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Abstract: We present a proof of concept of wind turbine wake identification and characterization
using a region-based convolutional neural network (CNN) applied to lidar arc scan images taken at a
wind farm in complex terrain. We show that the CNN successfully identifies and characterizes wakes
in scans with varying resolutions and geometries, and can capture wake characteristics in spatially
heterogeneous fields resulting from data quality control procedures and complex background flow
fields. The geometry, spatial extent and locations of wakes and wake fragments exhibit close accord
with results from visual inspection. The model exhibits a 95% success rate in identifying wakes
when they are present in scans and characterizing their shape. To test model robustness to varying
image quality, we reduced the scan density to half the original resolution through down-sampling
range gates. This causes a reduction in skill, yet 92% of wakes are still successfully identified. When
grouping scans by meteorological conditions and utilizing the CNN for wake characterization under
full and half resolution, wake characteristics are consistent with a priori expectations for wake
behavior in different inflow and stability conditions.

Keywords: convolutional neural network; wind turbine wakes; lidar; image processing; wake
characterization; complex terrain

1. Introduction

Wind turbine wakes are turbulent low-velocity flow structures that interact with
downstream turbines, decreasing the inflow speed and turbine performance while increas-
ing the blade fatigue [1–4]. Knowledge of wake trajectory, geometry and orientation is
pertinent to power production and fatigue analyses. However, there is uncertainty in
both identifying wakes and defining wake metrics. Wake identification and characteri-
zation methods have been introduced to quantify the behavior of wakes and applied to
simulation outputs and measurements over flat terrain [5,6]. Even under these relatively
simple datasets, methodologies still exhibit difficulties in distinguishing the wind turbine
wake from local turbulent flows, particularly at distances far behind the rotor [7]. Further,
variations in the local orography in and around wind farms enhance turbulence and flow
complexity, thus rendering wind turbine wake identification, characterization and tracking
more difficult [8].

Methods to identify wakes from remote sensing (e.g., lidar) data commonly depend on
the availability of information, such as the wind turbine rotor diameter, free-stream wind
speed, atmospheric stability, scan resolution and geometry [9,10]. Many wake detection
methods approximate the location and area of the wake’s center through fitting Gaussian
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curves to line-of-sight (LOS) velocity deficits, implementing contour-based methods utiliz-
ing momentum flux or a velocity deficit and using the turbulence profile method [5,11,12].

Wake detection methods in complex terrain have been implemented with varying de-
grees of success, and focus on identifying the wake center for a single wind turbine [13,14].
An automated wake detection method was proposed to identify the wake centerline from
lidar measurements in complex terrain by using knowledge of the turbine’s location and
flow-field anomalies [8]. A second dynamic model for wake identification and charac-
terization in complex terrain using lidar measurements identified the wake centerline
from a single wind turbine using a wake velocity deficit and dynamic wake meandering
models [15].

Although identifying the wake centerline of a single wind turbine is pertinent to
understanding the propagation of wakes downstream in complex terrain, there remains a
need for automated (scan campaigns often result in thousands of scans that require process-
ing) holistic wake identification and characterization methods that can be implemented
independently of varying experimental parameters and applied to flow fields with any
number of wind turbine wakes. Furthermore, a method that can track the entirety of the
wake (as well as partial wakes), including its exact shape as it forms and dissipates, is
necessary to progress toward an enhanced understanding of wind turbine wake dynamics
in complex terrain. Previously proposed methods exhibit a relatively high fidelity for identi-
fying well-defined single wakes, but lack skill in identifying and characterizing asymmetric
(skewed) or partial wakes resulting from turbulence or intentional wake steering. As many
wake identification methods employ assumptions about the wake shape (e.g., Gaussian
distributions), behavior of the wake center (e.g., maximum velocity deficit method) and
definition of wake edges (e.g., assuming the wake diameter is equal to the rotor diameter),
a model that can operate independently of these assumptions is pertinent to a broader
range of datasets and applications.

Machine-learning techniques are adept at modeling, learning and predicting patterns
from data [16,17], and are being used for applications such as wind plant power output
prediction, wind resource prediction and even wake modeling [18–22]. Neural networks
are machine-learning models that iteratively learn and assign meaning to patterns in input
data through a series of neurons (also known as nodes) arranged in layers [23–25]. They
have been demonstrated to be effective in interpreting multiple types of inputs, including
sound, images and raw numerical data [26–28], and provide an ideal tool for understanding
and interpreting the complexities and patterns in wind turbine wake flows in complex
terrain [29]. Neural networks have the potential to address multiple common issues in
wind turbine wake characterization and identification in complex terrain: simultaneously
identifying the exact wake structures and characteristics of multiple wind turbine wakes;
distinguishing flow-field turbulent structures generated by wakes from those embedded
in the background atmospheric flow; identifying turbulent wake dissipation; and even
locating wakes in lidar data that wind up incomplete or limited in spatial resolution after
filtering for a low signal-to-noise (SNR) or carrier-to-noise ratio (CNR).

Although there are many forms of neural networks available, this work focuses on
implementing a convolutional neural network (CNN). CNNs are commonly used for
image processing and object detection or instance segmentation [30,31]. A CNN can
analyze input images and identify objects based on their type, quantity, location and
size. CNNs have been trained on datasets of varying complexity and have accurately
performed complex tasks, such as detecting ships from synthetic aperture radar scans
and identifying fish species from images [32,33]. Although CNN models continue to
grow in complexity and capability, recent developments in these models have improved
their computational time [34]. Traditional CNN models struggled with or were unable to
detect multiple instances of objects within an image until the development of a region-
based CNN (R-CNN) [35]. From R-CNN, Mask R-CNN was developed to output image
segmentation masks for multiple instances of objects within an image [36]. In this context,
a mask is a binary pixel matrix representing the exact location and size of detected objects.
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Mask R-CNN has been shown to identify and characterize objects in remote-sensing data
robustly and successfully, such as identifying buildings from satellite imagery and mapping
topographic features captured with lidar data [37,38]. As a result of its computational
efficiency and accuracy in object segmentation and classification, the Mask R-CNN is a
robust option for identifying and characterizing wind turbine wakes in complex terrain.

The objective of this research is to implement and evaluate a Mask R-CNN for wake
identification and characterization using lidar data collected in complex terrain. The
primary objectives of this proof of concept are to quantify the skill with which the CNN
can: (i) identify multiple wind turbine wakes simultaneously from a variety of scan
orientations (flow field quadrant, elevation angle, range coverage and resolution, time of
day), (ii) characterize wake shapes as the wakes form and dissipate in the flow field and
(iii) identify wakes even if they are obscured by missing data points. All objectives are
evaluated over a range of wind turbine layout geometries (single and multiple rows of
turbines and/or individual turbines).

2. Materials and Methods
2.1. Measurement Campaign

The lidar data used for this work were collected at a wind farm in the Pacific Northwest
during a six-month period from July 2018–December 2018 (inclusive), using a WINDCUBE
100s Doppler wind lidar from Leosphere (described in further detail in [39]). For a majority
of the scans in the campaign, the lidar returned line-of-sight velocities at a range gate
resolution of 50 m. Scans were collected at varying azimuth and elevation angles relative to
the lidar (elevation angles spanning from approximately 0◦ to upwards of 60◦). The wind
farm contains wind turbines that have hub heights (HH) of 80 m and rotor diameters (D) of
90 m. The campaign produced around 13,000 scans collectively. The analysis here focuses
on arc scans only when wakes were present.

The campaign focused on flow into and downwind of a set of nine wind turbines:
three to the northwest of the lidar and six to the southwest (Figure 1a). Often, wakes from
two rows of turbines to the southeast and southwest of the lidar are visible, giving the
opportunity to evaluate the algorithm’s performance when multiple wakes and rows of
wakes are present (Figure 1a).
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Figure 1. (a) Elevation map (colored contours show elevation) of scanning site with target turbines 
(pink) and all turbines captured (white). The lidar location is indicated by the cyan diamond. (b) 
Regions A, B, C and D (shown as dotted areas) are utilized to illustrate model performance in the 
results section. Note that Region D (lavender) is within Region A. Regions do not represent coverage 
of a single scan; rather, scans as displayed by each region are unique and collected at different times 
in July and September. 

2.2. Lidar Scan Filtering, Classification and Quality Control 
Hub-height wind speed and direction during the scans are estimated as the mean 

values from supervisory control and data acquisition (SCADA) measurements obtained 
with cup anemometers and wind vanes on the nacelles of three of the target wind turbines. 
The data are conditionally sampled to select periods when the lidar was operating in arc 
scan configuration, and the HH wind speed (U) and direction are consistent with wake 
generation and propagation from the wind turbines deployed: 3 m s ≤ 𝑈 ≤ 25 m s  229° ≤ 𝑊𝑖𝑛𝑑 𝑑𝑖𝑟. ≤ 346° 
A total of 3307 scans meet these criteria for wind direction, wind speed and arc scan clas-
sification (around 25% of scans). Much of the rotational speed for the arc scans was kept 
constant at 1°/s, meaning that the lidar rotated one degree per second while moving 
through its scanning arc. Further, angular resolutions were kept consistent at 1°. 
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Figure 1. (a) Elevation map (colored contours show elevation) of scanning site with target turbines
(pink) and all turbines captured (white). The lidar location is indicated by the cyan diamond.
(b) Regions A, B, C and D (shown as dotted areas) are utilized to illustrate model performance in the
results section. Note that Region D (lavender) is within Region A. Regions do not represent coverage
of a single scan; rather, scans as displayed by each region are unique and collected at different times
in July and September.

2.2. Lidar Scan Filtering, Classification and Quality Control

Hub-height wind speed and direction during the scans are estimated as the mean
values from supervisory control and data acquisition (SCADA) measurements obtained
with cup anemometers and wind vanes on the nacelles of three of the target wind turbines.
The data are conditionally sampled to select periods when the lidar was operating in arc
scan configuration, and the HH wind speed (U) and direction are consistent with wake
generation and propagation from the wind turbines deployed:

3 m s−1 ≤ U ≤ 25 m s−1

229◦ ≤ Wind dir. ≤ 346◦

A total of 3307 scans meet these criteria for wind direction, wind speed and arc scan
classification (around 25% of scans). Much of the rotational speed for the arc scans was
kept constant at 1◦/s, meaning that the lidar rotated one degree per second while moving
through its scanning arc. Further, angular resolutions were kept consistent at 1◦.

Radial velocity values are then filtered to remove values with high measurement
uncertainty and include only those where:

− 5 dB ≤ CNR ≤ 25 dB

2.3. Scan Preparation for CNN Training and Testing

Horizontal wind components in a cartesian coordinate system (u0, v0) for each scan
are estimated from radial (i.e., line-of-sight) velocity measurements (Vr) under the assump-
tions that the projection of the vertical wind speed is zero and the flow field is relatively
homogeneous. This method to reconstruct the horizontal wind field has been widely used
and validated in previous studies, including a study that evaluated wind turbine wake
characteristics from lidar scans taken near an escarpment [6,40]. u0 and v0 are related to the
radial velocity measurements (Vr) through elevation (∅) and azimuth (θ) angles as follows:

Vr = u0cos(∅) sin(θ) + v0cos(∅) cos(θ) (1)
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Through least squares linear regression, values for u0 and v0 per scan and estimated
wind direction α (note that this is not local wind direction, as a single wind direction value
is obtained per scan) are derived [40]:

Vr M

Vr1
Vr2
Vr3

.

.

.
Vrn


=



sin(θ1) cos(∅1) cos(θ1) cos(∅1)
sin(θ2) cos(∅2) cos(θ2) cos(∅2)
sin(θ3) cos(∅3) cos(θ3) cos(∅3)

. .

. .

. .
sin(θn) cos(∅n) cos(θn) cos(∅n)


(

u0
v0

)
(2)

V = inv
(

MTM
)

MTVr (3)

α = atan
(

v0

u0

)
(4)

The horizontal wind speed at each scanned volume relative to the lidar coordinate
system is given by:

VH =
Vr

cos(∅) cos
(
α − π

2 − θ
) (5)

Reconstruction of the scan flow field enhances the visibility of the wind turbine wakes
(Figure 2a,b) that are further clarified by normalizing the entire flow field by the mean
wind speed. A high-contrast colormap is then applied to the normalized flow field velocity
to isolate all regions of low-velocity flow and to visually homogenize all other freestream
velocities (Figure 2c).
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Figure 2. Example visualization of the flow field reconstruction: (a) radial wind speed (i.e., LOS
velocity) as measured by the lidar; (b) transformation to estimated horizontal wind speed; and
(c) normalization through estimated bulk wind speed per scan. Northing and easting distances in
(a–c) are calculated relative to the lidar position. Data are for 3 November 2018, 04:58 UTC, elevation
angle ∅ = 3◦, azimuth angle θ ε [200◦, 240◦], azimuthal resolution 1◦, range gate 50 m, 40 s scan time.
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To train the CNN on the simplest representation of the data, scan images are input
into the model as an array of RGB pixels (Figure 3). Due to the fact that each scan image
is cropped at known maximum and minimum northing and easting values, a conversion
between pixels and meters (relative to the lidar) is possible. Thus, the model returns masks
(a binary pixel array) for identified wakes, and the shape and relative location (in meters)
of the wakes in the flow field are known. In this work, scan image dimensions are kept
constant at 217 (width, south-north) by 334 (length, east-west) pixels. Any velocity values
removed from the scan due to CNR filtering (e.g., hard-target returns at the wind turbine
locations) are represented in black and remain in the scan images. Leaving filtered regions
in the scans preserves the original scan geometry and ensures that a wide variety of scan
geometries and aspect ratios are introduced to the model during training.
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Figure 3. Example of training scan collected under easterly flow. Missing velocity measurements as
assessed by carrier-to-noise ratio (CNR) values are shown in black. Data captured on 30 July 2018,
04:38 UTC, elevation angle ∅ = 1.5◦, azimuth angle θ ε [180◦, 270◦], azimuthal resolution 1◦, range
gate 50 m, 120 s scan time. Scan image dimensions are 217 (width) by 334 (length) pixels.

2.4. The Proof-of-Concept Dataset: Methodology

Out of the 3307 available arc scans, we selected a subset of 354 to design a proof-of-
concept dataset. The sub-selection was based on the following objective criteria:

1. Wakes cannot mix with each other, i.e., all wakes must be distinct;
2. Wakes mut be distinct from local flow features (i.e., edges must be detectable amid

local turbulent structures).

Scans were subject to both criteria through visual inspection. The majority of rejected
scans exhibited discernible wakes, but displayed wake mixing and thus violated criterion
(1). Cases in which CNR filtering obscured the wake shape were included in the dataset to
evaluate the model’s efficacy in identifying wakes in regions of low-quality measurements.
The 354-scan dataset was split into three subsets: two-thirds of the scans were selected
for the training subset, whereas the remaining one-third was split evenly between the
validation subset and testing subset. Although 354 scans represent approximately 10%
of the original arc scan subset, there are over 1000 instances of wakes within these scans.
Further, many arc scans were disqualified from inclusion in the proof-of-concept dataset,
since they were taken at high elevation angles to survey the atmospheric conditions during
scan collection time, and thus did not exhibit wakes. Wakes are visible in all scans in the
proof-of-concept dataset; due to the methodology of Mask R-CNN (proposes regions of
interest within the images; if there are no regions of interest, Mask R-CNN will identify
no objects), there is no need to train the model on scan images without wakes. The model
was trained using the training subset, and the validation subset was utilized to ensure the
model is not overfit or underfit during training. The model was then evaluated using the
independent testing subset. Subset scans encompassed a wide variety of scan geometries
and parameters (Figure 4).
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The model evaluation metrics in Section 3 rely on the following objective definition of
wakes and wake fragments (dissipated wakes) (Figure 5). Wakes are defined as the first
instance of low velocity flow emanating from a known turbine location. Wake fragments are
defined as any background low-speed turbulent structures parallel to known wakes in the
scan or collinear with wakes emanating from known turbine locations.

The wide variety of azimuth angles encompassed by scans in the subsets result
in a high coverage of the flow field; wakes were captured from each turbine depicted
in Figure 1. These scans collectively include nearly 1500 instances of wakes and wake
fragments and nearly 1000 hard-target returns attributed to turbines obstructing the flow
field i.e., two classes (types of objects). Both class annotations are depicted in Figure 5.
All data subsets (testing, validation, training) frequently included multiple wake or wake
fragment instances per scan. Depending on the arc scan region (i.e., A, B, C or D), a single
scan can cover between 2 (Region D) and 10 wakes (Region B).

2.5. About Mask R-CNN: CNN Model, Backbone, and Training Configurations

Mask R-CNN detects and segments (per-pixel object identification) instances of objects
within images (network architecture is discussed in [36]). An extension of Faster R-CNN,
Mask R-CNN takes inputs of images and their annotations and outputs predictions for
object classifications, bounding boxes, confidence in predictions and segmentation masks
(thus, segmentation masks represent the entire shape of the object, pixel-by-pixel, as
predicted by the CNN) [41,42]. Mask R-CNN operates broadly as follows: the network’s
region proposal network (RPN) identifies regions of interest and proposes bounding boxes
for identifiable objects within the image. Following this, bounding boxes are refined and
the network predicts the object class probabilistically while producing binary pixel masks
for regions of interest. Through this process, the image is input through multiple unique
layers that process and understand the input, such as convolutional layers (applying a filter
to input arrays to create feature maps) and pooling layers (reducing the dimensionality
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of input data). The final CNN output contains bounding boxes and binary masks of the
original input dimensions in pixels for each object detected.
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calculated bulk wind velocity per scan; (c) example of annotations for wakes and wake fragments 
(green) and wind turbines (red) in a training scan. Scan parameters: arc scan, captured on 3 July 
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jects within images (network architecture is discussed in [36]). An extension of Faster R-
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Figure 5. (a) Area covered by the scan depicted in (b,c), showing the target (magenta) and captured
(white) turbines and the lidar location (cyan diamond); (b) scan flow field values normalized by the
calculated bulk wind velocity per scan; (c) example of annotations for wakes and wake fragments
(green) and wind turbines (red) in a training scan. Scan parameters: arc scan, captured on 3 July 2018,
01:10 UTC, elevation angle ∅ = 1.5◦, azimuth angle θ ε [290◦, 345◦], azimuthal resolution 1◦, range
gate 50 m, 55 s accumulation time.

Improvements to the RPN used here include implementation of a feature pyramid
network (FPN) as the network backbone [43] (thus, the FPN is integrated into the CNN
prediction process). The FPN extracts feature maps from images through a series of convo-
lutional layers and inputs those feature maps to the CNN’s RPN. With a FPN backbone,
features are extracted from images with better accuracy and efficiency, with particular
robustness in identifying features of varying sizes. Utilization of a FPN backbone results
in higher object detection and instance segmentation accuracy than when a backbone
is not employed; thus, this work explores the implementation of the ResNet-101 FPN
backbone utilized in tandem with Mask R-CNN when detecting and segmenting wakes in
scans. We chose the ResNet-101 FPN because of its high accuracy and efficiency in instance
segmentation when compared to other backbones [43].

Model weights were initialized with weights from the same Mask R-CNN model with
a ResNet-101 FPN backbone trained on the COCO dataset [44] through transfer learning
(initializing a model’s weights with weights produced from pre-training the model on
a different dataset). Transfer learning has been shown to improve model accuracy and
reduce training time [45,46].

Prior to application of the CNN, all 354 scan images (each with multiple instances of
wakes/wake fragments; approximately 1000 wakes in total are included in the dataset)
were manually annotated for wakes and wake fragments, and the resulting annotations
were utilized in each step of the CNN implementation process: training input, validation
input (to reduce over or underfitting) and model accuracy evaluation for the testing subset.
Figures 5 and 6 give examples of training annotations, with wakes and wake fragments
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annotated in green, and visible flow disturbances resulting from the presence of turbines
annotated in red. Wakes and wake fragments with obscured velocity data because of CNR
filtering are subjectively annotated in order to produce a coherent wake mask (Figure 6).
Through this annotation methodology, the CNN was trained to identify wakes and to
output their geometries when wakes are present but obscured by missing data, as is
common for arc scans that utilize large azimuth ranges to capture multiple rows of turbines
(as seen in Figure 6).
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Figure 6. (a) Area covered by the scan depicted in (b,c), showing the target (magenta) and captured
(white) turbines and the lidar location (cyan diamond); (b) scan flow field values normalized by
the calculated bulk wind velocity per scan; (c) example of the annotation of obscured wakes as a
result of quality control procedures. Scan parameters: arc scan, captured on 3 July 2018, 11:41 UTC,
elevation angle ∅ = 1.0◦, azimuth angle θ ε [98◦, 160◦], azimuthal resolution 1◦, range gate 50 m, 62 s
scan time.

CNN parameters were optimized through error minimization in the training subset
and then evaluated for overfitting using the validation subset. The testing subset was
repeatedly presented to the CNN (i.e., there are a number of iterations) and the results were
used diagnostically in training(i.e., the reduction in error (loss) as the model learns the
patterns through iteration). Loss indicates the fidelity of the model’s object identifications;
if a model identifies/segments an object perfectly, the loss is zero. Mask R-CNN specifically
assesses loss for object classification (deciding what the objects are, and classifying them as
turbine or wake), object localization (drawing a bounding box around objects in the image
to identify their location within the image) and instance segmentation (returning per-pixel
segmentation masks for each object detected in the image). Further, Mask R-CNN assesses
loss within the RPN for object classification and localization. These losses were summed
to calculate total loss as the model trained. The validation dataset can be assessed for
model performance alongside the training set when making predictions for a dataset it has
never seen. Thus, if the validation set loss levels out or increases while the training set loss
continues to decrease, the model is likely overfitting to the data. The validation vs. training
loss curve for the model indicates that, for the training configuration employed, around
3000 iterations (the steps at which the neural network updates its weights after learning
from training images) are adequate for avoiding overfitting while producing accurate
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results (Figure 7). The training batch size was kept at 2 images per iteration. Utilizing a
graphics processing unit (GPU), computational time for processing each scan image in the
validation subset varied from around 0.2–0.7 s, depending on the GPU utilized.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 7. Example model diagnostic showing the validation and training loss curves as a function 
of model iterations. The training loss curve shows the rate of model learning as a function of the 
number of learning cycles (iterations). High loss values indicate higher classification and identifica-
tion errors. The validation–loss curve highlights the generalizability of the model (indicating extent 
of overfit or underfit to the dataset when training). 

After the CNN was trained on the training and validation subsets of scans and the 
loss curve was analyzed for model quality, the testing subset was input into the CNN to 
evaluate its ability to correctly identify and characterize wakes and wake shapes. The test-
ing subset was subject to visual inspection and annotated to provide a measure of ground 
truth. After the CNN identified wakes and output masks for each, masks were compared 
to ground truth annotations to obtain model accuracy metrics. 

2.6. Model Accuracy Metrics and Criteria 
The testing dataset comprised 59 scan images chosen at random that contained ap-

proximately 300 instances in total of wakes and wake fragments. Model success is depend-
ent on both wake characterization and wake identification success when compared to sub-
jective annotation. Areas of intersection (in pixels) of masks and subjective annotations 
are denoted as the intersection over union (IoU). Thus, each wake mask output by the 
CNN was associated with a unique IoU value when compared to subjective annotation. 
For the proof of concept, the IoU needed for a successful wake mask was 0.6 or greater 
(60% of the CNN mask’s area in pixels intersects the subjectively annotated wake’s area 
in pixels, Table 1). 

Table 1. Criteria for success and failure when evaluating wake mask results from the convolutional neural network (CNN). 

Success Failure Modes 

Wake/wake fragment is correctly identified and shape of 
wake/wake fragment is adequately masked (≥0.6 intersec-

tion over union [IoU]). 

(1) Wake/wake fragment shape is displaced relative to 
ground truth (< 0.6 IoU).  
(2) Wake/wake fragment is undetected (false negative). 
(3) Wake/wake fragment is identified as present when it is 
not present (false positive). 

Wakes with obscured shapes because of CNR filtering were evaluated separately 
with the same criteria for failure and success. Successes and failures were calculated per 
unique wake, and thus each scan can produce multiple instances of successes and failures, 
depending on the number of wakes and masks observed. All success rates were calculated 
through the following expression: 

Figure 7. Example model diagnostic showing the validation and training loss curves as a function of
model iterations. The training loss curve shows the rate of model learning as a function of the number
of learning cycles (iterations). High loss values indicate higher classification and identification errors.
The validation–loss curve highlights the generalizability of the model (indicating extent of overfit or
underfit to the dataset when training).

After the CNN was trained on the training and validation subsets of scans and the
loss curve was analyzed for model quality, the testing subset was input into the CNN to
evaluate its ability to correctly identify and characterize wakes and wake shapes. The
testing subset was subject to visual inspection and annotated to provide a measure of
ground truth. After the CNN identified wakes and output masks for each, masks were
compared to ground truth annotations to obtain model accuracy metrics.

2.6. Model Accuracy Metrics and Criteria

The testing dataset comprised 59 scan images chosen at random that contained approx-
imately 300 instances in total of wakes and wake fragments. Model success is dependent
on both wake characterization and wake identification success when compared to subjec-
tive annotation. Areas of intersection (in pixels) of masks and subjective annotations are
denoted as the intersection over union (IoU). Thus, each wake mask output by the CNN
was associated with a unique IoU value when compared to subjective annotation. For the
proof of concept, the IoU needed for a successful wake mask was 0.6 or greater (60% of
the CNN mask’s area in pixels intersects the subjectively annotated wake’s area in pixels,
Table 1).

Table 1. Criteria for success and failure when evaluating wake mask results from the convolutional neural network (CNN).

Success Failure Modes

Wake/wake fragment is correctly identified and shape of wake/wake
fragment is adequately masked (≥0.6 intersection over union [IoU]).

(1) Wake/wake fragment shape is displaced relative to ground truth
(<0.6 IoU).
(2) Wake/wake fragment is undetected (false negative).
(3) Wake/wake fragment is identified as present when it is not present
(false positive).

Wakes with obscured shapes because of CNR filtering were evaluated separately
with the same criteria for failure and success. Successes and failures were calculated per
unique wake, and thus each scan can produce multiple instances of successes and failures,
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depending on the number of wakes and masks observed. All success rates were calculated
through the following expression:

Success Rate =

(
1 − failure

success

)
Occasionally, wake masks returned by the model identify nested wakes, which occur

when one wake mask is within another. Seven percent of wake masks returned for the
full resolution testing set contained nested masks. Nested model predictions for bounding
boxes and masks are commonly seen in image processing applications and can be mit-
igated through adjusting parameters during training (such as adjusting non-maximum
suppression parameters [47]). For this use case, it is possible that a small number of nested
predicted wakes were unavoidable because of the nature of velocity contours and the coarse
spatial resolution of the scans. Further, when analyzing the nested wakes subjectively,
their aggregated mask was often sufficient when identifying the wake and wake fragment
geometries. Consequently, nested wakes are treated as single entities herein and counted
in only one IoU estimation.

2.7. Sensitivity to Scan Resolution and Flow Conditions

As lidar technology evolves and scan resolutions vary per campaign, it is pertinent
to examine how the model, and the subsequent wake characteristics, are affected when
applied to lower resolution scans. To assess the model’s performance under a variation in
range gate resolution, each of the radial velocity fields in each scan in the testing dataset
was down-sampled such that every other value was removed, reducing the range gate
resolution from 50 m to 100 m. Wake characteristics were then calculated for down-sampled
scans and compared to full resolution scans.

As wake geometries are dependent on atmospheric conditions and flow field velocities,
variations in wake characteristics and model accuracy were assessed by classifying the
atmospheric conditions under which each scan was performed (Table 2). Scans were
defined as “low” wind speed if the median horizontal wind speed is <9 ms−1 in the
59 testing scans. Scans captured during lower velocity conditions result in higher thrust
coefficients, which yield relatively larger magnitude wakes. In addition, lower velocities
are most often associated with higher turbulence intensities [48]. Scans performed during
the daytime (8 a.m.–8 p.m., local time) are placed into a class of unstable stratification.

Table 2. Atmospheric classes used in the analysis of varying scan resolution on wake characteristics.

Class Atmospheric Stability Indicator (Time of Day in Local Time) Wind Speed Bracket (Classified by Scan Bulk Wind Speed, V)

I Nighttime Low

II Daytime Low

III Nighttime High

IV Daytime High

After wakes and wake fragments in each atmospheric class were identified for both
scan image resolutions (full, half) based on the threshold for IoU, three wake characteristics
were analyzed: asymmetry, length and width. These metrics are defined below, and depend
on the characterization of the wake or wake fragment’s skeleton, which is otherwise known
as the medial axis of the object. The skeleton (the mathematical process to calculate the
skeleton is described in detail in [49]) is a simplified shape representation used often in
image processing applications and is utilized herein as an approximation for the geometric
wake centerline (Figure 8).
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Figure 8. (a) Scan example; (b) wake skeletons (medial axes) for wakes and wake fragments present
in the scan (red). Scan colored by flow field horizontal velocities (VH) normalized by calculated bulk
wind speed (V). Scan parameters: arc scan, captured on 11 September 2018, 02:57 UTC, elevation angle
∅ = 3.5◦, azimuth angle θ ε [290◦, 345◦], azimuthal resolution 1◦, range gate 50 m, 55 s scan time.

Width: In this analysis, wakes propagate along an approximate west–east axis, so an
approximation of the mean wake width (perpendicular to the skeleton) was computed as
the sum of the number of pixels in the y-direction (south-north) that are enclosed by the
wake boundary at a given point along the skeleton divided by the total number of points
along the skeleton;

Asymmetry: After the wake/wake fragment’s skeleton was identified, the pixels
above and below the skeleton (in the north–south [y] direction) were projected to two
histograms, where each bin represents the point along the skeleton, and the histogram
width is the number of pixels above (or below) the skeleton. Each projected histogram
thus represents the distribution of pixels in the y direction along the length of the skeleton,
with one histogram representing the distribution of pixels above the skeleton and one
histogram representing the distribution of pixels below. The correlation of these projected
histograms was then assessed through evaluation of the Pearson correlation coefficient. A
high correlation coefficient corresponds to high north–south symmetry along the skeleton
(approximate wake centerline), i.e., the width of the pixels in the upper half of the wake
correlate with the width of the pixels in the lower half of the wake for each point along
the skeleton;

Length: The wake length was assessed through calculating the distance between the
easternmost and westernmost wake skeleton locations for east–west propagating wakes,
or the westernmost and easternmost wake skeletons for west–east propagation cases.

3. Results
3.1. CNN Model Performance

The CNN exhibits a 95.65% success rate in identifying and outputting sufficient masks
for the wind turbine wake shape when compared to the ground truth annotation in the
independent test sample of 59 scans (Table 3). For wake fragments, the model exhibits
a 77.53% success rate. In cases where the wind turbine wakes are embedded in a highly
heterogeneous data field as a result of the removal of many data points because of CNR
filtering, the success rate decreases to 87.18%. However, all four wake fragments that are
embedded in a highly heterogeneous data field as a result of the removal of many radial
velocity estimates because of CNR filtering are correctly identified.

Table 3. Success rates for wake and wake fragment identification and characterization for the Mask region-based CNN
model with ResNet-101 feature pyramid network backbone.

Success Rate Wakes Wake
Fragments

Wakes in Complex Data Fields
Because of Carrier-to-Noise Ratio

(CNR) Filtering

Wake Fragments in Complex Data
Fields Because of CNR Filtering

Full resolution (range gate of 50 m) 95.65% 77.53% 87.18% 100%

Half resolution (data down-
sampled to 100 m range gate) 92.19% 60.92% 65.52% 75%
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The most common mode of failure for the CNN is a false negative—i.e., there is a
wake or wake fragment in the scan and the model does not identify it as an object at all
(Figure 9). The second most common mode of failure is returning a false positive—i.e.,
a non-wake (such as a wind turbine) structure is identified as a wake. False positives
may also be attributed to uncertainties in radial velocity measurements that arise from
misalignment between the lidar line of sight and the wind direction [50]. Failure associated
with low IoU (incorrect wake shape) is very rare (one case). This indicates that, when the
model does correctly identify a wake or wake fragment, it is highly skilled at returning the
correct mask for the structure, especially if the structure is not obscured by data removal.
Although more than three-quarters of wake fragments are captured by the model, they are
associated with a higher number of false positives that are caused by the model’s sensitivity
to other low-velocity flow structures in the scans.
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identification of wakes and wake fragments for a data-dense flow field (few velocity val-
ues are removed by the CNR screening) (Figure 10a,b). The CNN differentiates between 
the region of low velocity in the lower right corner of the scan and the wake that is near 
it. Further, the CNN is able to successfully identify and mask the complex wake fragment 
in the scan. The scan from Region B exhibits a larger area scanned than that of Region A 
because of a higher maximum range distance, which reduces the visibility of the wakes in 
the image (Figure 10c,d). Regardless, the CNN is able to successfully identify the wakes 

Figure 9. Analysis of model failure modes when identifying and characterizing (a) wakes, (b) wake
fragments and (c) obscured wakes. Values are for the testing data subset. Pie charts depict the failure
modes as a percentage of total number of failures for fully visible and obscured wakes and wake
fragments. Note: only four obscured wake fragments are included in the testing set and all four were
identified successfully.

Illustrative examples of wake identification in different scan sectors (see Figure 1b)
are shown in Figures 10 and 11. The scan from Region A (northwest) exhibits a correct
identification of wakes and wake fragments for a data-dense flow field (few velocity values
are removed by the CNR screening) (Figure 10a,b). The CNN differentiates between the
region of low velocity in the lower right corner of the scan and the wake that is near it.
Further, the CNN is able to successfully identify and mask the complex wake fragment
in the scan. The scan from Region B exhibits a larger area scanned than that of Region A
because of a higher maximum range distance, which reduces the visibility of the wakes in
the image (Figure 10c,d). Regardless, the CNN is able to successfully identify the wakes
and wake fragments and output successful masks, even when wind turbine wakes are
close to regions with missing radial velocity estimates.
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wakes and wake fragments from scans with richly defined flow fields, and those where 
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Figure 10. Comparison of (a,c) input scan and (b,d) model output when identifying wakes, wake
fragments and obscured wakes. Scan parameters for (a,b): arc scan, captured on 11 September 2018,
04:51 UTC, elevation angle ∅ = 1.5◦, azimuth angle θ ε [290◦, 345◦], azimuthal resolution 1◦, range
gate 50 m, 55 s accumulation time. Scan parameters for (c,d): arc scan, captured on 3 July 2018, 07:55
UTC, elevation angle ∅ = 1.0◦, azimuth angle θ ε [98◦, 160◦], azimuthal resolution 1◦, range gate
50 m, 60 s scan time. Mask colors are unique and represent individual wakes and wake fragments
detected by the model.
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fragments and obscured wakes. Scan parameters for (a,b): arc scan, captured on 2 September 2018,
04:50 UTC, elevation angle ∅ = 2.0◦, azimuth angle θ ε [180◦, 270◦], azimuthal resolution 1◦, range
gate 50 m, 90 s accumulation time. Scan parameters for (c,d): arc scan, captured on 12 September
2018, 04:24 UTC, elevation angle ∅ = 2.5◦, azimuth angle θ ε [290◦, 345◦], azimuthal resolution 1◦,
range gate 50 m, 55 s scan time.

The example scans from Regions C (northwest but over a smaller area than Region A,
see Figure 1b) and D (southeast) also illustrate cases with a correct identification of wakes
and wake fragments from scans with richly defined flow fields, and those where the CNR
filtering has yielded a more complex and heterogeneous data field (Figure 11).

3.2. Model Sensitivity to Image Resolution

When the testing scans are down-sampled to half resolution (from a range gate of
50 m to an effective range gate of 100 m) and input into the CNN for wake identification
and characterization, the success rate declines. However, the model remains skillful in
identifying and correctly masking wakes when present in scans, with a 92.19% success
rate (Table 3). This down-sampling exercise is meant to indicate whether large-area scans
covering a large portion of an entire wind plant can be used to detect the approximate
location and extent of individual wakes.

Down-sampling the scans results in an increase in subjectively identifiable wake
fragments (111 wake fragments under half-resolution, 98 under full resolution). This
is illustrated by Figure 12, where all three wakes in the full resolution scan are more
fragmented when subjected to half-resolution down-sampling. When considering the
failure modes for wake fragments under half-resolution, 71% of model failures under half-
resolution are attributed to false negatives (the CNN is unable to detect the wake fragments
when they are present). Thus, the high success rate for wake fragment identification under
full resolution is likely attributed to specific flow patterns that differentiate wake fragments
from other local, low-velocity turbulent flow. The number of insufficiently masked wakes
(IoU < 60%) increases, with insufficient wake masks representing 20% of the model failure.
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Figure 12. (a) Full-resolution scan image; (b) half-resolution scan image. The reduction in resolution
results in increased number of wake fragments and modified wake characteristics. Scan parameters:
arc scan, captured on 11 September 2018, 05:14 UTC, elevation angle ∅ = 1.5◦, azimuth angle
θ ε [290◦, 345◦], azimuthal resolution 1◦, range gate 50 m, 55 s accumulation time.

Wake asymmetry, width and length for all complete (boundaries completely included
in the scan) wakes and wake fragments that exhibit adequate IoU when compared to subjec-
tive annotation (≥ 0.6) exhibit some sensitivity to input data resolution, and there is a clear
reduction in IoU for the half-resolution scans irrespective of the prevailing atmospheric
conditions (Figure 13). Down-sampling results in an increase in the calculated median
wake width for all scans (Figure 13). Further, the normalized wind fields exhibit wakes
that become more irregularly shaped, indicated by an increasing asymmetry (Figure 12).
Note that these results are reasonable, as a spatial resolution of 100 m is rather coarse for
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the 90-m diameter wind turbines generating the wakes. For each inflow class (Table 2),
the sample size of full and complete wakes that are accurately characterized by the CNN
is greater than 20. Although wake characteristics exhibit marked differences according
to atmospheric conditions, the overall relative differences in the wake width, length and
asymmetry magnitude between each atmospheric class are similar for full and half reso-
lutions. The IoU varies between classes of atmospheric conditions in a similar manner to
wake width, with both being highest under daytime low wind speeds and nighttime high
wind speeds. Conversely, the wake length is largest for the higher wind speeds in both
daytime and nighttime scans, and smallest for low wind speeds and daytime conditions,
when unstable stratification is expected to erode wakes more rapidly (Figure 13). Intra-class
patterns in wake width generally follow trends in the model IoU, potentially indicating
that the model accuracy is more sensitive to wake width than wake length. This could
be attributed to the existence of a minimum threshold of wake width or length needed
for wakes to be visibly detected; in this case, it is likely that wakes will have an adequate
length to be detected when compared to width (which is a numerically smaller dimension,
as evidenced in Figure 13).
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Figure 13. Model performance in characterizing wakes (a–d) and wake fragments (e–h) for each
inflow class defined in Table 3 (horizontal axis) at full (solid line) and half resolution (dashed line).
Wake and fragment characteristics include asymmetry (a,e), length (b,f) and width (c,g) and are
given as the median of all values. The characteristic width of a given wake is given by the mean
value along its length. Model success metric intersection over union (IoU) is given in (d,h).
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Wake fragment characteristics are more susceptible to change under a reduction in
resolution than wakes. Generally, the wake and wake fragment asymmetry decrease across
classes, with Class I exhibiting the lowest median asymmetry coefficients in the range
of 0.65–0.925 (and thus highest asymmetry). Thus, Class I wake and wake fragments
are characterized by a relatively high asymmetry, fast wake recovery and lower model
accuracy rates. It is possible that this may be attributed to the complex terrain, although
further investigation is warranted in order to verify this. For lower wind speeds and
stable, nighttime conditions, it is possible that winds and wakes are the mostly strongly
coupled with the underlying terrain. Given that conditions for Class I are approximated
as stable with a lower speed inflow, these wake characteristics are consistent with a priori
expectations. Decreased the stability in Class II when compared to Class I results in Class
II having the lowest median wake length. Note that the sample sizes reported here are
lower than the ensemble wake fragment sample size reported in Figure 10 because of the
requirements that (i) the wake fragments be complete (as it is impossible to fully character-
ize a wake fragment if its entirety is not included in the scan) and that (ii) characterization
be applied to wake fragments sufficiently identified (as described by the IoU criterion for
CNN prediction and ground truth) by the CNN. Wake characteristics observed in Class III
also follow a priori expectations—the wake recovery is the slowest for this class, which is
marked by increased inflow speeds and approximately stable conditions, as indicated by
the time of day (nighttime). Class IV, characterized by higher inflow speeds and decreased
stability, exhibits the lowest accuracy in wake and wake fragment identification, which
may be attributed to an increase in the length scale of background flow structures and an
associated amplification of false positive detections. Further, because lidar measurement
uncertainties for arc scans scale with turbulence intensity, it is possible that the higher
uncertainties associated with an increased turbulence contribute to a lower accuracy rate
in Class IV [50]. Results of wake characteristics from each class and their agreement with a
priori expectations further indicate CNN accuracy in determining wake characteristics and
outputting reasonable wake masks.

4. Discussion and Conclusions

We implemented a Mask R-CNN model with a ResNet 101 FPN backbone for wake
characterization and identification in complex terrain from lidar arc scans. The lidar data
were collected during a campaign spanning July 2018–December 2018 (inclusive) at a wind
farm in the U.S. Pacific Northwest. The dataset contains a wide variety of experimental
parameters, such as range gate, resolution, number of wakes captured and scanning time.
The variety of the dataset makes it ideal for evaluation of the model under a wide range of
experimental parameters. A subset of 354 arc scans with approximately 1000 wind turbine
wakes is employed in this proof-of-principle analysis. Two-thirds of the scans are used
for model training, whereas the other one-third is split evenly among model validation
and testing.

Many of the scans contain regions of missing velocity measurements as a result of CNR
filtering, and the wakes are in various stages of formation and dissipation because of terrain
complexity, resulting in wakes with multiple fragments throughout the flow field. These
fragments and wakes are often asymmetric, a geometric quality that presents challenges
for current wake identification and characterization methods. Thus, common techniques
for wake characterization and identification are difficult to implement for the dataset.

The CNN applied here is successful regardless of these difficulties, exhibiting high
skill in identifying wakes and dissipating wakes from full and lower resolution lidar arc
scan images. The success rate for wake identification from full resolution scan images in
which wakes are present is 95%. The most common failure mode for full wind turbine
wakes is a false negative. In this case, the model does not identify a wake when one is
present. The most common error in identifying dissipated wake fragments within the scans
is a result of false positives, which are defined as the model identifying a flow field structure
as a dissipating wake fragment when it is not. When the scan resolution is degraded by
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removing data from every other range gate, an increase in false negatives is observed
when identifying dissipating wake fragments. This indicates that wake fragment flow
contours under full resolution are unique, and that the CNN utilizes specific flow patterns
to differentiate between wake fragments and other low-velocity turbulent flow. However,
the model still exhibits skill in identifying wakes under reduced resolution, with a success
rate of 92%. Although reductions in the range gate alter wake characteristics numerically,
when the scans are clustered by prevailing wind speed and atmospheric stability, the
behavior of wake characteristics between each group is conserved. Further, median wake
characteristics per group (grouped by inflow velocity and time of scan collection to provide
a broad metric for atmospheric stability) are broadly consistent with a priori expectations,
further indicating model accuracy and applicability.

Results indicate that the Mask R-CNN has a wide applicability to a range of chal-
lenges in wind energy science, including improving existing simulation tools for wakes
in complex terrain, improving knowledge of wake dynamics in complex terrain, enabling
real-time wake identification and characterization from remote sensing data and assisting
in condition monitoring. Future work will include an implementation of Mask R-CNN
models with a higher accuracy (Scoring Mask R-CNN, Cascade Mask R-CNN) and will
involve the fine-tuning of model training parameters. Uncertainties due to the flow field
reconstruction method utilized will be explored further. For example, scans with wind
directions close to normal to the scanning direction were not filtered out in this study.
Although flow reconstruction under these conditions may result in flow field errors, the in-
clusion of these scans in the training dataset may be helpful in terms of training the CNN to
recognize wakes even in these conditions. These uncertainties, as well as the uncertainties
in calculating the bulk wind direction per scan for the purpose of reconstructing the flow
field, will be further investigated. New wake classes may be implemented when training
the model to enable the detection of wake interactions (wakes mixing with each other) and
to increase the amount of training data.

Author Contributions: J.A.A. developed the concept and analysis strategy with input from E.W.Q.,
R.J.B., S.C.P., P.D. and M.D., J.A.A. ran the analysis and generated the figures. M.D. performed the
field campaign with the scanning lidar. J.A.A. wrote the manuscript with input from S.C.P., R.J.B.,
E.W.Q., M.D. and P.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation Graduate Research Fel-
lowship Program (DGE-1650441), the U.S. Department of Energy (DoE) (DE-SC0016605) and the
National Offshore Wind R&D Consortium (147505). This work was authored in part by the National
Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. De-
partment of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S.
Department of Energy Office of Energy Efficiency and Renewable Energy.

Acknowledgments: J.A.A. is grateful to NREL for summer internships under which this research
was developed. We thank Ryan Dela for providing access to the scanning lidar.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer: The views expressed in the article do not necessarily represent the views of the DOE
or the US Government. The US Government retains and the publisher, by accepting the article for
publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this work, or allow others to do so,
for US Government purposes.

References
1. Eggers, A.J., Jr.; Digumarthi, R.; Chaney, K. Wind shear and turbulence effects on rotor fatigue and loads control. J. Sol. Energy

Eng. 2003, 125, 402–409. [CrossRef]
2. Hand, M.M.; Kelley, N.D.; Balas, M.J. Identification of wind turbine response to turbulent inflow structures. Fluids Eng. Div.

Summer Meet. 2003, 36967, 2557–2566.

http://doi.org/10.1115/1.1629752


Remote Sens. 2021, 13, 4438 19 of 20

3. Barthelmie, R.J.; Hansen, K.; Frandsen, S.T.; Rathmann, O.; Schepers, J.G.; Schlez, W.; Phillips, J.; Rados, K.; Zervos, A.; Politis, E.S.;
et al. Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy 2009, 12, 431–444.
[CrossRef]

4. Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J. Atmospheric and wake turbulence impacts on wind turbine
fatigue loadings. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012; p. 540.

5. Quon, E.W.; Doubrawa, P.; Debnath, M. Comparison of Rotor Wake Identification and Characterization Methods for the Analysis
of Wake Dynamics and Evolution. J. Phys. Conf. Ser. 2020, 1452, 012070. [CrossRef]

6. Doubrawa, P.; Barthelmie, R.J.; Wang, H.; Pryor, S.C.; Churchfield, M.J. Wind turbine wake characterization from temporally
disjunct 3-d measurements. Remote Sens. 2016, 8, 939. [CrossRef]

7. Espana, G.; Aubrun, S.; Loyer, S.; Devinant, P. Spatial study of the wake meandering using modelled wind turbines in a wind
tunnel. Wind Energy 2011, 14, 923–937. [CrossRef]

8. Barthelmie, R.J.; Pryor, S.C. Automated wind turbine wake characterization in complex terrain. Atmos. Meas. Tech. 2019, 12,
3463–3484. [CrossRef]

9. Aitken, M.L.; Banta, R.M.; Pichugina, Y.L.; Lundquist, J.K. Quantifying wind turbine wake characteristics from scanning remote
sensor data. J. Atmos. Ocean Technol. 2014, 31, 765–787. [CrossRef]

10. Herges, T.G.; Maniaci, D.C.; Naughton, B.T.; Mikkelsen, T.; Sjöholm, M. High resolution wind turbine wake measurements with a
scanning lidar. J. Phys. Conf. Ser. 2017, 854, 012021. [CrossRef]

11. Vollmer, L.; Steinfeld, G.; Heinemann, D.; Kühn, M. Estimating the wake deflection downstream of a wind turbine in different
atmospheric stabilities: An LES study. Wind Energy Sci. 2016, 1, 129–141. [CrossRef]

12. Panossian, N.; Herges, T.G.; Maniaci, D.C. Wind Turbine Wake Definition and Identification Using Velocity Deficit and Turbulence
Profile. In Proceedings of the 2018 Wind Energy Symposium, Kissimmee, FL, USA, 8–12 January 2018; p. 0514.

13. Barthelmie, R.J.; Pryor, S.C.; Wildmann, N.; Menke, R. Wind turbine wake characterization in complex terrain via integrated
Doppler lidar data from the Perdigão experiment. J. Phys. Conf. Ser. 2018, 1037, 052022. [CrossRef]

14. Kigle, S. Wake Identification and Characterization of a Full Scale Wind Energy Converter in Complex Terrain with Scanning
Doppler Wind Lidar Systems. Ph.D. Thesis, Ludwig-Maximilians-Universität, München, Germany, 2017.

15. Lio, W.H.; Larsen, G.C.; Poulsen, N.K. Dynamic wake tracking and characteristics estimation using a cost-effective LiDAR. J.
Phys. Conf. Ser. 2020, 1618, 032036. [CrossRef]

16. Stein, H.S.; Guevarra, D.; Newhouse, P.F.; Soedarmadji, E.; Gregoire, J.M. Machine learning of optical properties of materials–
predicting spectra from images and images from spectra. Chem. Sci. J. 2019, 10, 47–55. [CrossRef] [PubMed]

17. Puri, M. Automated machine learning diagnostic support system as a computational biomarker for detecting drug-induced liver
injury patterns in whole slide liver pathology images. Assay Drug Dev. Technol. 2020, 18, 1–10. [CrossRef] [PubMed]

18. Marvuglia, A.; Messineo, A. Monitoring of wind farms’ power curves using machine learning techniques. Appl. Energy 2012, 98,
574–583. [CrossRef]

19. Clifton, A.; Kilcher, L.; Lundquist, J.K.; Fleming, P. Using machine learning to predict wind turbine power output. Environ. Res.
Lett. 2013, 8, 024009. [CrossRef]

20. Leahy, K.; Hu, R.L.; Konstantakopoulos, I.C.; Spanos, C.J.; Agogino, A.M. Diagnosing wind turbine faults using machine learning
techniques applied to operational data. In Proceedings of the 2016 IEEE International Conference on Prognostics and Health
Management, Ottawa, ON, Canada, 20–22 June 2016; pp. 1–8.

21. Zendehboudi, A.; Baseer, M.A.; Saidur, R. Application of support vector machine models for forecasting solar and wind energy
resources: A review. J. Clean. Prod. 2018, 199, 272–285. [CrossRef]

22. Ti, Z.; Deng, X.W.; Yang, H. Wake modeling of wind turbines using machine learning. Appl. Energy 2020, 257, 114025. [CrossRef]
23. Hecht-Nielsen, R. Theory of the Backpropagation Neural Network. Neural Networks for Perception. 1992; pp. 65–93. Available

online: https://www.sciencedirect.com/science/article/pii/B9780127412528500108 (accessed on 20 July 2021).
24. Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms; Spartan Books: Washington, DC,

USA, 1961.
25. Bishop, C.M. Neural Networks for Pattern Recognition; Clarendon Press: Oxford, UK, 1995.
26. Choi, K.; Fazekas, G.; Sandler, M.; Cho, K. Convolutional recurrent neural networks for music classification. In Proceedings

of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA,
5–9 March 2017; pp. 2392–2396.

27. Egmont-Petersen, M.; de Ridder, D.; Handels, H. Image processing with neural networks—A review. Pattern Recognit. 2002, 35,
2279–2301. [CrossRef]

28. Chen, J.L.; Chang, J.Y. Fuzzy perceptron neural networks for classifiers with numerical data and linguistic rules as inputs. IEEE
Trans. Fuzzy Syst. 2000, 8, 730–745.

29. Kryzhanovsky, B.V.; Mikaelian, A.L.; Fonarev, A.B. Vector neural net identifying many strongly distorted and correlated patterns.
Inf. Opt. Photonics Technol. 2005, 5642, 124–133.

30. Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In
Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571.

http://doi.org/10.1002/we.348
http://doi.org/10.1088/1742-6596/1452/1/012070
http://doi.org/10.3390/rs8110939
http://doi.org/10.1002/we.515
http://doi.org/10.5194/amt-12-3463-2019
http://doi.org/10.1175/JTECH-D-13-00104.1
http://doi.org/10.1088/1742-6596/854/1/012021
http://doi.org/10.5194/wes-1-129-2016
http://doi.org/10.1088/1742-6596/1037/5/052022
http://doi.org/10.1088/1742-6596/1618/3/032036
http://doi.org/10.1039/C8SC03077D
http://www.ncbi.nlm.nih.gov/pubmed/30746072
http://doi.org/10.1089/adt.2019.919
http://www.ncbi.nlm.nih.gov/pubmed/31149832
http://doi.org/10.1016/j.apenergy.2012.04.037
http://doi.org/10.1088/1748-9326/8/2/024009
http://doi.org/10.1016/j.jclepro.2018.07.164
http://doi.org/10.1016/j.apenergy.2019.114025
https://www.sciencedirect.com/science/article/pii/B9780127412528500108
http://doi.org/10.1016/S0031-3203(01)00178-9


Remote Sens. 2021, 13, 4438 20 of 20

31. Matsugu, M.; Mori, K.; Mitari, Y.; Kaneda, Y. Subject independent facial expression recognition with robust face detection using a
convolutional neural network. Neural Netw. 2003, 16, 555–559. [CrossRef]

32. Ding, G.; Song, Y.; Guo, J.; Feng, C.; Li, G.; He, B.; Yan, T. Fish recognition using convolutional neural network. In Proceedings of
the OCEANS 2017-Anchorage, Anchorage, AK, USA, 18–21 September 2017.

33. Liu, Y.; Zhang, M.H.; Xu, P.; Guo, Z.W. SAR ship detection using sea-land segmentation-based convolutional neural network.
In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China,
21–23 April 2017.

34. Cheng, J.; Wang, P.S.; Li, G.; Hu, Q.H.; Lu, H.Q. Recent advances in efficient computation of deep convolutional neural networks.
Front. Inf. Technol. Electron. Eng. 2018, 19, 64–77. [CrossRef]

35. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [CrossRef] [PubMed]

36. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

37. Maxwell, A.E.; Pourmohammadi, P.; Poyner, J.D. Mapping the topographic features of mining-related valley fills using mask
R-CNN deep learning and digital elevation data. Remote Sens. 2020, 12, 547. [CrossRef]

38. Li, Y.; Xu, W.; Chen, H.; Jiang, J.; Li, X. A Novel Framework Based on Mask R-CNN and Histogram Thresholding for Scalable
Segmentation of New and Old Rural Buildings. Remote Sens. 2021, 13, 1070. [CrossRef]

39. Thobois, L.; Krishnamurthy, R.; Boquet, M.; Cariou, J.; Santiago, A. Coherent Pulsed Doppler LIDAR metrological performances
and applications for Wind Engineering. In Proceedings of the 14th International Conference on Wind Engineering, Porto Alegre,
Brazil, 21–26 June 2015.

40. Smalikho, I. Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar. J. Ocean. Atmos.
Technol. 2003, 20, 276–291. [CrossRef]

41. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
13–16 December 2015; pp. 1440–1448.

42. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 1, 91–99. [CrossRef] [PubMed]

43. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

44. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects
in context. In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
pp. 740–755.

45. Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques; IGI Global Publishing: Hershey, PA, USA, 2010; pp. 242–264.

46. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In Proceedings of the 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; pp. 270–279.

47. Salscheider, N.O. Non-maximum suppression by learning feature embeddings. In Proceedings of the 2020 25th International
Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 7848–7854.

48. Barthelmie, R.J.; Hansen, K.S.; Pryor, S.C. Meteorological controls on wind turbine wakes. Proc. Inst. Electr. Eng. 2013, 101,
1010–1019. [CrossRef]

49. Kresch, R.; Malah, D. Skeleton-based morphological coding of binary images. IEEE Trans. Image Process. 1998, 7, 1387–1399.
[CrossRef] [PubMed]

50. Wang, H.; Barthelmie, R.J.; Pryor, S.C.; Brown, G. Lidar arc scan uncertainty reduction through scanning geometry optimization.
Atmos. Meas. Tech. 2016, 9, 1653–1669. [CrossRef]

http://doi.org/10.1016/S0893-6080(03)00115-1
http://doi.org/10.1631/FITEE.1700789
http://doi.org/10.1109/TPAMI.2015.2437384
http://www.ncbi.nlm.nih.gov/pubmed/26656583
http://doi.org/10.3390/rs12030547
http://doi.org/10.3390/rs13061070
http://doi.org/10.1175/1520-0426(2003)020&lt;0276:TOWVEF&gt;2.0.CO;2
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1109/JPROC.2012.2204029
http://doi.org/10.1109/83.718480
http://www.ncbi.nlm.nih.gov/pubmed/18276206
http://doi.org/10.5194/amt-9-1653-2016

	Introduction 
	Materials and Methods 
	Measurement Campaign 
	Lidar Scan Filtering, Classification and Quality Control 
	Scan Preparation for CNN Training and Testing 
	The Proof-of-Concept Dataset: Methodology 
	About Mask R-CNN: CNN Model, Backbone, and Training Configurations 
	Model Accuracy Metrics and Criteria 
	Sensitivity to Scan Resolution and Flow Conditions 

	Results 
	CNN Model Performance 
	Model Sensitivity to Image Resolution 

	Discussion and Conclusions 
	References

