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Abstract: An urban ecosystem’s ecological structure and functions can be assessed through Urban
Surface Ecological Status (USES). USES are affected by human activities and environmental processes.
The mapping of USESs are crucial for urban environmental sustainability, particularly in developing
countries such as India. The COVID-19 pandemic caused unprecedented negative impacts on socio-
economic domains; however, there was a reduction in human pressures on the environment. This
study aims to assess the effects of lockdown on the USES in the Kolkata Metropolitan Area (KMA),
India, during different lockdown phases (phases I, II and III). The land surface temperature (LST),
normalized difference vegetation index (NDVI), and wetness and normalized difference soil index
(NDSI) were assessed. The USES was developed by combining all of the biophysical parameters
using Principal Component Analysis (PCA). The results showed that there was a substantial USES
spatial variability in KMA. During lockdown phase III, the USES in fair and poor sustainability areas
decreased from 29% (2019) to 24% (2020), and from 33% (2019) to 25% (2020), respectively. Overall,
the areas under poor USES decreased from 30% to 25% during lockdown periods. Our results also
showed that the USES mean value was 0.49 in 2019but reached 0.34 during the lockdown period (a
decrease of more than 30%). The poor USES area was mainly concentrated in built-up areas (with
high LST and NDSI), compared to the rural fringe areas of KMA (high NDVI and wetness). The
mapping of USES are crucial in different biophysical environmental conditions, and they can be very
helpful for the assessment of urban sustainability.

Keywords: ecological structure; urban surface ecological status (USES); remote sensing; Kolkata
Metropolitan Area; environmental sustainability

1. Introduction

In recent decades, rapid urban expansion and population growth have dramatically
impacted ecosystems [1–3], increasing land degradation and reducing human wellbe-
ing [4–6]. This hashad negative impacts on urban inhabitants [7]. One of the most visible
impacts of urban expansion is the reduction in green spaces(GS), which is well known to
affect life quality [8]. Previous works highlighted that the Urban Surface Ecological Status
(USES) was influenced mainly by the surface biophysical components such as greenness,
dryness, wetness, and heat. Therefore, changes in land surface characteristics lead to a
variation of USES [9,10]. The conversion of a pervious land surface into an impervious
surface is one of the most widespread forms of land use/land cover change (LULCC) [11].
LULCCdramatically changes land-atmosphere interactions, such as albedo andandevapo-
transpiration [4,8,12].

The application of remote sensing is widely used to map USES. Several spectral indices
have been used, such as the normalised difference vegetation index (NDVI), normalised
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difference built-up index (NDBI), normalised difference water index (NDWI), leaf area
index (LAI), normalised difference soil index (NDSI), land surface temperature (LST)
and/or using the combination of different indices [9,12,13].

The USES changes greatly affect life quality. Therefore, the quantification of the USES
is crucial and urgently required, especially in rapidly growing megacities. To our knowl-
edge, this field remains unexplored and can provide key information to developersand
policymakers to improve urban planning. Urban areas in India are unplanned andover-
populated, severely impacting their ecosystems [14,15]. Therefore, the assessment of the
USES could provide essential information to make thosecities more habitable.

India is the second most populous country in the world. It is expected that the
population of India will increase bynearly 273 million people by 2050 and overtake China
by 2027. The estimated population growth is especially high in urban areas. In 2050, it is
expected that India will have the highest urban population in the world [6,16].According to
the National Commission on Population (NCP), it was estimated that approximately 38.6%
of the total population of India reside in urban areas. The populations of cities such as
Mumbai, Delhi, Kolkata, Chennai, and Hyderabad have increased rapidly and are among
the world’s most populated urban areas [17]. Kolkata is the thirdlargest megacity in India,
after Delhi and Mumbai [18,19]. Recently, Kolkata experienced a rapid urban expansion
LULCC, resulting in a substantial alteration of the natural and semi-natural areas [20,21].
Previous studies observed a strong urban growth pattern and land use land cover (LULC)
dynamics in theKolkata Metropolitan Area (KMA) [22–26]. The rapid urban expansion
within the spatial limit ofthe KMA has resulted in a dramatic change in vegetation cover,
water bodies, agricultural areas, and wetlands (Table A1). For example, Ghosh and Das [27]
performed a study on an East Kolkata Wetland (EKW). They found a substantial decline in
the wetland area (reduced by 5%) and vegetation cover (reduced by 28%). According to
Sahana et al. [28], in the KMA from 1990 to 2015, vegetation cover, wetland, and agricultural
lands declined by about 6.6%, 5.9%, and 26%, respectively, while the area of urban areas
increased by 24.5%. It is clear that that there were substantial transformations of LULC
change in KMA. However, very few studies assessed the impacts of thesurface ecological
status [29–32]. To our knowledge, this is the first work focused on mapping the USES in
the KMA. Moreover, this is the first attempt to assess the impact of COVID-19 on the USES
of Indian urban areas.

The emergence of the COVID-19 pandemic significantly affected global public health,
causing the deaths millions of people [7]. Many measures were adopted by many countries
such as India, the USA, France, Italy, and the UK to combat COVID-19 transmission [7].
Considerable measures such as strict transport restrictions, limited emissions from indus-
tries, and the closure of hotels and restaurantssignificantly affected the environment [7].The
lockdown imposed by the COVID-19 outbreak had detrimental effects on society and the
economy [11]. However, the decrease in human activities reduced the environmental
pressure at both local and global scales [12,33–36]. It is critical to identify the impact of
the lockdown on environmental quality [35,37]. Recently, several studies assessed the
lockdown effects on air quality and water quality [33–36]. In India, a total lockdown was
implemented on 25 March 2020, and continued until 30 June 2020. Several unlocking
phases were implemented. From 1 June 2020, until 30 December 2020, unlocking phase VI
was implemented [38,39]. There were strict restrictions including the complete banning of
industrial, transportation, and other socio-economic activities [40]. The severe limits on
human activities resulted in areduction in environmental pressures. Thus, we hypothesise
that the lockdown affected USESs. This study attemptedto map the impact of the COVID-
19 lockdown on the USES in the KMA, India. The USES maps were compared with the
previous year (2019) to better understand the effect of lockdown on the USES. Thus, this
study is essential to understand the impact of lockdown on the ecological status.
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2. Materials and Methods
2.1. Study Area

Kolkata Metropolitan Area is the third-largest megacity in Eastern India and is the
capital of West Bengal state (Figure 1). It is located in the lower Gangetic plain (LGP),
and it is extended between 88◦ 32◦ E, and between 23◦ 01, N to 22◦ 19 N,withan area
of 1851.41 km2. According to the Census of India (2011), KMA has 14.06 million (7480
person/km2/). KMA comprises 6 districts, 3 municipal corporations (Kolkata, Howrah,
and Chandannager) and 38 municipalities. According to the Koppen classification, KMA
has an AW climate type, with a wet climate during the summer and dry climate during the
winter. In 2019, KMA had about 40% and 21% built-up and vegetation cover (Figure 1).
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2.2. Data Sources

In this study, the satellite images for the assessment of the USES were derived from the
United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/accessed on 26
August 2021). Landsat 8 OLI (Operational Land Imager) images were selected in 2019 and
2020 during the different phases of lockdown. Landsat 8 OLI images comprise two sensors,
i.e., Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), respectively. These
sensors have a 30 m resolution (except band 8 of 15m) with nine spectral bands and two
thermal bands. In this study, all satellite images were taken into account to develop the
USES from the different lockdown phases. These lockdown phases were: pre-lockdown
phase (January and February), during lockdown phase (April), and post lockdown phase
(November and December), respectively. Two satellite images were selected for the pre-
lockdown period, one image for during lockdown, and two images for post lockdown. The
satellite images were selected based on the lockdown timeline imposed in India. In India,
the full lockdown was imposed from 25 March to 30 June 2020, and after 30 June, unlocking
phases (from 1 July 2020) were initiated, and are currently continuing (as of 15 August 2021).
The details of the lockdown phases are presented in Table 1.

https://earthexplorer.usgs.gov/accessed
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Table 1. Data used in this study for USES modelling.

Year Lockdown Phase Month Dateof Acquisition Image ID Sensor Resolution
(m) Source

Non
Pandemic year 2019

Same period during
Prelockdown (Phase I)

January 30 January 2019 LC08_L2SP_138044_20190130_20200829_02_T1

LANDSAT8 OLI
(Operational
LandImager)

30

USGS (https:
//earthexplorer.

usgs.gov/)
acessed on 26
August 2021

February 15 February 2019 LC08_L2SP_138044_20190215_20200829_02_T1
Same period during
lockdown (Phase II) April 20 April 2019 LC08_L2SP_138044_20190420_20200828_02_T1

Same period during after
lockdown (Phase III)

November 14 November 2019 LC08_L2SP_138044_20191114_20200825_02_T1
December 16 December 2019 LC08_L2SP_138044_20191216_20201023_02_T1

Pandemic year 2020
Prelockdown (Phase I) January 17 January 2020 LC08_L2SP_138044_20200117_20200823_02_T1

February 18 February 2020 LC08_L2SP_138044_20200218_20200823_02_T1
During lockdown

(Phase II) April 6 April 2020 LC08_L2SP_138044_20200406_20200822_02_T1

After lockdown (Phase III) November 16 November 2020 LC08_L2SP_138044_20201116_20210315_02_T1
December 18 December 2020 LC08_L2SP_138044_20201218_20210309_02_T1

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.3. Methods
2.3.1. Spectral Indices and Framework

For the assessment of the environmental quality in KMA, four biophysical parameters
were extracted: normalised difference in the vegetation index for greenness, normalised
difference in the soil index for dryness, wetness derived from Tasseled cap transformation
(TCT) (wetness), and land surface temperature for heat, respectively (Table 2). These spec-
tral indices were previously used for modelling USES [10,12,41,42]. The study flowchart
is shown in Figure 2 and was developed to evaluate the impact of COVID-19 amid the
lockdown on the USES. In step one, LANDSAT 8 OLI images from 2019 and 2020 were
pre-processed and corrected. In step two, the spectral indices related to USES such as
NDVI, NDSI, LST, and wetness were calculated on the basis of LANDSAT-8 (OLI) reflective
and thermal bands for a different lockdown phase. In the third step, the spectral indices
were normalised (PCA was used to assign weight), and finally, USESs were developed
for 2019 and 2020 during the different phases of lockdown. NDVI was considered one of
the significant indexes, and was widely used to assess and model vegetation [43]. NDSI
was also considered as one of the essential parameters to state the surface ecological sta-
tus [44,45]. LST was considered a significant surface biophysical parameter by which the
exchange of thermal energy could be assessed [46,47]. Previous studies documented that
LST increased with increasing human activity [48], and spatio-temporal changes of LST
influenced climatic conditions. The amount of moisture present in various land surface
covers such as built-up, vegetation cover, and bare soil could be estimated through wet-
ness. Tasselled cap transformation (TCT) is a commonly used method to model spatial
heterogeneity of wetness status [48]:
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Table 2. Spectral indices used for USES modeling in this study.

Parameters Ecological Significance Equation Reference

(a) LST Heat LST = TB/[1 + {(λ ∗ TB/ρ)∗ lnε}] [46,47]

(b) NDVI Greenness NDVI = (NIR−Red)
(NIR+Red)

[8,43]

(c) NDSI Dryness NDSI = SWIR1−NIR
SWIR1+NIR [44,45]

(d) Wetnessderivedfrom
TCT Wetness 0.1115Blue2− 0.1973Green + 0.3283Red +

0.3407NIR− 0.7117SWIR1− 0.4559SWIR2 [48,49]

Where, (a) BT is the brightness temperature and W is the wavelength of the emitted
radiance. Thermal band 11 for LANDSAT-8 has error and bias for LST calculation, so
thermal band 10 of LANDSAT-8 was considered for LST calculation in this study. (b) NIR
and Red are the near-infrared and red bands, (c) SWIR1 is the shortwave infrared bands of
satellite imagery, and (d) Tasseled cap transformation (TCT) was calculated for wetness
following Baig et al. [48] and Mijani et al. [49].

2.3.2. Modelling Urban Surface Ecological Status (USES) in KMA

The biophysical parameters (greenness, heat, dryness, and wetness indices) were
standardised (ranging from 0 to 1) [50]. A principal component analysis (PCA) was applied
to combine the assessed indices. The first principal component (PC1) was used for USES
analysis of KMA. PCA’s application is key to avoiding collinearity problems between
the parameters used in this study for USES modelling. Subsequently, USES values were
standardised between 0 to 1, where the values close to 0 indicated the best USES (i.e., high
values of NDVI, wetness, and low values of LST and NDSI). The values close to 1 show the
worst USES (i.e., low NDVI, wetness, and high LST, and NDSI), respectively. The USES
values were reclassified into five categories:(a) Excellent (<0.20), (b) Very good (0.20–0.40),
(c) Good (0.40–0.60), (d) Fair (0.60–0.80), and (e) Poor (>0.80) [3].

2.3.3. Statistical Analysis

A Mann–Whitney test (M–W test) was applied to identify significant differences
between the same lockdown phases of 2019 and 2020. The results of the Mann–Whitney
test were carried out at a p < 0.05 significance level. The following equation was applied
for the Mann–Whitney U test (M–W test):

U1 = n1n2 +
n1(n1 + 1)

2
− R1U2 = n1 n2 +

n2(n2 + 1)
2

− R1

where, n1 and n2 are the sample size and R1 and R2 represents the sum of ranks, respectively.

3. Results
3.1. Surface Biophysical Parameters

The results showed that the mean LST was 59.48◦C in 2020. The highest LST was
observed during phase II (64.27◦C), followed by phase I (58.15◦C),andphase III (56.03◦C)
in 2020. The LST was relatively lower in 2020 during the entire lockdown phase compared
to 2019 during the same period (Figure 3). The results revealed that the average LST was
60.73◦C in 2019 (during the same periods of lockdown), with the highest LST recorded
from phase II (64.91◦C), followed by phase III (59.3◦C),and phase I (58◦C) (Table 3). As
a result, it was observed that there were no significant differences in LST in the different
phases of lockdown (p > 0.05).
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Table 3. Mean (Phase I, II, and III) and coefficient of variation (CV) of surface characteristics of LST
(◦C), NDVI, NDSI, and wetness in KMA in 2020 (during a different lockdown phase) and 2019 (same
periods of lockdown).

Year Indices PI PII PIII Mean CV

2019

LST (◦C) 58 64.91 59.3 60.74 0.060

NDVI 0.14 0.19 0.2 0.18 0.107

NDSI 0.51 0.26 0.35 0.37 0.703

Wetness 0.24 0.16 0.22 0.21 0.198

2020

LST (◦C) 58.15 64.27 56.03 59.48 0.072

NDVI 0.16 0.22 0.21 0.20 0.161

NDSI 0.41 0.22 0.33 0.32 0.298

Wetness 0.25 0.21 0.22 0.23 0.091

The mean NDVI value was 0.20 in 2020. The highest NDVI was recorded during
phase II (0.22), followed by phase III (0.21), and phase I (0.16) in 2020, respectively. The
NDVI value slightly increased from 0.18 (2019) to 0.20 (2020). On the other hand, the mean
NDVI value during the same period of lockdown in 2019 was 0.18, with the highest NDVI
observed during phase III (0.20), followed by phase II (0.19),and phase I (0.14) (Figure 4
and Table 3). From the MW test, it was observed that there were no significant differences
in NDVI during the different phases of lockdown in 2019 and 2020 (p > 0.05).
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There was also substantial variation in NDSI during 2019 and 2020. The mean NDSI
value in 2020 was 0.32, with the highest NDSI value recorded in phase I (0.41), followed
by phase III (0.33), and phase II (0.22), respectively. In 2019, the NDSI value was higher
(0.37) in comparison to 2020 (0.32). In 2019, the highest NDSI value was recorded in phase
I (0.56), followed by phase III (0.37), and phase I (0.26), respectively (Figure 5 and Table 3).
As per the MW test, it was observed that there were no significant differences in the NDSI
value between 2020 and 2019 (p > 0.05).

Mean wetness values during lockdown periods slightly increased in comparison to
2019. The result showed that the mean wetness values were 0.23 in 2020 and 0.21 in 2019.
During the lockdown periods, the highest wetness value was recorded in phase I (0.25),
followed by phase III (0.23), and phase I (0.22) in 2020. In 2019 highest wetness value was
observed in phase I (0.24), followed by phase III (0.22), and phase I (0.16), respectively
(Figure 6 and Table 3). The MW test result showed no statistically significant differences
(p > 0.05) in the wetness values during the different phases of lockdown in 2019 and 2020.
Thus, from the overall result, it was observed that, though there were variations in the
USES parameters in the various phases of lockdown in 2019 and 2020, statistical there were
no significant differences.
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3.2. USES

The USES was developed for 2019 and 2020 and compared to last year during the
same lockdown periods to better understand the impact of lockdown on USES (Table 4).
There were slight improvements in the ecological status during lockdown periods (2020)
compared to the previous year (2019). For example, the mean value of the USES was 0.49
in 2019 and reached 0.34 during the lockdown periods (decreased by more than 30%). In
2019, the highest USES value was observedin phase I (0.59), followed by phase III (0.48),
and phase II (0.41), respectively. Similarly, during the lockdown periods, the highest USES
value was observedfrom phase I (0.38), followed by phase III (0.33) and phase II (0.31),
respectively. As per comparison, the highest percentage of USES value decrease was
recordedin phase I (reduced by 35%) during the lockdown periods, in contrast to 2019,
followed by phase III (31%), and phase II (24%). We found important differences in the
USES found between the built-up and non-built-up areas of the KMA. The USES value
ranged from 0 to 1, where a value close to ’0’ indicated a relatively better USES and a
value close to ’1’ showed a relatively worse USES, respectively (Figure 7). As per the maps
(Figure 7), it was observed that the USES was relatively worsein urban areas (particularly
along the Hoogly river) and relatively better in the fringe area of the KMA.

Table 4. Pattern of USES during lockdown periods (2020) and same periods in 2019.

Year PI PII PIII Mean CV

2019 0.59 0.41 0.48 0.49 0.184

2020 0.38 0.31 0.33 0.34 0.106
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3.3. USES Spatial Pattern

As per the result of USES, the area under poor USES (>0.80) slightlydecreased during
lockdown periods (from 30% to 25%). During lockdown phase III, areasunder fair and
poor USES reduced from 29% (2019) to 24% (2020), and 33% (2019) to 25% (2020). Thus,
during the entire lockdown phase, the percentage of areas with poor USES reduced from
31% (2019) to 25% (2020). Similarly, during different phases of lockdown, the percentage of
the area under the excellent USES increased, with a maximum increase from 16% (2019) to
28% (2020), during lockdown phase II, followed by phase II (from 13% to 15%), respectively.
The area under excellent USES during the entire phase of lockdown reached 20% in 2020.
Thus, from the overall findings, it was clear that USES improved during the lockdown in
the KMA. However, the MW test did not identify significant differences in 2019 and 2020
(p > 0.05).

An important variability in the USES was observed in the KMA (Figure 8). Most of the
areas along the Hoogly river had a poor and fair USES. The river’s eastern bank had a high
area covered by poor USES compared to the western bank. More particularly, the urban
areas around Kolkata Municipal Corporation were highly characterised by poor USES.
Other urban areas, namely Howrah, Baly, Baranagar, Kamarhati, Panihati, Bidhannagar,
South Dumdum, North Dumdum, and New Barrackpore were mainly characterised by
relatively poor USES (Figure A1). The KMA rural fringe had a good and excellent USES in
the different lockdown phases in 2019 and 2020 (Figure 7).
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4. Discussion

There was a high spatial variability of the indices measured in KMA. The spatial het-
erogeneity of the USES existed in the KMA due to micro-level environmental variations and
land surface properties [51–53]. The fringe areas of the KMA (rural areas) are characterised
by a higher vegetation and water bodies coverage than urban areas. Thus, the variation of
landscape configuration is the main cause of the spatial variation of spectral indices and
the USES in the KMA. The conversion of natural land covers (such as vegetation cover
and water bodies) into built-up areas reduces the surface’s greenness and wetness. This
increases the surface’s dryness, heat, and imperviousness [4,54]. Figures 7 and 8 show that,
during all the phases of lockdown in 2020 and the same periods of 2019, the greenness
and wetness were higher in the rural fringe areas, and dryness and heat were higher in
rural fringe areas than in the urban areas of the KMA. In the urban areas, the impervious
surface cover, lack of vegetation cover and evapotranspiration increased the surface heat
and dryness [55,56]. In the USES maps, it was observed that the areas with impervious
and open land recorded a higher LST and NDSI. In addition to this, the ecological statuses
of the surface were largely influenced by anthropogenic activities [14]. Previous studies
stated that the USES was highly affected by the functions of biophysical parameters such as
the NDVI, normalised water index (NDWI), NDSI, SAVI(Soil-Adjusted Vegetation Index),
and LST [3,12]. We observed that areas with a high greenness and wetness and a low
LST and NDSI, had a high USES (Figures 5 and 6). The surface areas with vegetation and
agricultural lands had a high USES, and built-up and open lands (barren land) had reduced
USESs. The leading causes for the high USES in areas with vegetation and agricultural
lands were the low surface heat and dryness and relatively higher greenness and wetness.
More particularly, the urban areas with impervious surface areas had poor and fair USES in
KMA. From the maps, it was observed that, although there were spatio-temporal variations
of the USES in the KMA in 2019 and 2020 during different phases of lockdown, no signifi-
cant differences were observed. Bio-physical conditions largely influenced the USES due
to anthropogenic pressures and alterations in the impervious surface configurations [4].
In addition to this, human activities affected the surface cover and altered the thermal
capacity, albedo, conductivity, and evapotranspiration, respectively [4,57,58].

Urban environment areas in developing countries have increased rapidly in the past
few decades [47,59,60]. Human activities have increased negative environmental impacts,
such as the urban heat island effect and USES degradation [35,49,61], leading to decreased
wellbeing [3,12,62]. Previous studies highlighted the importance of reducing anthropogenic
pressures on the environment to increase the ecological quality of urban areas [63,64]. In this
context, the outbreak of the COVID-19 pandemic provides us with a golden opportunity to
identify the impact of human activities [39]. The strict restrictions on human mobility, and
the closure of industrial activities and other productive activities, resulted in a reduction
in pressures on the environment [65]. Thus, the lockdown due to COVID-19 significantly
improved environmental quality [7].

There are a very limited number of studies on the impact of lockdown on ecological
status [8]. Aside from ecology, a number of studies were performed on the impact of lock-
down on air quality, water quality, and noise [34–36]. From the studies, it was documented
that the air quality and water quality significantly improved due to the restricted emissions
and strict prohibitions on transportation and industrial activities [37,66,67]. This study
showed that the USES value was 0.49 in 2019 and reached 0.34 in 2020. This indicates
that USES slightly improved during the lockdown periods compared to during the same
lockdown periods in 2019. In the KMA, restricted measures were imposed on transport,
industrial activities, and human mobility [40]. The slight improvement in USES could be
attributed to the limited anthropogenic activities due to strict lockdown. Previous works
documented that any ecological conditions were largely influenced by the anthropogenic
pressures on the environment [68,69].
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4.1. Limitations and Uncertainties of the Work

This study attempted to understand the impact of the COVID-19 lockdown on the
USES in the KMA. Thus, the study’s findings may be helpful to understand the urban
surface ecological status of the Kolkata megacity region and other rapidly growing cities
in India. However, a few limitations are identified. This study assessed the impact of
lockdown on the USES in 2020 and 2019 during the same periods of lockdown phases.
The USESs in 2020 were compared with the previous year (2019) to better understand the
impact of the lockdown. Thus, in future studies, the long-term impact of COVID-19 amid
lockdown on USES must be considered. Secondly, a total of ten satellite images (five for
each year) from three phases of lockdown were used to assess the USES. These images
may not be representative of the lockdown phases. Therefore, more images can be taken
into consideration for a better analysis of the USES in future. This study used four indices
(NDVI, NDSI, wetness and LST) to develop the USES. In future studies, other relevant
indices should be taken into account to model the USES. Lastly, the KMA comprises both
urban as well as rural areas. The results showed that a lower USES characterised urban
areas more than rural areas (located in fringe areas of the KMA). However, this study made
no comparison between the urban and rural units to assess the spatial variability of the
spectral indices and the USES in the KMA. In future, the regional heterogeneity of the
USES must be addressed.

4.2. Implication of Urban Ecological Restoration and Management Policies

From the previous studies, it was well documented that the emergence of the COVID-
19 pandemic significantly improved different aspects of the environment, such as air
quality [70–72], water quality [73,74], the reduction in noise pollution [74,75], and the
improvement of ecosystems [76,77].The unsustainable anthropogenic activities in the
urban environments of developing countries alter the urban environmental conditions,
for example: the emergence of the urban heat island (UHI) effect, the loss of ecosystem
services, the degradation of USES, and increased thermal discomfort conditions [57,61,67].
This study indicates that environmental quality of urban environments can be improved
through limiting the human pressures on the environment and ecosystems. The results
show that the USES status slightly improved during the lockdown periods compared to the
same periods of the previous year (2019).This indicates that the urban ecological status can
be improved by reducing and restricting human activities on natural, semi-natural, and
artificial ecological landscapes [63,64,78]. During the lockdown periods, strict restrictions
were imposed on the human mobility and the use of public spaces (such as parks, gardens),
industrial activities and transportation were partially shut down. Thus, the restricted use
of green spaces, limited pressures on the landscape, and the partial banning of industrial
activities and transportation helped slightly to improve the ecological status in the KMA
during the lockdown periods in 2020 as compared to the same periods lockdowns in
previous year (2019). The study’s findings suggest that the ecological restoration or urban
ecological conditions can be enhanced through the restricted human pressures on urban
ecology. The outbreak of COVID-19 compelled people to stay away from nature and its
benefits for a long time, which caused a tremendous socio-economic burden. Therefore,
urban ecological sustainability cannot be achieved by simply enhancing the conditions of
a long-term lockdown (due to COVID-19). In a few recent studies, it was observed that
there was substantial loss of ecological landscapes such as vegetation cover, water bodies,
and the loss of the East Kolkata Wetland (EKW), which resulted in the deteriorations
of environmental health [25,30,66,67]. In this context, short-term lockdown can be an
alternative tool to achieve urban ecological restoration and ecosystem management.

5. Conclusions

The present study mainly focused on modelling the impact of the COVID-19 lockdown
on the USES in the KMA, Eastern India. This was compared with the year 2019 to better
understand the effect of lockdown. The spectral indices such as greenness (NDVI), dryness
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(NDSI), moisture (wetness), and heat (LST) were used to develop a remotely sensed
urban surface ecological status index (RSUSESI). From the results, it was recorded that the
greenness (NDVI) and wetness (moisture) conditions slightly increased, and the dryness
(NDSI) and heat (LST) slightly decreased, during the lockdown periods. Our findings
demonstrated that USES during the lockdown periods improved somewhat in comparison
to 2019 during the same periods. The fair to poor USESs were mainly concentrated in
urban areas due to impervious surface cover, resulting in a higher heat and dryness, and a
lower greenness and wetness, respectively. On the other hand, the rural fringe areas were
characterised by excellent to good USESs due to a relatively higher greenness and wetness,
and a lower heat and dryness, respectively.

Various aspects of human lives were adversely affected by lockdown in both urban
and non-urban environments. The restricted anthropogenic activities in urban areas
resulted in the important improvement of USES during the lockdown periods. During
the lockdown periods, there were strict restrictions on human mobility, limited access to
public space use, and restrictions on transportation and industrial activities. The outbreak
of COVID-19 brought about two different sides of the same coin, i.e., the great loss of
human lives and the restoration of ecosystems. Thus, from the findings of our study,
two notable conclusions may be drawn. Firstly, anthropogenic activities are the main
drivers of altering the environment and ecological conditions (directly and indirectly).
Secondly, environmental restoration can be achieved (to some extent) through restricted
interruptions on the environment. However, the findings of our study suggest that the
ecological restoration of the urban areas can be achieved by limiting the anthropogenic
activities and pressures on the environment. Notably, in the Indian context, it is essential
due to unplanned urban development and the notable deteriorations of ecosystems and
their services [66].
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Appendix A

Table A1. Previous literature on the alterations of land surface cover in Kolkata Megacity Region.

Study Scale Reference Published
Year

Study
Period Major Findings

Kolkata
Metropolitan Area

(KMA)
[66] 2020 2000–2019

Ecosystem Health since 2000 to 2019 declined from 73%
to 52% due to mainly rapid built-up areas expansion

and loss of vegetation cover.

Kolkata
Metropolitan Area

(KMA)
[67] 2021 2000–2019 Built-up area increased by about 90% and vegetation

cover decreased by about 56% from 2000 to 2019.

Kolkata
Metropolitan Area

(KMA)
[79] 2020 1990–2020

In the last 30 years (1990 to 2020), cropland area
declined by 181 km2. In core zone (144 municipalities),
between 2020 to 2020,built-up areas increased by about

29.37% and wetland and cropland area decreased by
25.66% and 26.43%, respectively.
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Table A1. Cont.

Study Scale Reference Published
Year

Study
Period Major Findings

South Kolkata [80] 2021 2009–2019 Built-up area increased by about 22.11% and vegetation
cover decreased by about 5.78%.

East Kolkata
Wetland [81] 2017 2000–2010

Since 2000 to 2011, net loss of wetland was 13.16 km2

due to built-up growth. 4.76 km2 area of wetland was
converted to cropland.

Kolkata
Metropolitian Area

(KMA)
[82] 2015 2000–2015

Built-up area increased by about 55% and vegetation
cover declined by about 25%. Agricultural land
decreased(up to 6%) due to built-up expansion.

Pujali Municipality
(KMA) [83] 2017 1980–2015 Built-up area increased by about 25%; vegetation cover

and water bodies decreased by about 50%, respectively.

Kolkata
Metropolitan Area

(KMA)
[84] 2018 1990–2017

Built-up area was increased by about 202% from1990 to
2017 and vegetation cover decreased by about 4%,

respectively.

East Kolkata
Wetland [85] 2013 1973–2010

Wetland area reduced by about 26% followed by
agricultural land. Built-upareas increased by about

166%.

of Kolkata Urban
Agglomeration [86] 2019 1990–2015

In thelast 25 years, built-up and agricultural land
increased by 45% and 62%, respectively. On the other

hand, agricultural land and vegetation cover decreased
by about 35% and 12%, respectively. Built-up area

increased due to conversion of agricultural and open
land into built-up area.

Kolkata Municipal
Corporation (KMC) [87] 2021 1980–2018

Low, dense, fragmented built-up areas increased by
about 95% and other ecological landscapes significantly
decreased, such as vegetation cover (69%), grass land
(51%), water bodies (27%), wetland (58%), cropland

(56%), respectively.

Howrah Municipal
Corporation (HMC) [88] 2018 1975–2015

In the last 40 years, vegetation cover, agricultural land,
water bodies and wetland declined by 14%, 23%, 12%

and 10%, respectively. On the other hand, built-up area
increased by about 58%.

East Kolkata
Wetlands [89] 2016 1972–2011

Wetland area was reduced by about 28.1 km2

(decreased by 18%) followed by agricultural land (26%).
Wetland decreased due to conversion of wetland

intobuilt-up and other land covers.

Kolkata
Metropolitan Area [27] 2019 1991–2017

Vegetation cover and agricultural land decreased by
about 16% and 12%, respectively. Moderate dense

built-up areas increased by about 23%.

Kolkata and
surrounding

periphery
[90] 2014 1997–2017

Forests, low vegetation and agricultural land declined
by 40%, 8%, and 20%, respectively. Built-up areas

increased by 67%.

Kolkata City [30] 2015 1989–2010
Dense settlement area increased by about 39% and

vegetation and wetland vegetation decreased from 178
to 109 km2 and 34 to 15 km2.

Kolkata Urban
Agglomeration [28] 2018 1990–2015

Vegetation cover, wetland and agricultural land
decreased by about 6.6%, 5.9%, and 26%. Built-up area

increased by 24.5%. From 2000 to 2015, 103.7 km2

agricultural lands were converted into built-up areas.

Kolkata Megacity [91] 2019 1991–2018

From1991-2018, built-up areas increased by more than
200% and water bodies, dense vegetation and sparse

vegetation cover declined by 14%, 47%, and 45%,
respectively.
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