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Abstract: The spatially heterogeneous nature and geographical scale of surface urban heat island
(SUHI) driving mechanisms remain largely unknown, as most previous studies have focused solely
on their global performance and impact strength. This paper analyzes diurnal and nocturnal SUHIs
in China based on the multiscale geographically weighted regression (MGWR) model for 2005, 2010,
2015, and 2018. Compared to results obtained using the ordinary least square (OLS) model, the
MGWR model has a lower corrected Akaike information criterion value and significantly improves
the model’s coefficient of determination (OLS: 0.087–0.666, MGWR: 0.616–0.894). The normalized
difference vegetation index (NDVI) and nighttime light (NTL) are the most critical drivers of daytime
and nighttime SUHIs, respectively. In terms of model bandwidth, population and ∆fine particulate
matter are typically global variables, while ∆NDVI, intercept (i.e., spatial context), and NTL are local
variables. The nighttime coefficient of ∆NDVI is significantly negative in the more economically
developed southern coastal region, while it is significantly positive in northwestern China. Our
study not only improves the understanding of the complex drivers of SUHIs from a multiscale
perspective but also provides a basis for urban heat island mitigation by more precisely identifying
the heterogeneity of drivers.

Keywords: SUHI; MODIS; driven factor; spatial heterogeneity; spatial scale; land use

1. Introduction

Urbanization is a significant phenomenon of human activity that alters land use and
cover [1–3]. One of the most widespread human-induced environmental influences of
urbanization is the emergence of urban heat islands, described as higher temperature
urban areas compared to rural references [4,5]. Urban heat islands (UHIs) have been widely
observed worldwide in recent decades. Existing literature shows that temperature rise is
closely related to energy consumption [6–8], air pollution [9,10], biodiversity [11,12], and
the health of residents [13–15]. Therefore, the impacts of urban heat islands are a significant
concern in urban environmental research.

Urban heat islands can be classified as canopy (CUHI) and surface (SUHI) UHIs [16–18].
Typically, CUHIs are quantified using observations from meteorological stations, while
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SUHIs are determined based on satellite remote sensing data [19]. Previous research has
shown that the influence of local surface type on CUHIs obtained from stations cannot be
ignored. This finding indicates that CUHIs are characterized by high spatial heterogeneity,
thus reducing the reference value of point-based CUHIs to represent the thermal difference
among urban and rural regions [20,21]. SUHIs are gradually attracting the attention of an
increasing number of researchers due to the continued development of satellite technology.

The increasing accessibility of remote sensing data has dramatically enhanced satellite-
based research of SUHI controls [22–27]. Peng et al. [28] analyzed the drivers of SUHIs on
a global scale for the first time and found that vegetation was significantly correlated with
reduced diurnal and nocturnal SUHIs. Zhao et al. [29] analyzed the effect of aerodynamic
drag on SUHIs using 65 large cities in North America as the study area. A coarse-grained
model connecting population, background climate, and UHI intensity was recently devel-
oped [30], indicating that the urban–rural differences in evapotranspiration and convection
efficiency were the primary factors of warming. Priyankara et al. [31] analyzed an SUHI
in the Seoul metropolitan area from the perspective of spatial processes and verified the
mechanism of urban greening on the SUHI. The above studies have provided comprehen-
sive and in-depth attribution analyses of SUHIs from multiple perspectives in different
regions and at different times. However, two crucial issues have been ignored: the spatial
heterogeneity and the scale of SUHI drivers.

Scale is an essential geographic concept. The general agreement by scholars in current
research is that various processes can work at multiple spatial scales that are different from
one another. Previous studies often distinguish between micro and macro processes and
local and global processes [32,33]. For example, various processes operating at largely
independent scales determine the weather and tides in a certain area [34]. SUHIs are also
complex phenomena driven by multiple factors in the social economy and the ecological
environment. Therefore, it is necessary to distinguish the spatial scales of the various
driving factors in SUHI attribution analysis.

Previous empirical research models for SUHI driver analysis can generally be divided
into two main categories. The first type includes global-scale analysis methods, such as
correlation coefficients [28,35,36], ordinary least square (OLS) [37–39], generalized additive
model (GAM) [40], and various models for machine learning [41–43]. The biggest problem
with these methods is that they cannot adequately analyze the spatial variations of SUHI
drivers, making them feasible for small regional studies but leading to obvious bias at
large spatial scales, such as in China. The second category is the classical geographically
weighted regression method (GWR), which has long been employed as a local regression
model to address the heterogeneity problems of spatial processes [44–46]. However, each
spatial parameter in the GWR model is assumed to arise from the same spatial scale,
likely resulting in an inaccurate evaluation of spatial scale. The multiscale geographically
weighted regression (MGWR) provides a more appropriate identification of SUHI drivers
by allowing different bandwidths (instead of a sole global bandwidth used in the GWR
model to be assigned to each variable) [34]. MGWR is considered a major innovation in
spatial analysis. It is currently the only analytical tool providing both the spatial scale
information of how drivers influence the dependent variable and the quantification of
contextual effects in the determination of SUHI [47].

Studying the spatial heterogeneity and scales of SUHI drivers can help develop a
basic theory of UHI effects and provide a valuable reference basis for urban planning
and environmental policy formulation. China is an ideal location to explore the impact
of anthropogenic mechanisms on the regional thermal environment for two predominant
reasons. Firstly, China encompasses a vast territory and has abundant resources, with
significant variation in natural ecosystems and socioeconomics. Secondly, the majority
of Chinese cities have undergone rapid urbanization in the past decades, and a large
number of previous studies have reported that significant urban heat island phenomena
are widespread in China [48,49].
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This paper analyzes the SUHI drivers from a spatial multiscale perspective and
critiques previous regression applications in SUHI modeling to facilitate more specific
UHI mitigation policies. To carry out this work, we employ multisource satellite remote
sensing data, including a Moderate Resolution Imaging Spectroradiometer (MODIS), to
calculate the SUHI intensity of 281 cities in China. The multiple SUHI drivers are then
analyzed based on the MGWR model to answer the following questions: (i) What are the
critical drivers of daytime and nighttime SUHIs in China? (ii) What are the spatiotemporal
heterogeneity and spatial scale of the relationship between these drivers and SUHIs? (iii)
What new insights can MGWR provide compared to ordinary least square (OLS) and
classical GWR methods?

The remaining paper is organized as follows. Section 2 introduces the study region and
the data used. Section 3 briefly describes the SUHI calculation method and the principles of
MGWR. Section 4 presents the results of the OLS and MGWR models. Section 5 discusses
the performance of the MGWR model and further analyzes the pattern of vegetation and
socioeconomic factors influencing SUHIs. Section 6 clarifies the conclusions of this paper
and provides potential policy suggestions.

2. Study Area and Data
2.1. Study Area

Given the missing data, 281 prefecture-level urban groups (containing the four munic-
ipalities, Beijing, Shanghai, Tianjin, and Chongqing) are selected in this study (Figure 1).
These cities are widely distributed in various regions across China, including the Northwest
(30 cities), North (33 cities), Northeast (34 cities), East (76 cities), South (78), and Southwest
(30 cities). It can essentially be assumed that the entirety of mainland China is included in
the study area because over 94% of the Chinese population resides in these cities.
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South, and Southwest) of China in this study. The background information is annual precipitation
across China.

2.2. Data
2.2.1. CSUHI Dataset

Niu et al. [50] developed the long-term clear sky China surface urban heat island
(CSUHI) dataset, using the MODIS land surface temperature (LST) product and the Euro-
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pean Space Agency’s Climate Change Initiative (ESA CCI) land cover data, in which the
quality control flags of LST and the influence of elevation, water, and permanent snow on
the SUHI are all considered. The following data were used to develop the CSUHI dataset:

1. The LST data from 2001 to 2018 were provided by the Terra/Aqua MODIS 8-day
1 km LST/LSE products (MOD11A2 for Terra MODIS and MYD11A2 v006 for Aqua
MODIS and the data of MYD11A2 are from 2003) [51].

2. The European Space Agency’s Climate Change Initiative (ESA CCI) land cover data
at 300 m resolution from 2001 to 2018 [52] were employed to delineate urban and
rural areas.

3. Shuttle Radar Topography Mission (SRTM) data at 90 m resolution from 2000 was
employed to determine the elevation of urban and rural areas.

4. The above 281 cities’ administrative areas were defined based on data from the
National Geomatics Center of China (NGCC).

Due to the lack of data and the fact that the MGWR could only handle cross-sectional
data, daytime and nighttime SUHI intensity data from the CSUHI dataset for 2005, 2010,
2015, and 2018 were employed for long-term analysis. The daytime and nighttime SUHI
intensities were consolidated values from the Terra and Aqua platforms.

2.2.2. Variable Selection and Data Source

A core objective of this study is to analyze the bias caused by spatial heterogeneity
being neglected in studies on the driving factors of SUHIs. Therefore, the following two
principles were employed for selecting variables: (i) They were mentioned frequently in
the existing literature and were significant. (ii) They were as concise as possible. Both the
ecology and socioeconomic level of a city can significantly influence SUHIs. Therefore,
based on the conclusions of previous literature (see the last column of Table 1) on the
drivers of SUHI, five indicators, including vegetation, precipitation, air pollution, economic
development, and population, were selected in this paper. The corresponding variables
were the urban–rural differences of NDVI (∆NDVI), urban–rural differences of precipitation
(∆Pre), urban–rural differences of fine particulate matter (∆PM2.5), urban nighttime light
(NTL), and the population at the end of the year for each city (Pop), respectively.

Values of these driving factors were determined by using the following data:

1. ∆NDVI was derived from the 16-day 1 km MODIS NDVI products (MYD13A2 v006)
in 2005, 2010, 2015, and 2018 [53].

2. ∆Pre was derived from the monthly 1 km precipitation raster product (National
Tibetan Plateau Data Center. Available online: http://data.tpdc.ac.cn (accessed on
21 October 2021)) in 2005, 2010, 2015, and 2018, which was spatially downscaled from
the Climatic Research Unit (CRU) time-series dataset combined with the climatology
dataset of WorldClim [54].

3. ∆PM2.5 was derived from the yearly 1 km ChinaHighAirPollutants (CHAP) dataset,
which was constructed from the MODIS/Terra+Aqua multiangle implementation
of atmospheric correction (MAIAC) aerosol optical depth products together with
abundant natural and human factors using the Space–Time Extra-Trees (STET) model
mboxciteB55-remotesensing-1416300,B56-remotesensing-1416300.

4. An integrated and consistent annual NTL product was employed from a harmo-
nized global nighttime light dataset [57] for 2005, 2010, 2015, and 2018. This dataset
employed Defense Meteorological Satellite Program (DMSP) data and simulated
DMSP-like NTL observations from Visible Infrared Imaging Radiometer Suite (VIIRS)
data to harmonize the intercalibrated NTL observations and showed consistent tem-
poral trends. This study only used pixels with more than seven digital number (DN)
values to improve the data’s reliability.

5. Population data was extracted from the China Urban Statistical Yearbook for 2005,
2010, 2015, and 2018.

http://data.tpdc.ac.cn
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Table 1. Descriptive statistics for variables in this study.

Variable Number of
Observations Mean STD 1st Quartile 2nd Quartile 3rd Quartile Reference

SUHI (◦C) Daytime 281 0.856 1.125 0.470 1.033 1.465 -
Nighttime 281 0.703 0.571 0.439 0.702 0.966

∆NDVI (1/103) 281 −2.218 1.171 −3.027 −2.377 −1.502 [58,59]
∆PM2.5 (µg/m3) 281 0.303 2.108 −0.757 0.241 1.319 [60,61]

∆Pre (mm) 281 4.939 24.033 −5.315 5.218 15.210 [30,62]
NTL (DN value) 281 20.70 5.607 17.502 19.255 21.968 [28,63]
Pop (104 Person) 281 4.328 3.073 2.382 3.664 5.675 [4,40]

Note: SUHI = surface urban heat island intensity; ∆NDVI = urban–rural differences of NDVI; ∆PM2.5 = urban–rural differences of fine
particulate matter; ∆Pre = urban–rural differences of precipitation; NTL = urban nighttime light; Pop = the population at the end of the year.

The statistical description and spatial distribution of the variables employed in the
estimations are presented in Table 1 and Figure 2, respectively.
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3. Methods

Figure 3 shows the overall framework used in this paper. The first step is SUHI
calculation based on multisource remote sensing data, the second step is the construction
of the driving factor index system, and the last step is driving factor analysis based on the
MGWR model.
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Figure 3. The overall framework of the study. Note: SUHI = surface urban heat island intensity;
NDVI = normalized difference vegetation index; MODIS LST = Moderate Resolution Imaging
Spectroradiometer land surface temperature; ESA CCI = European Space Agency’s Climate Change
Initiative; SRTM DEM = Shuttle Radar Topography Mission Digital Elevation Model; MGWR = the
population at the end of the year.

3.1. SUHI Intensity Calculation

A large amount of uncertainty in selecting rural references in the SUHI intensity
calculations makes it challenging to compare the conclusions of related literature [38,64].
In contrast, taking administrative boundaries (AB) as a rural reference is considered an
appropriate SUHI standardized calculation scheme and has been widely used in SUHI
studies around the world, including China and the United States [19,65]. The AB method
avoids the difference in SUHI intensity due to rural reference buffer delineation and keeps
both remotely sensed and socioeconomic data at the same aggregation level. The above
two aspects of the AB method illustrate its clear advantages in the analysis of SUHI drivers.

In this study, we delineated urban and rural areas using the ESA CCI land cover data.
We first removed certain types of pixels within each city’s administrative borders: the
pixels classified as snow and ice and the pixels in extraordinarily high or low positions
(pixels with elevations higher or lower than 50 m of the built-up pixel average). Removing
such pixels was necessary to eliminate the possible effects of temperature from water
bodies and extreme positions. Pixels classified as built-up among the remaining pixels
were then flagged as urban areas for each city with its administrative borders. Accordingly,
the remaining pixels were referred to as rural areas. After the above processing, we used
Equation (1) to calculate the SUHI intensity as follows:

SUHI = ULST − RLST (1)

where SUHI represents the city’s surface urban heat island intensity, ULST is the average
land surface temperature in the urban area, and RLST is the average temperature of the
pixels in the rural area. We also processed the three variables NDVI, precipitation, and
PM2.5 in the same way to investigate how their differences between urban and rural areas
affect SUHIs.
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3.2. Ordinary Least Square Model

Typically, linear regression is relatively suitable for describing how a dependent
variable is related to several explanatory variables. The equation given below can thus be
used to describe an ordinary linear regression model:

Yi = α0 + ∑p
k=1 αkXik + εi, i = 1, . . . , n (2)

where the dependent variable Y is described by a linear combination of Xk, k = 1, . . . , p;
εi indicates independent error terms, following a zero-mean normal distribution. The
OLS is adopted to evaluate the global regression parameters and the multicollinearity
of the dataset. The estimated parameters are constant over space during the OLS model
calibration process:

α′ = (XTX)
−1

XTY (3)

The MGWR model is then employed for the removal of this constraint.

3.3. Multiscale Geographically Weighted Regression Model

The spatial autocorrelation observed in previous research may be caused by the
following: (i) the highly significant regional heterogeneities in China, mainly for coastal
and interior areas [66]; (ii) in neighboring regions, the difference between urban climate and
environment may be highly significant due to their unique planning pattern and nature.
Thus, besides the original global regression method, we take a further step to analyze
the relationship between SUHI intensity and several driven factors with the assistance of
MGWR, which is an improved method of geographically weighted regression traditionally
applied by researchers [67]. MGWR allows different bandwidths (instead of a sole global
bandwidth) to be assigned to each variable. The parameters of MGWR are estimated for
each observation; thus, the spatially varied correlation between the SUHI intensity and
drivers is more exhaustively and intuitively visualized.

When applied to spatial data, a typical linear regression model should assume a
relatively stationary process, i.e., when stimuli are the same or similar, the response in each
component of the study area will all be the same or similar. However, data that must be
applied by spatially variant processing remain where spatial nonstationarity is exhibited.
The GWR can be used to overcome this problem and is formulated as follows:

Yi = α0(i) + ∑p
k=1 αk(i)Xik + εi, i = 1, . . . , n (4)

Considering that the model parameters are variant across different locations i, then
the GWR can be estimated as:

α′(i) = (XTWX(i))
−1

XTW(i)Y (5)

where W(i) denotes a matrix of weights that is subject to the change of position i (longitude
and latitude), considering that the observations closer to i should have more significant
weights than distant ones.

In GWR, the data for the current location is estimated based on the neighboring
locations. Typically, the weighting matrix can be determined via numerous weighting
schemes, although those schemes tend to be Gaussian and reflect the dependency type
that usually occurs in most spatial processes. Weighting methods can be categorized into
adaptive or fixed approaches. In a fixed Gaussian kernel-based local regression model, the
parameter Wij is used to refer to the continuous function for the data location j and local
regression location i:

Wij = exp[−
(dij/h)2

2
] (6)

where dij represents the distance between locations i and j, and h stands for the bandwidth;
that is to say, when h grows, the steepness of the kernel gradient reduces, and the local
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calibration can contain additional data points. The optimum value of h can be derived
in the GWR calibration. A choice between variance and bias is required to choose the
optimal bandwidth. We obtain the optimal bandwidth via an iterative process in each
GWR calibration to minimize the corrected Akaike information criterion (AICC) value.

GWR can capture all spatial heterogeneity in relationships. However, it is assumed
that all of these relationships change with a similar spatial scale across any covariate.
Since MGWR relaxes the assumption that variables have the same spatial scale and thus
makes it possible to optimize the covariate-specific bandwidths, it can improve the GWR
significantly. It is formulated as:

log Yi = βbw(Ui, Vi) + ∑j βbw(Ui, Vi) log Xij + εi (7)

where bw * describes the particular optimum bandwidth employed within the estimation of
the * th conditional relationship, while various processes can work at multiple spatial scales
using MGWR to respectively derive the bandwidth for certain conditional relationships
between the response variable and different predictor ones.

The back-fitting algorithm presented by Fotheringham et al. [34] can be employed
to calibrate the MGWR. In this work, MGWR 2.2.1 software was used for calibration
(more information can be found at the homepage of MGWR. Available online: https:
//sgsup.asu.edu/sparc/multiscale-gwr (accessed on 21 October 2021)).

4. Results
4.1. Results of the OLS Analysis

According to the results presented in Table 2, only ∆NDVI and NTL variables always
have statistical importance. The coefficients of daytime NTL and Pop and nighttime
∆NDVI, ∆Pre, and Pop increase within the study interval, and there is no consistent pattern
in the remaining variables’ coefficients. Moreover, the ∆NDVI variable exhibits significant
negative orientation in daytime models and positive orientation at nighttime, indicating
that, in the global model, the control of SUHIs by vegetation shows opposite patterns during
the day and night, i.e., ∆NDVI mitigates urban heat islands during the day and exacerbates
them at night. In contrast, the NTL and Pop variables have a positive orientation in both
daytime and nighttime models, indicating that the socioeconomic conditions of the city
always increase SUHIs. Pre and PM2.5 variables do not exhibit stable driving patterns
over the study period, indicating that climate and air pollution factors influence SUHIs in
complex ways, and an accurate conclusion is difficult to obtain. However, the above two
points are likely inaccurate conclusions due to the global model’s inability to capture the
heterogeneity of spatial context and geographic locations.

Table 2. Results of the ordinary least squares regression model applied to SUHI intensity and drivers in 2005, 2010, 2015,
and 2018.

2005 2010 2015 2018

Daytime Nighttime Daytime Nighttime Daytime Nighttime Daytime Daytime

∆NDVI −0.735 *** 0.208 *** −0726 *** 0.337 *** −0.790 *** 0.399 *** −0.776 *** 0.386 ***
∆PRE −0.013 −0.014 0.068 * 0.063 0.037 0.100 −0.008 0.132 **
NTL 0.082 ** 0.205 *** 0.083 ** 0.056 ** 0.121 *** 0.139 *** 0.131 *** 0.059

∆PM2.5 0.000 −0.012 −0.036 −0.043 0.068 −0.02 0.092 *** 0.055
POP 0.003 0.001 0.019 0.012 0.034 0.06 0.04 0.074
R2 0.545 0.087 0.540 0.135 0.666 0.181 0.658 0.176

Adj. R2 0.537 0.071 0.532 0.120 0.660 0.166 0.652 0.161
AICC 592.758 788.989 595.728 773.649 505.325 758.541 510.183 757.353
RSS 128.370 257.435 129.729 243.806 94.148 231 96.043 231.459

Note: Coefficients provided in this table have all been standardized; ***, **, * refer to the respective significance at 1%, 5%, and 10% levels,
respectively; AICc = corrected Akaike’s information criterion; RSS = residual sum of squares; Adj. R2 = adjusted coefficient of determination.

https://sgsup.asu.edu/sparc/multiscale-gwr
https://sgsup.asu.edu/sparc/multiscale-gwr
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For diagnostic information, the R2 of the daytime model is significantly higher than
that of the nighttime. The highest R2 is acquired from the daytime 2015 data (0.666), and
the lowest R2 is observed in the nighttime 2005 data (0.087). Thus, the daytime OLS models
have reasonable R2 values. However, a direct comparison of AICc among different models
with various datasets is of little necessity. Therefore, RSS and AICc are taken for comparison
with the MGWR model for improvement. We employ the distribution of OLS standard
residuals in Figures S1 and S2 to obtain a primary observation of the spatial autocorrelation.
The residual maps show that high standard residuals exist in many municipalities, while
their corresponding distributions are relatively clustered within the years 2005, 2010, 2015,
and 2018. A multicollinearity test is also performed with variance inflation factor (VIF)
numbers as the diagnostic data to determine multicollinearity. A relatively ideal value of
the VIF for a predictor variable cannot be greater than 10. For every model, the VIFs are all
below 2, which means there is no significant multicollinearity between variables.

In addition to these analyses, Moran’s criterion for all three time periods (see Table 3)
is utilized to verify the existence of spatial autocorrelation in the SUHIs. The test results
indicate that SUHI intensities in this study have a likelihood lower than 1% (p-value < 0.01)
in all years, demonstrating a significant spatial autocorrelation of SUHI intensity. Combined
with the maps of residual distribution, the clustered patterns can be generated randomly,
indicating significant spatial heterogeneity in the OLS model.

Table 3. Spatial autocorrelation statistics results for the SUHI intensity in each of the four time
periods.

2005 2010 2015 2018

Day Night Day Night Day Night Day Night

Moran’s
Index 0.408 0.261 0.475 0.334 0.544 0.246 0.546 0.260

Z-score 17.31 11.06 20.19 16.06 22.93 10.402 22.08 10.538
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

4.2. MGWR Results

The dependent and independent variables of the MGWR model are similar to those
employed by the OLS model. Local model results are presented in Tables S1–S4. Comparing
the diagnostic data of the OLS results, the MGWR model achieves superior efficiency
considering its lower RSS and AICc values and its higher regulated R2. This enhancement
is more significant in the nighttime than in the daytime. Furthermore, the MGWR models
can allocate various bandwidths for variables. Thus, the bandwidths are changed according
to the variables (see Tables S1–S4).

Both ∆PM2.5 and Pop can be considered as global variables (bandwidths are between
252–281), which means they control SUHIs in the same way globally. However, the
remaining four variables show significant spatial variations (bandwidths are between 43
and 124), further illustrating the necessity of applying the MGWR model. The bandwidths
of the vast majority of variables in the nighttime model are typically larger than those in the
daytime, suggesting that the spatial heterogeneity of daytime SUHI drivers is stronger than
that of the nighttime. While spatial data and spatial processes are two different concepts,
in this study, they display a similar spatial heterogeneity pattern (daytime greater than
nighttime).

Figure 4 shows the variations of local R2 distribution in the analyzed duration. A
higher local R2 for a city indicates a higher explainable level of correlation. The relatively
lower R2 are usually localized in the Southwest region in the daytime and are concentrated
in the Northeast at night. From 2005 to 2018, the spatiotemporal distribution pattern of R2

does not change much, but the explanation rate of the model increases. This result indicates
that the explanatory variables selected in this paper cover the main drivers of SUHIs, which
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become increasingly important as a city expands. The comprehensive parameters leading
to the mentioned variations are presented subsequently.
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Figures 5–8 show the change of local significance and the variable’s coefficients from
2005 to 2018. Only the municipalities with a notable dependency between SUHIs and
variables are colored (p-value < 0.1). Various patterns and characteristics can be determined
from the results, including: (i) Figures 5 and 6 show that the daytime ∆NDVI variable’s
coefficient is negative in all cities. Still, the effect is generally higher in the Northwest than
in the Southeast. Conversely, the nighttime situation produces significant differences, with
largely negative coefficients in the Southeast and positive coefficients in the Northwest.
This suggests that the control of SUHIs by vegetation indeed differs considerably between
the day and night but differently from the coarse pattern expressed by the global model (i.e.,
the OLS model). Since vegetation is the most crucial driver of SUHIs, it is discussed further
in Section 5.2. (ii) As also illustrated in Figures 5 and 6, the effect of the ∆Pre variable
on SUHIs is positive in the Northwest, both during the night and day. Apart from this,
there is a strongly negative effect in the central region during the daytime and in the North
during the nighttime. This revealed that there was a strong spatial heterogeneity in the
impact of precipitation on SUHI. (iii) In addition, Figures 5 and 6 demonstrate the influence
of spatial context on SUHIs. Along with the covariate-specific optimized bandwidths,
the intercept’s local estimates are perhaps the most compelling output from the MGWR.
These indicate the intrinsic levels of the dependent variable holding everything else in the
model constant. In this case, the local intercept estimates indicate the inherent impact of
cities on SUHIs. In essence, this is a measure of spatial context. The spatial context may
include some urban features that are difficult to quantify on a large scale, including the
architectural style or drainage structure of the city itself. The effect of spatial context on
SUHIs is significantly positive only in the Northeast and Southeast during the daytime and
nighttime. At night, the regional extent of the effect increases significantly and is positive in
the North and negative in the South. (iv) Air pollution has often been considered a critical
SUHI driver in previous studies. However, according to Figures 7 and 8, air pollution does
not appear to have a significant influence, particularly in 2015 and 2018. This result may be
related to a series of public strategies (such as the Air Pollution Prevention and Control
Action Plan) enacted by the Chinese government targeting PM2.5 reduction. (v) The NTL
and Pop variables together characterize the city’s socioeconomic level. Interestingly, the
Pop variable is insignificant in almost all models, and the effect of NTL on SUHIs differs
significantly between daytime and nighttime.
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5. Discussion
5.1. Multiscale Extensions of Geographically Weighted Regression

The respective bandwidths produced by MGWR can more intuitively interpret geo-
graphical scale [34]. MGWR could also enhance policy-making by framing UHI determi-
nants using a possible combination of global, regional, and local spatial contexts.

Several past studies have investigated the drivers of urban heat islands using classical
GWR models [44–46], which inevitably ignore the fact that different relationships may
occur at different scales. To address this issue, we analyze the same variables utilized in the
GWR model to compare the differences between the GWR and MGWR models (Table 4).

Table 4. Diagnostics information for the classical GWR model in each of the three time periods.

2005 2010 2015 2018

Daytime Nighttime Daytime Daytime Nighttime Nighttime Daytime Nighttime

Bandwidth 73 88 63 86 74 98 83 78
R2 0.804 0.588 0.851 0.868 0.632 0.609 0.861 0.619

Adj. R2 0.756 0.508 0.810 0.842 0.545 0.543 0.832 0.535
AICC 479.856 662.772 421.886 342.88 652.109 634.155 362.921 655.341
RSS 55.396 116.224 41.919 36.968 103.365 110.241 39.175 107.310

Note: AICc = corrected Akaike’s information criterion; RSS = residual sum of squares; Adj. R2 = adjusted coefficient of determination.

Results indicate that the GWR bandwidth can be considered an intermediate value
of the MGWR bandwidth, i.e., it ignores the global robustness of some variables and
fails to capture the spatial heterogeneity of some variables. Thus, GWR models typically
have lower R2 and higher AICC and RSS than MGWR models and produce specific local
parameters that are difficult to interpret. For example, the results of MGWR’s analysis show
that the effect of vegetation on SUHIs is very localized (bandwidths are small) compared to
air pollution, and the development of UHI mitigation policies from these two perspectives
should focus on inter-regional characteristics.

It is worth noting that previous studies usually mention that MGWR models can
better handle the problem of multicollinearity. However, all models in this study do not
have significant multicollinearity (VIF < 1.5 in the OLS model, local condition index < 15 in
MGWR and GWR models, see Table S5). There is no discussion of multicollinearity in the
different models.

5.2. Seasonal Variation of SUHIs and Vegetation

In all models used in this study, vegetation differences among urban and rural areas
are the most critical drivers of SUHIs, and previous studies have come to a similar conclu-
sion [14,20,30,53]. However, in the present study, in some areas, larger ∆NDVI increases
SUHIs at night. This phenomenon seems to contradict the classical theory that “vegetation
is a regulator of urban temperature” [68]. The areas with positive ∆NDVI effects on night-
time urban heat islands are concentrated in China’s most economically dynamic Shenzhen
metropolitan region. In contrast, those with negative effects are concentrated in the less
economically developed Northwest region. The significant socioeconomic and climatic
differences between the two areas result in significantly different vegetation types. The
Shenzhen metropolitan region has a substantially higher proportion of artificial vegetation
than the Northwest. Therefore, we speculate that the difference in vegetation types may
affect how vegetation controls SUHIs to some extent. To further test this hypothesis, we
keep the remaining variables inconvenient and analyze the relationship between SUHI and
∆NDVI in summer and winter, respectively, using the MGWR model (Figures 9 and 10).
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summer and winter of 2005, 2010, 2015, and 2018.
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Results show that the contribution of ∆NDVI to SUHIs is negative in almost all cities
during the summer daytime and negative during the winter daytime except for in the
Northeast area. During summer nights, the coefficient of ∆NDVI remains positive in the
GBA region, while it is mainly negative in the rest of the region. Most interestingly, during
winter nights, the coefficients of ∆NDVI are primarily positive across the country and are
significant only in the Northwest, Northeast, and Southwest regions (except for in 2005).
The above results suggest that differences in vegetation type may indeed lead to changes
in the mechanism of vegetation influence on nighttime SUHIs and that such changes are
more likely to occur in summer.

5.3. Spatial Context and Population

Unlike the global mode, the MGWR does not statistically intercept at zero, and the
spatial heterogeneity identifies hot spots of SUHIs in the parameter estimates after the
applied variables have been controlled. Both geographical effects associated with the
remaining and omitted variables may be included in these spatial patterns. For instance,
spatial context may make a noticeable contribution to the city’s architectural style, the
consumption structures of residents and further alter the thermal environment of the city.
Alternatively, the intercept may help in policy formation, informing follow-up investi-
gations and additional determinants. For example, in this study, the effects of intercept
variables on SUHIs are all positive during the daytime and positive in the North and
negative in the South in the nighttime. This result indicates that urban characteristics, such
as latitude, architecture, and urban planning, significantly affect nighttime north–south
SUHIs. Further research on these findings is essential for the mitigation of nighttime
SUHIs.

The MGWR has another advantage in exploring the robustness of abstractions applied
in the definition of explanatory variables. While population variables have received
extensive attention in previous studies [30,40], no statistically nonzero local associations
with SUHIs are observed in our study. Comparing this study to prior studies reveals that
the effect of population indicators on SUHI may not be robust. This implies that more
indicators of drivers need to be developed in the study of SUHIs to obtain more meaningful
analysis results. For example, more appropriate indicators to characterize the impact of
human activities on the urban thermal environment should be considered rather than
simply employing the population within an administrative boundary as the indicator.

6. Conclusions

While previous studies have examined the drivers of SUHIs in detail using multiple
temporal and spatial dimensions, driver spatial heterogeneity and spatial scale have
received little attention. This study provided a comprehensive and in-depth analysis of
SUHIs in China for 2005, 2010, 2015, and 2018 using the MGWR model. According to the
obtained results, the MGWR model outperformed the OLS and classical GWR models in
terms of both diagnostic indicators and model coefficient interpretability. The MGWR
model had significantly enhanced explanatory power during the daytime than during the
nighttime, with ∆NDVI and NTL variables being the most important during the daytime
and nighttime, respectively. The control pattern of vegetation on SUHIs was significantly
different at night, and even positive effects were observed in Northwest and Northeast
regions. By further analyzing the seasonal variability of vegetation and SUHIs, we found
that differences in vegetation types due to socioeconomic and urban development patterns
may be the main reason for spatial heterogeneity as the driving force of vegetation on
SUHIs.

This paper also provided some potential references for the development of region-
ally targeted SUHI mitigation policies. For example, the results from the MGWR model
suggested that air pollution management is also of considerable value in improving the
thermal environment of urban agglomerations in North and Central China. In addition,
the increase of vegetation in urban areas played an essential role in urban environmental
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management in the daytime in northern regions and during the night in southern areas.
According to the analysis of the influence patterns of spatial context on SUHIs, managing
the urban thermal environment at night was much more challenging than vegetation plant-
ing and air pollution controls in the daytime, especially in eastern China. From the spatial
scale of drivers, a joint prevention and control approach should be adopted to manage
air pollution and thus mitigate SUHI because PM2.5 as a global variable has a widespread
effect on SUHIs. The mitigation of SUHIs through the control of other local variables
requires a more tailored approach. Furthermore, because China covers various climate
zones, our research has a specific global reference value.

We acknowledge that the relevant conclusions of this study are confined to obvious sky
situations. The MGWR model in this study explains 62% (nighttime) to 87% (daytime) of
the inter-regional variations in SUHI intensity. However, despite its excellent performance,
the inevitable problem of omitted variables remains in the present model, which is largely
due to variable measurements. For example, urban drainage structures may affect SUHIs
by changing urban evapotranspiration, but it is challenging to find a suitable and accurate
indicator to quantify it. It will also be valuable to add more driving factors and extend the
research time (for example, combining simulation data to quantify future SUHIs under
multiple scenarios) in future research.

Nevertheless, the current work provides valuable insights into the attribution analysis
of SUHIs by systematically investigating the spatiotemporal patterns of SUHI driving
factors from a multiscale perspective. Accordingly, it provides a full explanation and
realization of SUHIs and references for developing urban environmental governance
policies.
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regression model between SUHI intensity and drivers in 2005; Table S2. Results of multiscale ge-
ographically weighted regression model between SUHI intensity and its drivers in 2010; Table S3.
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