations from CLM to
CLMET against the MODIS or MTE ET is similar to the improvement with GLEAM as the
reference data (Figures A4–A6).
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4.2.2. Runoff

In this study, we use the total runoff retrieved from the University of New Hampshire-
GRDC to assess the performance of CLM and CLMET in simulating runoff. The global-
averaged total runoff simulated by CLM and CLMET is similar to the GRDC-based estimate,
and the values are 0.88, 0.86, and 0.84 mm day−1 (321, 314, and 307 mm year−1) for
CLM, CLEMT, and GRDC, respectively. Regionally, CLM evidently overestimates total
runoff over more than half of the global land, such as central United States, Argentina,
central Africa, Indian Peninsula, southern Europe, northeast China, and most areas of
Australia, while underestimations occur over Alaska, central Amazon, south Africa, and
northern Siberia (Figure 10e). CLMET effectively alleviates both the overestimations and
underestimations, with a global average RB reduced from 18.66% to 16.77%, RMSE reduced
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from 0.661 mm day−1 (241 mm year−1) to 0.415 mm day−1 (151 mm year−1), and CC
increased from 0.83 to 0.94. In terms of the continents, the effectiveness of improvement in
CLMET varies with the continent, and a smaller RB and RMSE can be found in CLMET
(Table 5). For example, in Europe, the substantial alleviation occurs where the value of RB
and RMSE are reduced by 32.2% and 40.1% (from 25.52% in CLM to 17.30% in CLMET,
and from 0.367 mm day−1 in CLM to 0.220 mm day−1 in CLMET, equivalent to from
134 mm year−1 to 80 mm year−1), respectively, and the value of CC is improved by 0.1
(from 0.85 to 0.95). Additionally, the evaluation result of runoff in Europe is consistent
with the result of ET. The ET in CLM is underestimated over Europe, which leads to
more runoff amount and overestimation of runoff. In contrast, CLMET alleviates the
underestimation of ET by elevating the amount of ET, and consequently obtains more
reasonable runoff. Because the in situ observed discharge data used in the University
of New Hampshire (UNH)-GRDC do not have a consistent temporal coverage (most of
them are from 1980–1999), only the multi-year mean annual and monthly runoff data are
available for this runoff dataset. To show the difference of simulated runoff in CLM and
CLMET, we select twelve regions with a variety of climate regimes, and investigate the
seasonal cycles of runoff simulated by these two types of simulations (Figure 11). The
GRDC-based data show that the runoff seasonality is strong in West Siberia, East Siberia,
Canada, and the Amazon basin (Figure 11a–d). CLM substantially underestimates the
seasonality by simulating much lower runoff values in the rainy season in these regions.
The low runoff in CLM is increased by CLMET, resulting in more realistic seasonal cycles
of runoff. CLM reasonably simulates the seasonal cycle of runoff in Congo and India, but
overestimates runoff with a similar magnitude in all seasons compared with the GRDC-
based data. This overestimation is reduced in CLMET, leading to a closer runoff magnitude
to the reference data. In Central Europe, Sahara-Arabia, and Australia, CLMET alleviates
the overestimation of runoff in the dry season existing in CLM.
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Table 5. Statistics of CLM and CLMET simulated annual total runoff against GRDC-based observations over the globe and
six continents.

Region
Bias (mm Day−1) RB (%) RMSE (mm Day−1) CC

CLM CLMET CLM CLMET CLM CLMET CLM CLMET

Global 0.041 0.021 18.66 16.77 0.661 0.415 0.83 0.94
Africa 0.139 0.086 24.03 21.91 0.533 0.329 0.80 0.91
Asia −0.005 −0.007 13.60 13.44 0.670 0.414 0.83 0.94

Australia 0.129 0.076 12.84 12.00 0.163 0.107 0.76 0.91
Europe 0.077 0.044 25.52 17.30 0.367 0.220 0.85 0.95
North

America 0.038 0.019 20.18 18.21 0.505 0.311 0.81 0.94

South
America −0.009 −0.016 21.53 20.06 1.144 0.743 0.80 0.94
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4.2.3. Soil Moisture

Changes in ET will inevitably influence the soil moisture. Using the SMAP-based soil
moisture data as the reference, we compare the CLM- and CLMET-simulated soil moisture
to assess the impact of the ET improvement on soil moisture. The comparisons of soil
moisture within the surface layer (top 0–5 cm) during April 2015–December 2018 at the
global and the continental scales are shown in Figure 12 and Table 6. Both CLM and CLMET
realistically simulate the spatial pattern and the global average of surface soil moisture
compared with the SMAP-based data (Figure 12a–c). However, substantial overestimation
and underestimation at the regional scale do exist. Both two models overestimate surface
soil moisture over the areas of the Southern Hemisphere, low-latitude, and most mid-
latitude of the Northern Hemisphere, while underestimations occur over the high latitudes
of the Northern Hemisphere. However, these biases are reduced from CLM to CLMET,
which is supported by a smaller RB average over the globe compared with SMAP-based
soil moisture (16.03% versus 20.55%), as shown in Figure 12e–f. The improvement in soil
moisture resulting from corrected ET in CLMET can also be found over each continent
(Table 6) and in all seasons (Table A3). Overall, the reduction of RB values is mostly about
20% over different continents, which is not as great as that in ET and runoff. According
to the water balance budget, ET and runoff are balanced by total precipitation at a longer
time scale. Since total precipitation is kept the same in the offline CLM5, the impact of
the correction method on runoff has a similar magnitude as the impact on ET. In the term
of soil moisture, its change is more complicated. From the respective of water balance,
the change of water content in soil with respect to the time step SM/∆t is balanced by
precipitation—(ET + runoff). The sum of ET and runoff does not change much between
these two types of models, as their change directions are usually opposite. As a result, the
impact of the correction method on soil moisture is smaller compared with the impact on
ET and runoff.
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Table 6. Spatial evaluations of simulated soil moisture in top 0–5 cm and top 0–100 cm layer from two types of simulations
(CLM and CLMET) against SMAP-based data over the globe and six continents annually during the period April 2015 to
December 2018.

Soil Layer Region
Soil Moisture (m3 m−3) RB (%) RMSE (m3 m−3) CC

SMAP CLM CLMET CLM CLMET CLM CLMET CLM CLMET

0–5 cm

Global 0.231 0.236 0.232 20.6 16.0 0.119 0.101 0.64 0.73
Africa 0.165 0.222 0.211 46.8 38.6 0.095 0.079 0.75 0.80
Asia 0.251 0.223 0.224 1.5 0.0 0.120 0.103 0.62 0.72

Australia 0.104 0.155 0.146 72.2 59.3 0.069 0.057 0.82 0.86
Europe 0.291 0.261 0.262 3.3 1.5 0.150 0.129 0.39 0.60

North America 0.244 0.234 0.232 14.4 10.6 0.128 0.110 0.61 0.73
South America 0.226 0.301 0.286 20.55 16.03 0.110 0.091 0.80 0.84

0–100 cm

Global 0.250 0.253 0.253 46.81 38.56 0.079 0.070 0.79 0.86
Africa 0.189 0.222 0.219 1.50 0.01 0.067 0.059 0.78 0.84
Asia 0.271 0.256 0.258 72.17 59.32 0.076 0.066 0.79 0.86

Australia 0.132 0.172 0.167 3.26 1.49 0.061 0.054 0.86 0.91
Europe 0.299 0.283 0.285 14.40 10.57 0.099 0.088 0.80 0.89

North America 0.260 0.255 0.255 51.08 41.67 0.088 0.078 0.80 0.87
South America 0.245 0.283 0.278 19.91 17.47 0.074 0.065 0.79 0.85

Soil moisture in the root zone soil layer (top 0–100 cm) derived from the SMAP data
and simulated by two models, and the statistics of CLM and CLMET against the SMAP are
shown in Figure A7, Tables 6 and A4. CLMET improves the simulations of root zone soil
moisture at the global and continental scales, but the improvements are relatively smaller
compared with the improvements in surface layer soil moisture.

5. Discussion

In this study, we extend our previous study from CONUS to the globe. In our previous
study (Wang et al. 2017), we found that the bias correction method reduces RMSE of
CLM4.5 simulated annual ET by approximate 50% over CONUS with GLEAM ET as the
reference data. This study reports a larger reduction in annual ET compared with GLEAM
ET, which is as big as 65.9% from 0.346 to 0.116 mm day−1 (126 to 42 mm year−1) over
the globe. The biggest improvement occurs in Asia where RMSE is reduced from 0.312
to 0.093 mm day−1 (114 to 34 mm year−1) for annual ET. Moreover, we found that the
correction method is effective when underestimation in ET occurs in the areas with plenty
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of precipitation (e.g., Amazon) in this study, whereas the correction effectiveness for ET
underestimation is undesirable due to the water limit in most CONUS areas in our previous
study (Wang et al. 2017). This indicates that the effectiveness of the bias correction method
is largely determined by the climate regime of the region, i.e., water limit regime or energy
limit regime. Although the correction method significantly improves models in simulating
ET in most areas over the globe, there are still several issues worth being discussed. Firstly,
the scaling factor derived from GLEAM ET and CLM5 simulated ET is at the monthly
scale instead of the daily or hourly scale. There are two reasons for this treatment. One
is that the scaling factor at short time scales fluctuates very much, which may result in a
poor correction effect. The other is that the long-term and high-quality remote sensing-
based ET product at the daily or hourly scale is rare. Even for daily GLEAM ET data,
further assessments are still needed. In contrast, the year-to-year variation of monthly ET is
much smaller, and the remote-sensing data at the monthly scale is more reliable. Therefore,
we decide to estimate the monthly scaling factors. When these factors are applied to the
hourly simulation in CLM5, the corrected ET does not always become better due to the
temporal scale mismatch between the scaling factor and the hourly simulation. However,
the aggregated results at longer time scales (monthly or annually) with the correction
method is superior to the original simulations. Secondly, we calculate the scaling factors by
using the averaged ET over the entire calibration period, instead of decomposing averaged
ET into the related terrestrial variables. ET is a complex hydrothermal process, which is in
connection with many terrestrial variables (e.g., air temperature, air humidity, wind, runoff,
soil moisture and LAI). The relationships between ET and these variables are usually
nonlinear. Therefore, it is very challenging to deconvolute ET with these variables, which
is worth being investigated in a future study. Thirdly, the entire period of 1980–2018 is
evenly divided into the calibration period and the validation period, with 1980–1999 for
the former and 2000–2018 for the latter. The assumption in applying this method is that
the relationship between the model ET and observational ET remains unchanged from
the calibration period to the validation period. This is a reasonable assumption, which is
supported by the study of Wang et al., (2017) who found that changes in the scaling factor
between two periods were within 10% over CONUS. However, under the increasingly
intensified climate change and human activities in the future, further studies are needed to
examine whether the time-invariant relationship can resonantly hold or not.

In this study, we select the GLEAM data as the remote sensing-based ET product
to derive the ET scaling factor because of its relatively higher quality and longer record.
Besides, the MODIS-based and MTE-based ET are also used as the reference data to
validate the improvement effectiveness. All of these remote sensing-based ET products
have a similar value to each other in terms of the global average. However, GLEAM-
based ET shows an evidently higher ET than both MODIS-based and MTE-based ET
over the Amazon region. This higher ET in GLEAM may introduce an “over-correction”,
leading to CLM-based “underestimations” turning to CLMET-based “overestimations”
over the Amazon region. It can be indicated by the statistical metric values of the model
performance against GLEAM, MODIS, and MTE over South America. The RB values
in CLM before correction against GLEAM, MODIS, and MTE ET are 3.875%, −1.023%,
and −3.186%, but they become 0.756%, 5.163%, and 3.319% in CLMET after correction,
respectively. Generating higher quality ET products by blending multiple datasets might
help in obtaining a robust correction effect with the method, which can be explored in a
future study. In addition, it should be noted that the temporal coverage of runoff from the
CLM is different from that of the UNH-GRDC dataset. The inconsistency in the temporal
coverage may have an impact on the evaluation of runoff. Therefore, up-to-date and high-
quality reference datasets (e.g., runoff, soil moisture) are also required for the assessment
of land surface models in a future study.

Accurate global hydrological simulations in CLM inevitably depend on the profound
understanding of hydrology mechanisms and the realistic parameterizations of hydro-
logical processes, which takes a long time to achieve the objective. The bias correction
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algorithm used in this study provides a simple alternative by taking advantage of high-
quality remote sensing-ET products without considering the physical mechanisms of CLM.
The prominent correction effectiveness indicates that there is a great potential for CLM to
improve hydrological simulations. Admittedly, over regions where the correction method
does not improve the estimates of ET and other related variables, great and continuous
efforts should be taken to understand the physical processes and to develop the associated
parameterizations.

6. Conclusions

We apply a bias correction approach to the Community Land Model version 5.0
(CLM5) globally by utilizing the remote sensing-based ET dataset. Results reveal that
the correction approach can alleviate both the overestimation and underestimation of
ET by CLM5 over the globe. The adjustment to overestimation is generally effective,
whereas the effectiveness for underestimation is determined by the ET regime, namely
water limited or energy limited. In areas with abundant precipitation, the underestimation
is effectively corrected by increasing ET without the water supply limit. In the areas
with rare precipitation, however, increasing ET is limited by water supply, which leads
to an undesirable correction effect. Compared with the ET simulated by CLM5, the bias
correction approach can reduce the global-averaged relative bias (RB) and the root mean
square error (RMSE) by 51.8% and 65.9% against Global Land Evaporation Amsterdam
Model (GLEAM) ET data, respectively. Meanwhile, the correlation coefficient (CC) can also
be improved from 0.93 to 0.98. Continentally, the most substantial ET improvement occurs
in Asia, with the RB and RMSE decreased by 69.7% (from 7.04% to 2.14%) and 70.2% (from
0.312 mm day−1 to 0.093 mm day−1, equivalent to from 114 mm year−1 to 34 mm year−1),
and the CC increased from 0.92 to 0.99, respectively. Consequently, benefiting from the
improvement of ET, the simulations of runoff and soil moisture are also improved over
the globe and in each of six continents, and the improvement varies with region. This
study highlights that the use of a satellite-based ET dataset is beneficial to hydrological
simulations in land surface models over the globe, which will have a great impact on the
development of earth system models in the future.
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Global 0.018 0.048 3.06 −2.76 0.352 0.278 0.94 0.96 
Africa 0.074 0.149 6.28 5.80 0.422 0.393 0.91 0.94 
Asia 0.036 −0.002 1.66 −9.61 0.385 0.255 0.90 0.95 

Australia 0.138 0.036 13.91 2.07 0.244 0.176 0.93 0.93 
Europe 0.042 0.061 7.36 −0.49 0.200 0.182 0.89 0.95 

North America 0.029 0.045 3.74 −2.01 0.273 0.237 0.91 0.94 
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JJA Global 0.011 −0.025 6.57 1.91 0.484 0.307 0.87 0.94 
Africa 0.141 0.099 9.40 7.89 0.495 0.369 0.89 0.93 

Figure A6. Boxplot of RMSE values of CLM and CLMET based ET against the MODIS and MTE data during the period of
2006–2011 over the globe and six continents.
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Figure A7. Multi-year averaged soil moisture (m3 m−3) in the root zone layer (top 0–100 cm) during the period of April
2015 to December 2018 from (a) SMAP, (b) CLM, and (c) CLMET, the relative bias between (d) CLMET and CLM, (e) CLM
and SMAP, (f) CLMET and SMAP, and (g) |e|-|f|. The numbers in title represent global-domain averaged values.

Table A1. Spatial evaluations of simulated ET from two types of simulations (CLM and CLMET) against MODIS-based ET
over the globe and each continent seasonally during the period of 2006–2011. March–April–May (MAM); June–July–August
(JJA); September–October–November (SON); December–January–February (DJF).

Season Region
Bias (mm Day−1) RB (%) RMSE (mm Day−1) CC

CLM CLMET CLM CLMET CLM CLMET CLM CLMET

MAM

Global 0.018 0.048 3.06 −2.76 0.352 0.278 0.94 0.96
Africa 0.074 0.149 6.28 5.80 0.422 0.393 0.91 0.94
Asia 0.036 −0.002 1.66 −9.61 0.385 0.255 0.90 0.95

Australia 0.138 0.036 13.91 2.07 0.244 0.176 0.93 0.93
Europe 0.042 0.061 7.36 −0.49 0.200 0.182 0.89 0.95

North America 0.029 0.045 3.74 −2.01 0.273 0.237 0.91 0.94
South America −0.195 0.096 −6.10 3.83 0.417 0.346 0.93 0.93

JJA

Global 0.011 −0.025 6.57 1.91 0.484 0.307 0.87 0.94
Africa 0.141 0.099 9.40 7.89 0.495 0.369 0.89 0.93
Asia −0.020 −0.091 9.85 −1.94 0.506 0.308 0.80 0.92

Australia 0.049 0.046 7.93 10.87 0.203 0.246 0.83 0.78
Europe 0.013 −0.090 4.08 −1.87 0.440 0.285 0.70 0.87

North America 0.093 0.028 8.83 3.12 0.502 0.304 0.84 0.92
South America −0.207 −0.012 −8.56 5.23 0.500 0.291 0.94 0.96

SON

Global −0.025 0.026 −4.88 −0.82 0.357 0.224 0.95 0.97
Africa 0.187 0.104 13.92 4.62 0.522 0.303 0.89 0.96
Asia −0.089 −0.041 −12.93 −8.88 0.287 0.166 0.95 0.98

Australia 0.161 0.024 18.23 −1.42 0.320 0.236 0.85 0.88
Europe −0.139 0.026 −21.42 3.56 0.191 0.082 0.84 0.93

North America −0.062 0.044 −5.83 3.36 0.233 0.149 0.94 0.97
South America 0.005 0.124 3.18 7.16 0.560 0.384 0.88 0.94

DJF

Global −0.037 0.017 −31.65 −25.85 0.310 0.258 0.97 0.98
Africa 0.105 0.143 4.29 3.80 0.413 0.390 0.92 0.94
Asia −0.096 −0.066 −50.59 −45.81 0.230 0.175 0.97 0.98

Australia 0.211 0.174 16.39 11.35 0.342 0.299 0.91 0.94
Europe −0.096 −0.025 −43.58 −32.95 0.140 0.108 0.74 0.69

North America −0.115 −0.030 −50.57 −36.00 0.181 0.168 0.95 0.92
South America 0.049 0.175 5.15 6.38 0.551 0.423 0.84 0.91
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Table A2. Same as Table A1, but for comparison with MTE−based ET.

Season Region Bias (mm Day−1) RB(%) RMSE (mm Day−1) CC
CLM CLMET CLM CLMET CLM CLMET CLM CLMET

MAM

Global −0.003 0.026 0.48 −5.51 0.305 0.232 0.95 0.97
Africa 0.107 0.182 10.23 8.08 0.359 0.314 0.94 0.97
Asia −0.004 −0.042 −2.63 −13.35 0.328 0.212 0.92 0.96

Australia 0.159 0.058 18.95 6.14 0.254 0.179 0.93 0.93
Europe −0.044 −0.025 −1.25 −8.23 0.190 0.146 0.91 0.97

North America −0.025 −0.008 −1.28 −8.03 0.246 0.173 0.93 0.96
South America −0.131 0.161 −5.05 5.14 0.352 0.327 0.94 0.97

JJA

Global 0.010 −0.027 2.29 −0.39 0.369 0.253 0.91 0.95
Africa 0.109 0.067 5.52 5.22 0.400 0.316 0.92 0.94
Asia −0.036 −0.108 2.68 −5.53 0.374 0.259 0.87 0.94

Australia 0.046 0.044 10.11 15.05 0.189 0.259 0.81 0.81
Europe 0.037 −0.066 1.80 −3.14 0.306 0.178 0.81 0.92

North America 0.067 0.001 4.24 −0.31 0.396 0.230 0.89 0.94
South America −0.110 0.085 −8.99 5.17 0.380 0.269 0.95 0.97

SON

Global −0.044 0.007 −7.41 −1.87 0.292 0.203 0.96 0.98
Africa 0.134 0.051 7.87 1.62 0.430 0.285 0.92 0.96
Asia −0.071 −0.023 −10.44 −3.65 0.233 0.147 0.97 0.98

Australia 0.078 −0.059 8.75 −10.44 0.226 0.191 0.90 0.92
Europe −0.200 −0.034 −29.10 −6.68 0.234 0.089 0.86 0.93

North America −0.076 0.030 −7.58 2.56 0.230 0.120 0.94 0.98
South America −0.036 0.084 −3.77 0.96 0.396 0.356 0.93 0.95

DJF

Global −0.014 0.040 −7.33 −0.35 0.242 0.203 0.98 0.98
Africa 0.083 0.120 9.29 6.49 0.358 0.300 0.95 0.96
Asia −0.032 −0.002 −8.97 0.06 0.172 0.123 0.98 0.99

Australia 0.078 0.041 5.94 1.71 0.240 0.233 0.93 0.93
Europe −0.067 0.003 −17.58 −8.81 0.126 0.094 0.80 0.70

North America −0.065 0.021 −18.52 −3.57 0.159 0.131 0.94 0.94
South America 0.022 0.147 0.29 2.62 0.394 0.356 0.90 0.95

Table A3. Spatial evaluations of simulated soil moisture in top 0–5 cm layer from two types of simulations (CLM and CLMET)
against SMAP-based data over the globe and each continent seasonally during the period of April 2015 to December 2018.

Season Region
Soil moisture (m3 m−3) RB(%) RMSE(m3 m−3) CC

SMAP CLM CLMET CLM CLMET CLM CLMET CLM CLMET

MAM

Global 0.241 0.242 0.237 22.53 17.66 0.142 0.121 0.27 0.44
Africa 0.169 0.223 0.211 47.91 41.01 0.095 0.078 0.70 0.76
Asia 0.253 0.215 0.218 7.03 5.04 0.163 0.139 0.05 0.22

Australia 0.111 0.156 0.146 70.06 57.64 0.067 0.056 0.73 0.79
Europe 0.322 0.300 0.295 5.00 1.27 0.159 0.134 −0.26 0.04

North America 0.256 0.244 0.240 15.14 10.88 0.149 0.127 0.18 0.37
South America 0.249 0.321 0.302 47.74 37.67 0.115 0.094 0.65 0.73

JJA

Global 0.227 0.290 0.277 45.38 38.19 0.131 0.109 0.58 0.66
Africa 0.168 0.224 0.213 49.29 41.78 0.096 0.081 0.67 0.73
Asia 0.252 0.319 0.306 38.52 32.16 0.136 0.113 0.60 0.68

Australia 0.110 0.161 0.150 65.35 53.94 0.072 0.058 0.74 0.80
Europe 0.265 0.285 0.283 24.80 22.79 0.135 0.116 0.31 0.50

North America 0.233 0.310 0.295 54.09 44.93 0.157 0.132 0.35 0.47
South America 0.227 0.298 0.283 57.21 48.28 0.112 0.095 0.69 0.76

SON

Global 0.223 0.235 0.231 27.30 22.89 0.123 0.106 0.38 0.52
Africa 0.167 0.225 0.214 56.17 48.47 0.099 0.083 0.69 0.75
Asia 0.250 0.223 0.224 2.19 0.69 0.126 0.108 0.36 0.50

Australia 0.089 0.139 0.132 81.98 71.81 0.067 0.057 0.76 0.81
Europe 0.266 0.272 0.270 20.54 17.54 0.147 0.129 −0.17 0.12

North America 0.237 0.239 0.235 20.08 15.88 0.133 0.116 0.17 0.38
South America 0.201 0.283 0.271 64.08 55.52 0.113 0.097 0.69 0.76

DJF

Global 0.232 0.177 0.183 −3.04 −3.32 0.174 0.148 0.07 0.23
Africa 0.155 0.216 0.206 55.54 48.94 0.102 0.086 0.67 0.73
Asia 0.248 0.135 0.150 −34.59 −29.96 0.195 0.166 0.06 0.22

Australia 0.108 0.165 0.154 84.87 70.04 0.072 0.061 0.73 0.79
Europe 0.309 0.189 0.201 −30.25 −27.81 0.217 0.185 −0.20 −0.02

North America 0.250 0.145 0.158 −26.96 −24.17 0.196 0.167 −0.03 0.17
South America 0.227 0.301 0.286 50.28 41.34 0.110 0.091 0.64 0.73
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Table A4. Same as Table A3, but for soil moisture in top 0–100 cm layer.

Season Region
Soil Moisture (m3 m−3) RB(%) RMSE (m3 m−3) CC

SMAP CLM CLMET CLM CLMET CLM CLMET CLM CLMET

MAM

Global 0.259 0.245 0.247 14.92 12.96 0.096 0.084 0.55 0.66
Africa 0.189 0.221 0.218 44.59 39.31 0.068 0.059 0.81 0.85
Asia 0.273 0.234 0.238 −4.67 −4.26 0.100 0.088 0.36 0.50

Australia 0.138 0.178 0.173 107.34 94.17 0.063 0.056 0.84 0.88
Europe 0.327 0.294 0.298 −0.08 −0.39 0.114 0.100 0.24 0.50

North America 0.271 0.242 0.245 2.44 1.95 0.108 0.095 0.50 0.63
South America 0.262 0.299 0.294 33.55 29.30 0.079 0.069 0.80 0.85

JJA

Global 0.249 0.274 0.272 30.40 26.90 0.079 0.069 0.73 0.79
Africa 0.190 0.223 0.220 42.48 37.59 0.067 0.059 0.79 0.83
Asia 0.275 0.295 0.294 19.16 17.16 0.076 0.067 0.73 0.79

Australia 0.133 0.174 0.169 106.35 93.73 0.060 0.054 0.83 0.87
Europe 0.284 0.285 0.286 13.08 12.00 0.093 0.081 0.64 0.76

North America 0.253 0.284 0.280 28.78 25.15 0.088 0.078 0.59 0.66
South America 0.249 0.286 0.281 35.52 31.12 0.075 0.066 0.82 0.86

SON

Global 0.243 0.263 0.261 30.44 26.75 0.076 0.067 0.64 0.72
Africa 0.191 0.226 0.222 49.82 44.10 0.068 0.060 0.80 0.84
Asia 0.269 0.279 0.278 14.37 12.67 0.071 0.063 0.61 0.70

Australia 0.123 0.162 0.157 120.15 105.66 0.057 0.051 0.84 0.88
Europe 0.276 0.284 0.283 16.75 14.68 0.092 0.081 0.46 0.63

North America 0.252 0.272 0.269 23.44 20.29 0.086 0.076 0.56 0.68
South America 0.227 0.267 0.262 41.28 36.21 0.073 0.064 0.82 0.86

DJF

Global 0.249 0.229 0.232 10.34 9.00 0.095 0.084 0.35 0.48
Africa 0.184 0.219 0.216 43.81 38.92 0.069 0.061 0.78 0.82
Asia 0.266 0.215 0.221 −11.92 −10.58 0.100 0.088 0.33 0.46

Australia 0.135 0.175 0.170 100.37 87.83 0.061 0.054 0.84 0.87
Europe 0.309 0.270 0.274 −2.83 −2.77 0.114 0.100 0.12 0.29

North America 0.263 0.222 0.227 −4.04 −3.76 0.109 0.095 0.32 0.48
South America 0.243 0.282 0.277 35.15 30.79 0.075 0.066 0.79 0.84
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