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Abstract: Numerous studies have confirmed that climate change leads to a decrease in the net
ecosystem productivity (NEP) of terrestrial ecosystems and alters regional carbon source/sink
patterns. However, the response mechanism of NEP to climate change in the arid regions of Central
Asia remains unclear. Therefore, this study combined the Carnegie-Ames—Stanford approach (CASA)
and empirical models to estimate the NEP in Central Asia and quantitatively evaluate the sensitivity
of the NEP to climate factors. The results show that although the net primary productivity (NPP)
in Central Asia exhibits an increasing trend, it is not significant. Soil heterotrophic respiration (RH)
has increased significantly, while the NEP has decreased at a rate of 6.1 g Cm210al. Spatially,
the regional distribution of the significant increase in RH is consistent with that of the significant
decrease in the NEP, which is concentrated in western and southern Central Asia. Specifically, the
NPP is more sensitive to precipitation than temperature, whereas RH and NEP are more sensitive
to temperature than precipitation. The annual contribution rates of temperature and precipitation
to the NEP are 28.79% and 23.23%, respectively. Additionally, drought has an important impact
on the carbon source/sink in Central Asia. Drought intensified from 2001 to 2008, leading to a
significant expansion of the carbon source area in Central Asia. Therefore, since the start of the 21st
century, climate change has damaged the NEP of the Central Asian ecosystem. Varying degrees of
warming under different climate scenarios will further aggravate the expansion of carbon source
areas in Central Asia. An improved understanding of climate change impacts in Central Asia is
critically required for sustainable development of the regional economy and protection of its natural
environment. Our results provide a scientific reference for the construction of the Silk Road Economic
Belt and global emissions reduction.

Keywords: vegetation carbon source and sink; net ecosystem productivity; net primary productivity;
sensitivity analysis; Central Asia

1. Introduction

Since 1880, the average global temperature has increased by 0.85 £ 0.2 °C [1]. The
burning of fossil fuels and the rapid reduction in the forest area have resulted in the
emission of large quantities of carbon into the atmosphere. Therefore, climate change and
increasing atmospheric carbon dioxide concentrations have attracted extensive attention [2].
The Paris Agreement stipulates that by the end of this century, the temperature rise should
not exceed the pre-industrialization level by more than 2 °C [3]. To achieve this goal, we
must better understand the feedback relationship between terrestrial ecosystems and the
climate. The net ecosystem productivity (NEP) represents the net carbon exchange between
terrestrial ecosystems and the atmosphere [4]. It is an important index for the quantitative
estimation of the carbon source/sink of terrestrial ecosystems [5,6].
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At present, NEP estimation has become the main target of carbon research. Research
on large-scale forest and grassland ecosystems has improved our understanding of changes
in global and regional carbon balances and expenditures [7-9]. A climate-driven soil
respiration model was established using a global database to analyze the temporal and
spatial distributions of global soil respiration and forest ecosystem NEP [10]. Tropical
rainforests in terrestrial ecosystems are generally considered major contributors to global
carbon sinks. However, net carbon emissions from tropical forests may likely be neutral.
Deforestation and degradation will further lead to the transformation of carbon sinks into
carbon sources [11]. Affected by seasonal warming, the annual distribution pattern of soil
respiration in forest ecosystems in northern China has changed, with a significant shortening
of the autumn carbon sink period [12]. Affected by drought, the carbon sink of grassland
ecosystems in the United States will weaken; some regions may also be transformed into
carbon sources [4]. Climate warming has accelerated soil respiration, resulting in carbon
neutral grassland ecosystems in northern China over the last 20 years [13]. At the regional
scale, 70% of China’s regions are carbon sinks, with highest concentrations in the southeastern
and southwestern monsoon regions [14]. Estimations from biogeochemical and productivity
models based on remote sensing have shown that the contribution rate of climate change to
changes in carbon sinks in terrestrial ecosystems in China is 40% [15]. There is a significant
exponential correlation among environmental factors, such as temperature, precipitation, and
carbon emissions, on the Qinghai Tibet Plateau [16]. Climate change has an important impact
on the terrestrial ecosystem NEP. In addition, there is a strong logarithmic correlation
between the NEP and seasonal carbon absorption-release ratio [7]. However, owing to the
scarcity of carbon flux sites, obtaining carbon absorption and release data is difficult. In
contrast, empirical statistical models and remote sensing are widely used [17].

Central Asia is an arid and semi-arid region; globally, it is one of the most sensitive
regions to climate change. Some studies show that the surface temperature in Central
Asia increased significantly (by 0.36 °C to 0.42 °C) from 1979 to 2011, rendering it a
center of global warming [18]. Different degrees of warming in winter and spring will
not only change the vegetation phenology, but also affect regional extreme precipitation
events [19]. From 1936 to 2005, indices related to extreme precipitation (e.g., the annual
total precipitation, annual precipitation intensity, Rx1day, and Rax5day) showed upward
trends. Extreme precipitation and mild drought will likely increase significantly in the late
21st century [20]. Although the trend is small, Central Asia has become drier [21]. Climate
change and drought are the main drivers of vegetation dynamics and variously affect soil
respiration. The semi-arid ecosystem carbon flux is the main contributor to variations in
the global ecosystem carbon flux. Therefore, the quantitative estimation of the ecosystem
NEP in Central Asia is of great significance.

In the context of climate change, research on the ecosystem carbon cycle in arid
areas of Central Asia has significantly increased [22]. Studies have found that farmland,
grassland, forest, and shrub share a similar response to climate change; grassland is the
most sensitive ecosystem in Central Asia [23]. Both climate change and grazing affect
the grassland ecosystem, which is the main carbon source [24]. The estimation of the
grassland ecosystem NEP lays a foundation for the comprehensive evaluation of the
terrestrial ecosystem NEP [5,25]. However, elucidation of the impact of climate factors
on the terrestrial ecosystem NEP remains necessary. In the past two decades, problems
have persisted regarding the sensitivity of the vegetation net primary productivity (NPP),
soil heterotrophic respiration (RH), and NEP to precipitation and temperature in Central
Asia. In addition, determining the contribution of precipitation and temperature changes
to the NEP of terrestrial ecosystems in Central Asia is necessary, as well as the link between
carbon source/sink areas and increased drought. Therefore, in this study, Central Asia was
selected as the research area, and the empirical models of forest and grassland ecosystems
were combined to estimate the NEP of the Central Asian terrestrial ecosystem. Our results
provide a scientific reference for the construction of the Silk Road Economic Belt and global
emissions reduction.
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2. Materials and Methods
2.1. Study Area

Central Asia includes Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan, Tajikistan,
and Xinjiang. These countries and states are located far from the sea and are home to
a temperate continental climate. Central Asia, which is characterized by large day and
night temperature differences, strong evaporation, and reduced precipitation, is influenced
by westerly circulation and the North Atlantic Oscillation. Precipitation is highest in the
spring and winter. Approximately 80-90% of the global temperate deserts are located in
Central Asia, which is one of the driest regions in the world.

Non-tree and -vegetation coverage in Central Asia is relatively large (Figure 1,
https:/ /lpdaac.usgs.gov/data_access/, 9 September 2021), with the ratio of tree coverage
being <3%. Most areas are covered by grassland, followed by shrubs and farmland. The
forest area is <0.3%.
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Figure 1. Distribution of the fractions of tree cover (a), non-tree vegetation (b), and bare cover (c). Land cover types in

Central Asia (d).

2.2. Data

Four-day grid data from the Fraction of Photosynthetically Active Radiation from
2001 to 2019, with a spatial resolution of 500 m in Central Asia, were collected from the
Moderate Resolution Imaging Spectroradiometer (MODIS) data product (MOD15A3H,
https:/ /lpdaacsvc.cr.usgs.gov/appeears/task/area/, 9 September 2021). Normalized
difference vegetation index (NDVI) data were obtained from MOD13A1, with a spatial
resolution of 500 m and temporal resolution of 16 d. Land use data, with a spatial reso-
lution of 500 m, were collected from https:/ /Ipdaacsvc.cr.usgs.gov/appeears/task/area,
9 September 2021. Total solar radiation (SOL) data were obtained from the global me-
teorological and water balance change dataset, TrraCLimate, with a spatial resolution
of 0.25° and a time resolution of days (available at http://aphrodite.st.hirosaki-u.ac.jp/
products.html/, 9 September 2021). Temperature and precipitation data were derived from
the GLDAS data products, with a spatial resolution of 0.25° and a temporal resolution of
months (available at https:/ /search.earthdata.nasa.gov/search/, 9 September 2021). To
accurately distinguish the boundary between the forest and the rest of the ecosystem, ESA
Land Cover Maps-v2.0.7 land use data were used to extract the forest, with a spatial resolu-
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tion of 300 m and a temporal resolution of years. The Vegetation Continuous Fields (VCF)
was obtained from MOD44B, with a spatial resolution of 500 m and a temporal resolution of
years (available at https:/ /Ipdaacsvc.cr.usgs.gov/appeears/task/area/, 9 September 2021).
Continuous monthly RH observation data were derived from the Fukang Desert Ecosystem
in Xinjiang (44°17'N, 87°56'E) from 2004 to 2008.

2.3. NPP Estimation
CASA was used to estimate the NPP. The simulation was determined by two variables,

i.e., the absorbed photosynthetically active radiation (APAR) (MJ/m?) and light energy
conversion (¢) (g C/M]J), as follows:

NPP = APAR x ¢ 1)

where
APAR = SOL x FPAR x 0.5 )

where APAR is the product of PAR and the fraction of photosynthetically active radiation
(FPAR). PAR (PAR, radiation in the 400- to 700-nm wave band) is a portion of the photo-
synthetically active radiation and received by an ecosystem is absorbed by green plants,
which can be calculated as half the total solar surface radiation (SOL) (MJ/m?) [26]. FPAR
is estimated by two variables, i.e., the FPARNpy] and FPARgR [27,28]:

(NDVI— NDVI; yin) X (FPAR ay — FPAR i)

FPAR —
NDVI NDV I ypax — NDVI; i

+ FPAR,in 3)

where FPAR4x (=0.95) and FPAR,;;; (=0.001) are independent of the vegetation type.
Here, NDV1 ;4 is the NDVI value corresponding to 95% of NDVI population I, while
NDVI; i is the NDVI value corresponding to 5% of NDVI population i. The relation
between FPAR and SR can be represented as follows:

(SR — SR; in) X (FPARyay — FPAR i)

FPARggr = FPAR,,; 4
SR SRi,max - SRi,min * i ( )

1+ NDVI
SR = {1 — NDVI} ©)

where SR; ;¢ and SR; i, correspond to the NDVI; ,, and NDV; ,,;,,, respectively.
FAPR = aFPARNpy] + (1 — a) FPARgR (6)
with « set at 0.5. Finally, the light energy conversion (¢) (g C/MJ) was calculated as follows:
e=T1 X Tp X We X €y 7

where T; and T, represent the effect of the low and high temperature stress, respectively,
we represents the effects of the water stress, and &4y is the maximum light use efficiency
(g C/M]). The calculation of each stress factor and the value of the maximum light energy
utilization rate of each vegetation type was based on existing research results [28].

2.4. NEP Estimation

The NEP is defined as the difference between the NPP and soil microbial respiration
carbon emissions (RH), calculated as follows:

NEP = NPP — RH 8)

If NEP > 0, the carbon fixed by vegetation is greater than the carbon released to the
atmosphere by soil respiration (i.e., a carbon sink). If NEP < 0, it is a carbon source. RH in
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(8) was calculated using the climate-driven model. The RH of the forest ecosystem was
estimated as follows:
In(anRy) = 1.22 + 0.73In(anRg) )

where the interannual RH (anRp) was estimated using the interannual Rg (anRg). Rs was
estimated as follows:

(aT—bT?) « aP+ (1 - "‘)Pm—l

K+aP+ (1 —a)Py_1 (19

moRg =F X e

where moRg is the monthly average autotrophic respiration of the forest ecosystem (g C-m~2-d~1);
T is the monthly average temperature (°C); P is the monthly precipitation (cm); P,,_1 is the
precipitation of the previous month (cm); F (g C-m2.d"!)and K (cm mol~!) are parame-
ters [10]; 2 (°C~ 1) and b (°C~2) are parameters for temperature; and « is the parameter for
the precipitation formula.

The RH estimation model for grassland and other ecosystems is as follows [16]:

RH = 0.22 x (e°'0913T +In(0.3145P + 1)) x 30 x 46.5% (11)

where T is temperature (°C) and P is precipitation (mm).

2.5. Theil-Sen Median Trend Analysis and Mann-Kendall Test

The Theil-Sen median trend analysis method can be effectively combined with the
Mann-Kendall test, yielding a robust non-parametric statistical trend calculation method,
expressed as follows:

_ .Y Yi o
B= medlan(fi), 2001 < i <j <2019 (12)
where  refers to the Theil-Sen median and y; and y; represent the variable (NPP, RH, and
NEP) value of years i and j. If 8 > 0, the variable presents a rising trend; otherwise, the variable
displays a decreasing trend. The Mann-Kendall test measures the significance of a trend [29].
In this study, a piecewise linear regression model was used to detect the interannual variation
trend of the carbon source/sink areas [30], and the inflection point was 2008.

2.6. Sensitivity Analysis
According to (4), we can obtain the following;:

ONEP ONEP

We can further obtain the change in the NEP via the RH and NPP as follows:

dRH (13)

dNEP _ NPP oNEP dNPP RH ONEP dRH

NEP ~ NEP oNPP NPP ' NEP 9RH RH (14)
Therefore, the sensitivity of the NEP to the NPP and RH is:
ANEP _ €NPP‘dN£ + ERH'dRi (15)
NEP NPP RH
ENPP = %gz%, and (16)
RH ONEP (17)

®RH = NEP 9RH
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where enpp and erpy represent the sensitivity coefficients of the NEP to the NPP and
RH, respectively. Then, according to (7), the sensitivity of the RH to precipitation and
temperature was obtained as follows:

P ORH
ERH_p = RE 3P and (18)
T JORH

ERH_T = @877"/ (19)

where ery_p and erp_1 represent the sensitivity coefficients of the RH to precipitation and
temperature, respectively. When the formula could not be used to calculate the partial
derivative, such as the sensitivity coefficient of the NPP to precipitation and temperature,
and the sensitivity coefficient of the forest ecosystem RH to precipitation and temperature,
non-parametric estimation was used to calculate the corresponding sensitivity coefficient:

£= median(%t :1()2 X g) (20)

where Q; and P; are the NEP/RH and climatic factors in the t-th year, respectively, and Q
and P are the respective averages.

3. Results
3.1. Spatio-Temporal Variation Characteristics of NEP

Since the beginning of the 21st century, the NPP of vegetation and RH have increased in
Central Asia. Compared to the NPP, soil RH has increased significantly (R? = 0.73, p < 0.01)
(Figure 2), whereas the NEP has decreased significantly (R? = 0.20, p < 0.1; Figure 2). The
annual NEP was between —53.85 and —108.49 g C-m~—2-a~!. Forests are carbon sinks,
whereas grassland, shrubs, crops, and sparse vegetation are all carbon sources. Forest
carbon sinks have played a role for many years; the NEPs of broad-leaved forests and
coniferous forests have partially increased. The multi-year averages of the NEP in broad-
leaved and coniferous forests were 95.63 and 83.76 g Cm~2a !, respectively, with maximum
values of 138.75 and 122.13 g C-m~2, respectively. Herbs and crops had similar carbon
sequestration capabilities and have been weak carbon sources for many years, with no
significant inter-annual changes. However, shrubs and sparse vegetation are strong carbon
sources, showing a significant downward trend, where the downward trend of shrubs
(R? = 0.65, p < 0.01) was greater than that of sparse vegetation (R? = 0.47, p < 0.01).

240 - 4 -40
—=—NPP —=—NEP
—=—RH
200 + 1,60
g . I
Q - g
20160 T\ - O
am e\ i o 1-80 =
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Figure 2. Inter-annual changes in the vegetation net primary productivity (NPP), soil heterotrophic
respiration (RH), and net ecosystem productivity (NEP) in Central Asia from 2001 to 2019.
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Spatially, the NPP was higher in northern and northeastern Kazakhstan, western
Kyrgyzstan, and the Tianshan Mountains of Xinjiang, but lower in central and southwestern
Kazakhstan, Uzbekistan, Turkmenistan, and along the edge of the Xinjiang Junggar Basin
and Taklimakan Desert. High-value NPP areas were mainly covered by forest while
low-value areas were covered by shrubs, herbs, and crops. The area where the NPP
increased (189.35 x 10* km?) was significantly larger than the area where it decreased
(32.34 x 10* km?). Among them, eastern Kazakhstan and southern Xinjiang increased
significantly while western and southeastern Kazakhstan, Turkmenistan, and eastern
Uzbekistan decreased significantly (Figure 3b). The RH was mainly affected by latitude and
altitude. As the latitude decreased, RH tended to increase. As the altitude increased, RH
decreased. As such, high soil respiration areas were mainly concentrated in the southwest.
In terms of the interannual variability, 64.36% of the area increased significantly. Only the
northern and central high mountain areas of Kazakhstan decreased (Figure 3d).
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Figure 3. Spatial distribution of the (a) vegetation net primary productivity (NPP), (c) soil heterotrophic respiration (RH),
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and (e) net ecosystem productivity (NEP) in Central Asia. Multi-year trends of the (b) NPP, (d) RH, and (f) NEP; shaded
areas in the inset maps to the upper right represent areas that passed the significance test (red denotes a significant increase
and blue denotes a significant decrease).

The distribution pattern of the carbon source/sink in Central Asia is consistent with
the spatial distribution of the NPP. Carbon sinks are concentrated in forest-covered moun-
tainous areas, such as northern and eastern Kazakhstan, western Kyrgyzstan, and the
Tianshan Mountains of Xinjiang; in addition, the NEP of the southern source (the Gurban-
tunggut Desert in Xinjiang and the edge of the Taklimakan Desert) are relatively small
long-term carbon sources. Since 2001, the NEP in Central Asia has shown a downward
trend, and the decreasing area has accounted for 35.16% of the total area. The area with
a significant increase accounts for <6.00%. In addition, at the national level, only Kyr-
gyzstan is a weak carbon sink; Xinjiang, Kazakhstan, Turkmenistan, and Uzbekistan are
carbon sources.

3.2. Response of NEP to Climate Factors

Vegetation dynamics are highly sensitive to climate change, especially in arid and
semi-arid areas [31]. The NPP, as an important indicator of vegetation productivity, is also
sensitive to climate change. The sensitivity coefficient of the NPP to precipitation ranged
from —7.71 to 8.52, with an average of 0.38. Moreover, 84.94% of the regions had positive
feedback to precipitation, indicating that the NPP increased with increasing precipitation.
Areas with high sensitivity were mainly distributed in northwestern and southeastern
Central Asia. Among the land cover types, 48.64% of the crop area had high sensitivity
compared with 31.20% of the grasslands and <0.5% of forests (Figure 4a). The sensitivity
coefficient of the NPP to temperature was less than that of precipitation; areas of positive
and negative sensitivity coefficients were similar. The area of the NPP with negative
sensitivity to temperature was mainly concentrated in northwestern, northeastern, and
southern Central Asia, with an annual average temperature of 5.64 °C. It was dominated
by grassland coverage (46.73%), with sparse vegetation, crop, shrub, and forest proportions
of 22.36%, 22.09%, 6.36%, and 2.45%, respectively. The area of the NPP with positive
sensitivity to temperature mainly occurred in the periphery of the region, and the annual
average temperature was 7.76 °C. The area of shrubs (11.36%) has increased compared
with the area showing a negative sensitivity coefficient.

The sensitivity of the RH to precipitation ranged from —0.09 to 0.75, with an average
of 0.17. Most of the regional sensitivity was positive, and high sensitivity was mainly
concentrated in the southeast (Figure 4e); only 0.09% of the regional sensitivity was negative,
most accounted for by forests. In addition, the sensitivity of the RH to temperature
(between —0.72 and 2.02) was stronger than that of precipitation, with an average value
of 0.29. Most regional sensitivity coefficients were positive, and 57.55% of the regions
with 0 < &gy < 0.3 were concentrated in northeastern Central Asia, northern Xinjiang,
and the central Tianshan mountains. The area of 0.3 < egy.; < 0.6 accounted for 19.95%,
mainly distributed in the southern Kazakhstan. Furthermore, 6.15% of the area with
0.6 < ery-¢ < 0.9 was mainly distributed in southwestern Central Asia and on the edge of the
Taklimakan Desert. Moreover, 7.20% of the area was highly sensitive (egy.; > 0.9) and was
mainly distributed in southwestern Central Asia. The sensitivity coefficient has increased,
the annual average temperature has increased, and the precipitation has decreased. The
sensitivity coefficients of egpy+ <0, 0 < erps < 0.3, 0.3 < erpy¢ < 0.6, 0.6 < egrpy+ < 0.9, and
erp-t > 0.9 correspond to multi-year average temperatures of —4.42 °C, 5.18 °C, 10.87 °C,
14.00 °C, and 16.51 °C, respectively, and to multi-year average precipitation values of
308.31, 421.54, 340.35, 332.97, and 256.51 mm, respectively. The RH was more sensitive
to temperature in regions with high temperature and low precipitation. Regions with
high sensitivity had relatively low forest cover and relatively high shrub and crop cover.
Southwestern Central Asia is sensitive to both precipitation and temperature, such that it
is most sensitive to climate change (Figure 4d).
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Figure 4. Sensitivity coefficients of the vegetation net primary productivity (NPP) to (a) precipitation and (b) temperature.
Sensitivity coefficients of the soil heterotrophic respiration (RH) to (c) precipitation and (d) temperature. Sensitivity
coefficients of the net ecosystem productivity (NEP) to (e) precipitation and (f) temperature.

The sensitivity coefficient of the NEP to precipitation ranged from —7.94 to 8.38, with
an average of 0.21. Among them, 73.92% of the regional sensitivity coefficients were
positive, and 35.86% of the regions with 0 < exgp , < 0.3 were widely distributed in Central
Asia. Areas with 0.3 < engp p < 0.6 accounted for 25.14%, and areas with eNep_p > 0.6
accounted for 12.52%, being mainly distributed in the north and northwest, respectively.
The area of —0.3 < engp_p < 0 was 18.92%, concentrated in the northeast. engp p < —0.3
accounted for only 7.17%, mainly distributed in the southeast Kunlun Mountains. The
sensitivity of the NEP to precipitation was closely related to the regional average annual
precipitation. The less the precipitation, the stronger the negative sensitivity; the greater the
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precipitation, the stronger the positive sensitivity. When the regional average temperature
was <6.76 °C, the sensitivity of the NEP to precipitation was negative. The lower the
temperature, the stronger the negative sensitivity. When the temperature exceeded 7.55 °C,
the sensitivity of the NEP to precipitation was positive. However, with increasing sensitivity,
the temperature decreased. The sensitivity of the NEP to temperature (from —20.45 to
12.88) was slightly higher than that of precipitation, with an average of —0.30. We found
that 66.70% of the regional sensitivity coefficients were negative, and 30.17% of the regions
with —0.3 < engp ¢ < 0 were concentrated in northern and central Central Asia. Areas
with —0.6 < enpp ¢ < —0.3 and enpp ¢ < —0.6 accounted for 15.94% and 20.60%, respectively,
and were concentrated in western and southern Central Asia. The temperature sensitivity
coefficient of the NEP was positive in the north. The sensitivity of the NEP to temperature
increased with an increasing annual mean temperature. When 0 < lengp ¢| < 0.3, the
corresponding temperature was 5.11 °C. When 0.3 < lengp ¢ | < 0.6, the annual average
temperature was 7.30 °C, and when | eypp ¢ | > 0.6, the annual average temperature was
10.40 °C.

Recently, the temperature in Central Asia has increased, especially in the south, but
interannual variation in the precipitation has not been significant (Figure 5). Owing to the
high sensitivity of the RH to temperature, the increase in the temperature in most parts
of southwest Central Asia has accelerated soil respiration and caused substantial carbon
loss. Overall, the contribution rate of warming to the interannual variability of the NEP
was larger than that of precipitation. The contribution rate of precipitation changes to the
NEP interannual variation was approximately 23.23%. Here, 58% of regional precipitation
contributed <20% to the NEP, which was concentrated in the central and northeast regions
of Central Asia (Figure 6a). Further, 32.68% of the areas had a negative contribution, which
were distributed in forest coverage areas of northeast Central Asia and around Kunlun
Mountain, characterized by a coniferous forest coverage ratio of 9.94%. The area where the
contribution rate of precipitation to the NEP was between 20% and 40% accounted for a
24.64% contribution rate. The regions with >40% contribution rate accounted for 17.01% of
the region, mainly in the west and southwest. Only 1.50% of the regions contributed > 100%.
In contrast, temperature showed a greater contribution to the interannual variation of the
NEP. The contribution rate of the temperature change to the NEP interannual variation
was approximately 28.79%. Furthermore, 56% of the regions contributed <20% of the
temperature, with the largest contributions concentrated in western and southern Central
Asia (Figure 6b).

The spatial distribution of the controlled factors of the NEP interannual variation
was obtained from the difference in the annual contribution rates of precipitation and
temperature. A positive value indicated that the change in the NEP was mainly controlled
by precipitation. A negative value indicated that the NEP was controlled by temperature.
The proportions of the precipitation and temperature control areas were 47.75% and 52.25%,
respectively. Temperature control areas were mainly distributed in the west, northeast,
center, and south. The sensitivity coefficients of most areas in the south were negative
(Figure 6¢). Precipitation control areas were mainly concentrated in the north, with positive
sensitivity coefficients, i.e., the NEP increased with increasing precipitation.
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Figure 5. Interannual variation trend and significance test results of the (a) temperature and (b) precipitation in Central

Asia from 2001 to 2019.
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Figure 6. Contribution rates of the (a) precipitation and (b) temperature to the net ecosystem productivity (NEP) interannual

variation from 2001 to 2019. (c) Difference between the contribution rates of precipitation and temperature from 2001 to 2019.

3.3. Effect of Drought on Carbon Source/Sink Relationship

Water is a major problem in Central Asia. Recently, the evaporation capacity has
increased with increasing temperatures, leading to the aggravation of drought in Central
Asia. Drought affects vegetation dynamics, which not only leads to the death of shallow
root vegetation, but also causes shrubs to invade grassland, further changing the carbon
sequestration capacity of the ecosystem. From 2001 to 2019, Central Asia experienced
different stages of drought, during which drought intensified from 2001 to 2008, mainly
concentrated in northern and western Kazakhstan and northern Xinjiang (Figure 7a).
Affected by the decrease in precipitation and the increase in temperature, the annual NEP
decreased significantly. However, from 2009 to 2016, the trend in Central Asia became
humid, and the Palmer Drought Severity Index (PDSI) increased in most regions, especially
in northern Kazakhstan, Uzbekistan, Turkmenistan, and the eastern Tianshan Mountains
(Figure 7b). The increase in both precipitation and temperature accelerated soil respiration.
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Therefore, the NPP and NEP of the terrestrial ecosystem under warming and wetting
did not significantly increase over this short period. According to the different degrees
of drought, the carbon sequestration capacity of the ecosystem also changed: with an
increasing drought degree, soil respiration increased and the ecosystem lost more carbon.
Although there was a slight trend of wetting from 2009 to 2016, the drought in Central
Asia has been aggravated since the start of the 21st century (Figure 7c). Regions of drought
aggravation are consistent with regions of decreasing NEP (i.e., concentrated in western
Central Asia).
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Figure 7. Multiyear change trend of the Palmer Drought Severity Index (PDSI): (a) 2001 to 2008, (b) 2009 to 2016, and (c)

2001 to 2019.

Using the segmented command in R language for piecewise regression, we found
that the change in the carbon source/sink area in Central Asia over the last 20 years can
be roughly divided into two stages: (1) from 2001 to 2008, the carbon sink area decreased
significantly (slope = —3.33, Figure 8b) and the carbon source area increased significantly
(slope = 4.06, Figure 8a); and (2) from 2009 to 2019, the carbon sink area increased slightly
(slope = 1.63, Figure 8b) and the carbon source area decreased (slope = —1.35, Figure 8a).
The change in the carbon source/sink areas in Central Asia was most significant in years
with marked drought intensification. From 2001 to 2008, the carbon source area increased
from 285.60 x 10* to 312.15 x 10* km? (R? = 0.46); the areas of NEP < —200 (R? = 0.64) and
—200 < NEP < —150 (R? = 0.66) increased significantly. Therefore, drought intensification
led to the expansion of the strong carbon source area in the ecosystem. Previous studies
have shown that shrub invasion into grasslands during drought is also prominent [5]. The
carbon sink area decreased from 56.57 x 10% to 33.91 x 10% km?2, in which the area of the
weak carbon sink decreased most notably (R? = 0.54) while the area of the strong carbon
sink did not change significantly. Therefore, years characterized by intensified drought
mainly led to decreasing NEP for two reasons: the invasion of shrubs into grassland,
resulting in the expansion of a strong carbon source area, and the death of shallow root
vegetation, resulting in the transformation from a weak carbon sink to a carbon source
(Figure 8).



Remote Sens. 2021, 13, 4449

13 of 19

Carbon Source

Carbon Sink

2 @ —%—2001
i W —
o |l —4—2003
2000 2005 ggég 20152020 2004
320 1 o —— 2005
300 F W 2006
280 T —a—2007

20002005 201020152020 —¥— 2008
year

<-200

! I ! I ! I I ! I ! I '
-150 -100 -50 50 100 150
NEP (g C'm?*a')

>150

Figure 8. Annual net ecosystem productivity (NEP) area distribution in Central Asia from 2001 to 2008. (a) Area of the
change in the carbon sink from 2001 to 2019 and (b) area of the change in the carbon source from 2001 to 2019. The red line
is the slope for 2001 to 2008 and the blue line is the slope for 2009 to 2019.

4. Discussion
4.1. Data Uncertainty Analysis

The NPP and RH contributed to 84.17% and 15.83% of the annual average of NEP, and
59.03% and 30.45% of the interannual variation in the NEP, respectively. The NEP usually
increases with an increasing NPP. For example, the NPP in 2002 and 2007 increased by 23.12
and 11.84 g C-m~2, respectively, compared with the previous year. The NEP in the same
year increased by 15.98 and 19.37 g C-m ™2, respectively, compared with the previous year
(Figure 2). The NPP was positively correlated with precipitation [32]. Studies have shown
that the NPP may have two-fold the effect on the NEP as the RH in northwest China [15],
which is consistent with the results of this study. However, the total contribution rate
of precipitation and temperature to the NEP was <100%, which indicates that radiation,
human activities, and other climatic factors may have also caused recent interannual
variations in the NEP in Central Asia [33-37].

In addition, we extracted 5124 points from the arid area of Central Asia, verify-
ing the NPP simulated by CASA with the NPP data derived from MOD17. The re-
sults show that both have good consistency (Figure 9a), with R? = 0.74 (p < 0.01) and
RMSE = 112.18 g C-m~2?-a~ L. Li et al. [5,38] showed that the NPP estimated by MODIS can
be used in arid and semi-arid areas, reflecting the growth and distribution of vegetation.
Therefore, CASA is suitable for Central Asia. Owing to the lack of flux stations in the arid
area of Central Asia, we only collected continuous monthly observation data from the
Fukang Desert Ecosystem in Xinjiang (44°17'N, 87°56'E) from 2004 to 2008. However, the
simulation results obtained in this study demonstrated a good consistency with the station
observation data (Figure 9b), with R? = 0.53 (p < 0.01) and RMSE = 13.12 g C m~? month 1.
Therefore, the estimates of the NPP and RH in this study are reasonable.

The calculation of the soil respiration in this study was based on empirical models; the
calculation model for the forest ecosystem improves upon Raich and Potter’s model [10]. In
the original model, the sensitivity of the RH to every 10 °C rise in the temperature did not
change with the change in temperature, whereas the sensitivity of the RH to every 10 °C
rise in the temperature after improvement was a function of the temperature. It reached the
peak value when T = a(2b) ! (where a and b are temperature-related parameters, as shown



Remote Sens. 2021, 13, 4449

14 of 19

in (6)). The sensitivity of soil respiration to precipitation was calculated by the weight
of precipitation in the previous and current months; in other words, the precipitation in
the current month could be zero, such that the model was suitable for the arid region of
Central Asia. The best value for the weighting factor, «, was 0.98, but « was characterized
by a large uncertainty (0.03-0.99, 95% confidence interval). Factor « only appeared in
the soil respiration formula for the forest ecosystem, and the contribution rate of the
forest ecosystem to the NEP of the Central Asian ecosystem was 13.12% (Figure 9c). The
sensitivity coefficient of « to the forest ecosystem NEP was 6.22. Finally, the influence
range of the « factor on the NEP of the entire Central Asian ecosystem ranged from —0.48
to 46.38 g C-m~2. Therefore, the error between the results of this study and the boreal
ecosystem productivity simulator (BFPS) model may be due to the uncertainty of the
o factor. Reducing the uncertainty caused by parameters in the empirical model remains
the main problem [39]. Soil inorganic carbon is one form of atmospheric carbon dioxide
sequestration in arid and semi-arid ecosystems. Although the soil inorganic carbon content
in the upper 30- and 50-cm soil layers is lower than that of the soil organic carbon, ignoring
the soil organic carbon in this study may still underestimate the carbon sink capacity [40].
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Figure 9. Relationship between the net primary productivity (NPP) (y-axis) of CASA and the NPP (x-axis) of the MOD17
model (a). Relationship between the estimation of the soil respiration data from the empirical model (y-axis) and observation
data (x-axis) from the Fukang Desert Ecosystem in Xinjiang (b). ** means passing the significance test with a confidence
of 99%. Contribution rates of different vegetation types to the net ecosystem productivity (NEP) of the Central Asian

ecosystem (c).

4.2. Relationships among NPP, RH, NEP, and Land Cover

In the ecosystem, tree cover, non-tree cover, and non-vegetation affect the response
to disturbance. Areas with large trees and less non-vegetation have higher resistance,
whereas areas with large non-vegetation have higher resilience [41]. Different vegetation
coverages are important to the ecosystem. The NPP was divided into six grades, from
small to large, using the natural segmentation method. From low to high NPP grades,
the average values of tree coverage were 0.20%, 1.80%, 3.33%, 7.13%, 15.74%, and 29.80%.
The NPP increased with increasing tree cover. As the NPP increased from small to large,
non-tree cover first increased and then decreased, and non-vegetation cover decreased
monotonously. When the NPP level reached its maximum, the average proportions of
non-tree and non-vegetation cover were 60.38 and 9.81%, respectively. Therefore, when
tree cover was large and non-vegetation cover was small, the regional NPP may have
first increased and then decreased with increasing non-tree cover (Figure 10a). However,
the correlation between the RH and tree, non-tree, and non-vegetation cover was weak,
and the proportions of tree, non-tree, and non-vegetation cover showed no notable trend
from small to large (Figure 10b). Therefore, in Central Asia, the impact that climate and
environmental factors have on soil respiration is greater than that of vegetation coverage.
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Figure 10. (a) Vegetation net primary productivity (NPP), (b) soil heterotrophic respiration (RH), and (c) net ecosystem
productivity (NEP) as a function of the fractions of tree cover, non-tree cover, and non-vegetation pixels.

The NEP had a strong correlation with tree, non-tree, and non-vegetation coverage.
The average values of tree coverage were 0.08%, 1.55%, 5.16%, 14.10%, 24.66%, and 39.28%,
from low to high. With increasing NEP, the non-tree coverage first increased and then
decreased, and the proportion of non-vegetation cover decreased continuously. Therefore,
the NEP and NPP were strongly correlated with tree coverage. When the proportion of
trees was high and the proportion of non-vegetation cover was small, the NPP of regional
vegetation was large and the carbon sink capacity was strong.

4.3. Future Trends in NEP in Central Asia

Soil respiration is one of the most important carbon fluxes in terrestrial ecosystems
and is key to predicting ecosystem functions [36,42]. Studies have found that dryland soil
has an important carbon sink function, but global warming has led to the loss of soil organic
carbon in many areas [43]. The combined effect of warming and drought will lead to an
increase in soil respiration [44]. In addition, under the 18 climate models integrated with
the 5th Coupled Model Intercomparison Project (CMIP5), more than half of the simulations
predict that atmospheric carbon dioxide concentrations will significantly increase and that
the terrestrial ecosystem will become a carbon source in the future [45].

Therefore, warming may lead to more carbon emissions from soil to the atmosphere,
resulting in a decrease in the NEP [46,47]. If temperatures continue to rise and droughts
intensify, it will have a significant impact on the carbon source/sink pattern in the Central
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Asia arid region. According to the CMIP5 model simulation, the global average surface
temperature will rise from 0.3 °C to 1.7 °C [1] from 2081 to 2100 under the Representative
Concentration Pathway (RCP) 2.6 scenario. According to the results of this study, the NEP
of the Central Asian terrestrial ecosystem will decrease by 1.33-7.95 ¢ C-m~2. Under the
RCP4.5 scenario, the global surface temperature will rise by 1.1 °C to 2.6 °C, and the NEP
of the Central Asian terrestrial ecosystem will decrease by 5.31-12.7 g C-m~2. Under the
RCP6.0 scenario, the global surface temperature will increase by 1.4 °C to 3.1 °C, and the
NEP of the Central Asian terrestrial ecosystem will decrease by 22.54-50.49 g C-m 2. Under
the RCP8.5 scenario, the global surface temperature will increase by 2.6 °C to 4.8 °C, and
the NEP of the Central Asian terrestrial ecosystem will decrease by 42.42-78.17 g C-m 2.
The global and Northern Hemisphere annual average temperature growth rates from 1960
to 2010 were 0.07 °C/10 a and 0.1 °C/10 a, respectively; the highest temperature in the arid
areas of Northwest China increased by 0.29-0.34 °C, and the highest temperature in Central
Asia significantly increased, with a growth rate of 0.32 °C/10 a, which is substantially
higher than that of the global or Northern Hemisphere trend [18,48]. Therefore, according
to the global temperature rise scenarios, the NEP will increase in Central Asia. However, an
increase in temperature will also clearly lead to a reduction in carbon storage and further
expansion of the carbon source area in the Central Asian terrestrial ecosystem.

In addition, based on the CMIP5 model simulation, all extreme precipitation indices in
Central Asia from 1936 to 2005 showed an increasing trend, except for consecutive dry days
(CCD), and the growth rate of the total precipitation (PRCPTOT) reached 9.78 mm. Even
under RCP4.5 and RCP8.5, the intensity of extreme precipitation will increase significantly
in the future [20]. The results showed that there was a strong positive correlation between
the NPP and precipitation, but the increase in the NPP in the Central Asian ecosystem was
not significant from 2001 to 2019, which indicates that an increase in total precipitation
alone cannot promote an increase in the NEP. In addition, with the increase in available
water, the increase in extreme precipitation may lead to an increase in flood risks. Therefore,
in the future, necessary measures should be taken to alleviate problems related to climate
change. The scientific and reasonable allocation of water resources is an urgent problem
facing Central Asia at present and will continue to be so in the future.

5. Conclusions

We used CASA to estimate the NPP and an empirical model to estimate the soil
respiration in the Central Asia ecosystem to finally obtain the spatiotemporal changes in
the NEP of the Central Asian ecosystem. According to the calculation results, the natural
driving factors and contribution rate of the NEP spatiotemporal evolution in the context of
climate change were quantitatively analyzed. This study should provide new insights into
the response of the NEP to climate change. The main findings were as follows:

(1) In terms of the interannual variation, the annual NPP trend of Central Asia from 2001
to 2019 was not significant, the RH increased significantly, and the NEP decreased
significantly. Spatially, areas where the NPP and RH increased significantly were
larger than those where the NPP decreased significantly, and the areas where the NEP
decreased significantly were larger than those where the NPP increased significantly.
Regions where the NPP increased significantly were mainly in eastern and southern
Central Asia. Regions where the NPP decreased significantly were mainly in the
west. Regions where the RH increased significantly were concentrated in the west
and southwest, and regions where the RH decreased almost passed the significance
test. The areas where the NEP decreased significantly were mainly distributed in the
west and south. The NEP showed a significant upward trend only in a small area.

(2) In terms of climate sensitivity, the NPP was more sensitive to precipitation, which
increased with increasing precipitation in most regions. The RH was more sensitive to
temperature and increased with increasing temperature. However, the NEP was more
sensitive to temperature than precipitation and decreased with increasing temperature.
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(3) From 2001 to 2019, the contribution rate of temperature to the NEP was larger than that
of precipitation, mainly manifested as the acceleration of soil respiration caused by
the increasing temperature. A large amount of carbon was emitted to the atmosphere
through soil respiration, resulting in the reduction of the carbon sink in the ecosystem.

(4) Drought also has an important impact on the carbon source/sink in Central Asia.
Drought from 2001 to 2008 led to a significant increase in the area of carbon sources in
Central Asia, with a weak carbon sink transforming into a carbon source and a weak
carbon source transforming into a strong carbon source.
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