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Abstract: Hyperspectral compression is one of the most common techniques in hyperspectral image
processing. Most recent learned image compression methods have exhibited excellent rate-distortion
performance for natural images, but they have not been fully explored for hyperspectral compression
tasks. In this paper, we propose a trainable network architecture for hyperspectral compression tasks,
which not only considers the anisotropic characteristic of hyperspectral images but also embeds
an accurate entropy model using the non-Gaussian prior knowledge of hyperspectral images and
nonlinear transform. Specifically, we first design a spatial-spectral block, involving a spatial net and
a spectral net as the base components of the core autoencoder, which is more consistent with the
anisotropic hyperspectral cubes than the existing compression methods based on deep learning. Then,
we design a Student’s T hyperprior that merges the statistics of the latents and the side information
concepts into a unified neural network to provide an accurate entropy model used for entropy coding.
This not only remarkably enhances the flexibility of the entropy model by adjusting various values of
the degree of freedom, but also leads to a superior rate-distortion performance. The results illustrate
that the proposed compression scheme supersedes the Gaussian hyperprior universally for virtually
all learned natural image codecs and the optimal linear transform coding methods for hyperspectral
compression. Specifically, the proposed method provides a 1.51% to 59.95% average increase in peak
signal-to-noise ratio, a 0.17% to 18.17% average increase in the structural similarity index metric
and a 6.15% to 64.60% average reduction in spectral angle mapping over three public hyperspectral
datasets compared to the Gaussian hyperprior and the optimal linear transform coding methods.

Keywords: artificial neural networks; entropy model; hyperspectral compression; student’s T distribution

1. Introduction

Different from the universal RGB images, hyperspectral images (HSIs) characterize
each pixel of the observed materials with a unique spectral signature that is composed of
dozens or even hundreds of components corresponding to different wavelengths [1]. This
provides a much finer knowledge of the scenes, making HSIs advantageous and crucial
tools for some computer vision tasks, such as object categorization [2,3], recognition [4] and
restoration [5]. However, the benefits of the additional information also pose challenges for
the HSI sensor storage capacity and the attainable transmission bandwidth. Therefore, an
effective compression technology is vital for HSI processing tasks.

Ideally, the compressed HSIs should preserve all information without distortion. Due
to the restricted storage capacity or transmission bandwidth, a compression technique
with a high compression rate is a feasible solution to address the limitations of practical
application. Since the compression ratios are usually approximately three or four in the
current lossless HSI compression algorithms [6], lossy compression under an acceptable
rate-distortion tradeoff is becoming an increasingly favorable choice.

As a classical lossy compression method, Transform Coding (TC) has been widely
used for HSI compression with reasonable complexity. It first maps pixels from high-
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dimensional pixel space into a compact latent space by decorrelating transforms in order
to exploit the spatial and spectral correlation and then quantizes and codes each latent
separately [7]. According to the difference of decorrelating transform methods, the TC
method contains linear and nonlinear transform algorithms.

Representative linear transform coding-based image compression techniques include
the Joint Photographic Experts Group (JPEG) 2000 [8], removing high-frequency compo-
nents from images with discrete wavelet transform, and set partitioning methods, providing
a sequence for significant pixels with a tree or block splitting algorithm, such as set par-
titioning in hierarchical trees (SPIHT) [9] and embedded zero block coding (EZBC) [10].
Based on the requirement of HSI compression, two common strategies are proposed. First,
the transforms in these methods are directly designed in 3D form to match the three-
dimensional characteristic of HSIs, such as 3D discrete cosine transform (3D-DCT) [11]
and 3D discrete wavelet transform (3D-DWT) [12]. However, not all methods benefit from
direct 3D transform. For example, JP3D (part 10 in JPEG2000) [13] is designed for 3D
image compression, yet does not work well for HSIs due to the fact that the 3D transform
in JP3D is isotropic, but the spectral correlation in HSIs is much higher than the spatial
direction [14]. Thus, since HSIs can be viewed as an anisotropic joint of 1D spectra and 2D
space, a 1D transform (such as the Karhunen–Loève Transform (KLT), DCT or DWT) in
the spectral dimension combined with a 2D transform in space has become a popular and
effective solution [15–18].

However, these linear transforms often implicitly or explicitly assume that the data
source satisfies joint Gaussian distribution. Although such an assumption allows for
a simple closed-form solution, it may degrade the performance of subsequent entropy
coding and rate allocation and thus lead to a suboptimal compression result. This is mainly
attributed to the following two reasons. First, some researchers have proven that real-
world HSIs represented with separable spatial-spectral bases have marginal distributions
of individual coefficients that show greater kurtosis and have heavier tails than HSIs with
the same variance of the Gaussian distribution [19]. At the same time, the joint distributions
of different spatial coefficients show variance dependencies at the same location. Therefore,
these results illustrate that the HSI source is non-Gaussian, and linear transforms are not
the optimal compression methods for hyperspectral data. Second, the Gaussian assumption
of the data source also makes the latent representation for HSIs a Gaussian distribution
after a linear transform. This gives rise to deviation in the entropy modeling of the latent
representation and finally causes a mismatch rate estimation. To address these problems,
nonlinear transform coding combined with a non-Gaussian prior needs to be considered in
HSI compression tasks because the nonlinearity possesses a more powerful representation
capability than traditional linear transforms and a non-Gaussian prior may be helpful for
accurate entropy modeling.

Fortunately, the artificial neural network (ANN) is a typical nonlinear transform
framework that implements transforms by approximating nonlinear functions, with the
ability of mapping pixels into a more compact space than traditional linear transforms;
it has achieved excellent results in natural image compression [20–34]. Autoencoder [35]
is one of the representative ANN frameworks implementing such nonlinear transform
coding [22,36,37]. Moreover, the merger of variational Bayesian theory makes autoencoder-
based compression methods more easily explained from the perspective of information
quantity [38].

Furthermore, since the latent representation obtained from nonlinear transform is
compressed with entropy coding methods via the entropy model, improving the capacity of
the entropy model also needs to be considered. Earlier works usually use a fully factorized
density [21] to construct entropy models to estimate the probability distribution of the
latents. Advanced methods have improved the accuracy of the entropy model. The entropy
model in [20] is implemented with a fixed or even complex model based on the context.
To model the relationships over latents, a conditional probability model [39] is proposed,
which resembles the recurrent networks idea in [40]. To reduce the time complexity, a
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hyperprior [30] linked to the concept of side information is employed, which enhances
the accuracy of the entropy model by introducing small additional bits. Although the
hyperprior-based method is flexible and has high efficiency in the image compression
task, the rationality of the existing hyperprior still depends on the assumption that the
statistics of each latent follow a Gaussian distribution, which may not be appropriate in
many real cases. This is because the latent representation is of non-Gaussian behavior after
nonlinear transform, regardless of whether the data source has a Gaussian or non-Gaussian
distribution.

In view of the existing ANN-based image compression methods, establishing a non-
linear transform for HSIs becomes feasible. Because most of the ANN-based compression
works focus on natural images (RGB) [41], we need to combine the characteristics of HSIs
for an optimal compression result. First, the designing of the network architecture should
be consistent with the anisotropic hyperspectral cubes. Moreover, proposing a rational
hyperprior to learn an accurate entropy model over compressed HSIs for entropy coding is
also another key factor for obtaining the optimal rate-distortion performance.

Based on the above analysis, this paper explores a specific end-to-end learning-based
framework for the HSI compression task. The contributions of this research are as follows.

(1) A spatial and spectral network (SS-Net) is developed and embedded into the
comprehensive ANN-based compression architecture so as to both realize the nonlinear
transform and take into account the anisotropic characteristic of HSIs. The proposed archi-
tecture links cascades of convolutional neural networks to the anisotropic HSI cubes, which
can possess a more powerful representation capability than traditional linear transform
codecs.

(2) A Student’s T hyperprior that merges the statistics of the latents and the side
information concept into a unified neural network is proposed to learn an accurate entropy
model for entropy coding, which can not only increase the flexibility of entropy model, but
also greatly improve the efficiency of entropy coding.

(3) The experimental results show that the proposed compression framework can
outperform the commonly used linear transform coding methods for HSI compression in
terms of rate-distortion performance. To the best of our knowledge, the present method is
the first joint rate-distortion optimization with an ANN-based method developed for the
HSI compression task.

The remainder of the paper is organized as follows. Section 2 provides a comprehen-
sive review of the related works. The proposed novel HSI compression model and network
architecture are presented in Section 3. Section 4 specifies the experimental setup, and
the results of the proposed method are represented visually and quantitatively and are
compared to those of the widely used HSI codecs. Then, the strengths and weaknesses
of the proposed method are assessed based on two nature HSI datasets and one remote
sensing HSI dataset for three distortion metrics. In Section 5, the conclusions of this paper
and future works are discussed.

2. Related Work

In this section, we first review a class of prior densities (Gaussian scale mixtures)
that are important in describing the statistics of images for entropy modeling. Then,
the HSI compression architecture based on the linear transform is given. Finally, we
conduct a literature survey of the commonly used nonlinear transform coding methods for
image compression.

2.1. Gaussian Scale Mixtures

The class of Gaussian scale mixtures (GSMs) in [41] are closely related to our work.

A random GSM vector can be described as S d
=

zu, where z and u are independent,

d
=

represents equality in the distribution, u ∼ N (0, C) represents a random zero-mean
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Gaussian vector with covariance C, and z is a positive that obeys a parametric gamma
density, pz(z):

pz(z) =
1

Γ(γ)
zγ−1exp(−z), (1)

where γ is the parameter of pz(z). Some GSMs have been shown to accurately characterize
the non-Gaussian behavior of images [41]. Different forms of pz(z) are associated with
explicit distributions. Once z is a discrete variable, a finite Gaussian mixture becomes a
special case of GSM. However, in this paper, we focus on continuous z. Student’s T is one
of this class of GSMs [41] and has been illustrated to have excellent potential in improving
the image quality for restoration tasks [42,43].

2.2. Linear-Transform-Based HSI Compression

Typically, transform coding involves three components [44]: an encoder (an invertible
function ga that maps pixels from pixel space into the latent space), a latent space (a compact
space used for quantization (Q) and entropy coding) and a decoder (the inverse function
gs that transforms latents back to the pixel space). The mathematical characterization for
image compression can be formulated as follows:

Y = ga
(
X;∅g

)
, (2)

Ŷ = Q(Y), (3)

X̂ = gs
(
Ŷ; θg

)
, (4)

where X and X̂ denote the original image and the reconstructed image, respectively. Y and
Ŷ are the latent representations before and after quantization and entropy coding. ∅g and
θg are the parameters of the encoder and decoder; see Figure 1.
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Figure 1. The HSI compression architecture based on transform coding.

In HSI compression, first, the pixel intensities of HSIs are usually modeled as a vector
X ∈ RH×W×B, where H, W and B correspond to the height, width and number of spectral
bands, respectively. Then, the vector X is mapped into the latent space via the encoder
to produce a dense latent representation Y, which is then quantized to remove negligible
information and represented as discrete-vector Ŷ. Note that most existing transform coding-
based methods for HSI compression use orthogonal linear transforms to reduce spectral
and spatial correlations. That is, the encoder ga and decoder gs are linear functions (e.g.,
KLT and DWT). In addition, Ŷ can be compressed with entropy coding algorithms (e.g.,
arithmetic coding [45]) and stored or transmitted in the form of a binary bitstream. On the
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other hand, we can obtain X̂ after subjecting Ŷ to the decoder. Note that the information
loss d

(
X, X̂

)
(also called distortion) is irreversible; here, d is a metric, such as the mean

squared error (MSE), and is used to measure the difference between the original image and
the reconstructed image. Thus, errors are inevitable and will affect the quality of image
reconstruction. Generally, a higher compression ratio produces more errors (information
loss), which leads to a worse quality of the reconstructed image.

To deal with this problem, the tradeoff between the compression ratio and data
quality should be considered, which is often described as a rate-distortion optimization
problem [46]. The mathematical formulation is usually given as a Lagrangian function L
with a Lagrange multiplier λ on the distortion [46].

R = EŶ∼m(Ŷ)
(
−log2 p

(
Ŷ
))

, (5)

L = R + λd
(
X, X̂

)
. (6)

R denotes the estimated average code length of the latent representation, which
is generally formulated with a cross-entropy between the entropy model p

(
Ŷ
)

and the
marginal distribution m

(
Ŷ
)

of the latents. Note that the entropy model p
(
Ŷ
)

is a prior
probability model of the latents known to the entropy coding and is typically assumed
to be parametric. The marginal distribution m

(
Ŷ
)

arises from the encoded HSIs and the
encoder.

2.3. Neural-Network-Based Image Compression

Neural networks are usually not orthogonal and involve cascades of layers (typically
focused on convolution operation). Each layer consists of a linear transform followed by a
bias and a nonlinear function f .

y = f (Wx + b), (7)

where x ∈ Rn and y ∈ Rm represent the input and output vectors of the layer, respectively,
and W ∈ Rm×n and b ∈ Rm are the neural network parameters. Consequently, cascades of
y form the transform functions ga and gs, where ∅g and θg encapsulate the parameters of
the transforms.

The quantized gradients are always zero; hence, a relaxation function is necessary
when optimizing the compression network with a gradient descent approach. The additive
uniform noise U

(
− 1

2 , 1
2

)
used in [21] is a favorable alternative to quantization, because

it can make the network more robust. We also follow this method in this paper, with the
details described in Section 3. In addition, once the entropy model p

(
Ŷ
)

is known, the
quantized latents Ŷ can be compressed losslessly using entropy coding methods.

Whether the entropy model p
(
Ŷ
)

approaches the marginal distribution m
(
Ŷ
)

is sig-
nificant for compression performance. As mentioned in [30], a factorized entropy model
fails to capture the statistics of the marginal distribution of the latents, and introducing
side information can be an elegant approach for reducing this mismatch. Therefore, the
hyperprior is proposed to overcome this problem by introducing an additional vector Z to
describe the statistical relationship of the latents. Vector Z can be viewed as a prior or a
condition of the entropy model. For example, in [30], each latent Ŷi (where i denotes the
ith latent of Ŷ) is assumed to accord with a zero-mean Gaussian distribution, where the
standard deviation σi is predicted by another encoder-decoder pair ha and hs. In this case,
the objective of Equation (6) can be defined as follows:

L = R
(
Ŷ
)
+ R

(
Ẑ
)
+ λd

(
X, X̂

)
= E

[
−log2

(
p
(
Ŷ
∣∣Ẑ))−

log2
(

p
(
Ẑ
))]

+λd
(
X, X̂

)
.

(8)

Note that a uniform noise is employed to relax this problem during training, which
yields vectors signed with a tilde. When the loss function becomes continuous, the op-
timization problem of Equation (8) is similar to something encountered in variational
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autoencoder (VAE) [47]. The subtlety of the solution of Equation (8) can be conveyed in a
Kullback-Leibler divergence between the true posterior p

(
Ỹ, Z̃

∣∣∣X) and an approximating

density q
(

Ỹ, Z̃
∣∣∣X) [30].

DKL

[
q
(

Ỹ, Z̃
∣∣∣X) ∣∣∣∣∣∣p(Ỹ, Z̃

∣∣∣X)] = EỸ,Z̃∼q

[
log2q

(
Ỹ, Z̃

∣∣∣X)− log2 p
(

X
∣∣∣Ỹ)−

log2

(
p
(

Ỹ
∣∣∣Z̃))− log2

(
p
(

Z̃
))]

+ constant.
(9)

The entropy of q
(

Ỹ, Z̃
∣∣∣X) in the first term is zero because each latent will be convolved

with a standard uniform noise and can be removed from Equation (9). The second term is
linked to distortion. When the distortion is Euclidean (such as the MSE metric), p

(
X
∣∣∣Ỹ)

is Gaussian; otherwise, the distortion is based on an energy function. Finally, the third
combined with the fourth term is the total rate of the latent representation that can be
modeled as follows.

Due to the lack of prior information, the density of Z̃ is represented as a fully factorized
distribution [30].

pZ̃|ϕ

(
Z̃
∣∣∣ϕ) = ∏i

(
pZ̃i |ϕ(i)

(
ϕ(i)
)
∗ U
(
−1

2
,

1
2

))(
Z̃i

)
, (10)

where pZ̃i |ϕ(i) denotes a univariate distribution of each component of vector Z̃ with parame-

ter ϕ(i), and the cross-entropy of the fourth term can be considered as the side information.
The side information only occupies a small proportion of the total rate. Therefore,

the accuracy of the model p
(

Ỹ
∣∣∣Z̃) is significant in reducing the mismatch between the

entropy model and marginal distribution. Most existing studies assume this conditional
probability distribution to be a zero-mean Gaussian distribution. Later, it was improved
with a conditional mean to exploit more structures of the latent representation [25]. Note
that all of these methods involve a Gaussian supposition for the latents, but may not fit
many real cases. A discretized Gaussian mixed approach was proposed in [26] to increase
the flexibility and precision of the entropy model. Although this method can fit each latent
more accurately, each latent is represented with several weighted Gaussian models instead
of a univariate distribution, which increases the complexity of the entropy model. In this
paper, we concentrate on the hyperspectral data and consider a univariate non-Gaussian
probability in the compression task.

3. Proposed HSI Compression Framework
3.1. Statistics of the Compressed HSIs

Although there are several parameterized probability models, which one can match
the true marginal distribution perfectly is still unknown. We visualize the latents of
natural images and HSIs and fit them with some common parameterized probability
models, including Gaussian distributions, Student’s T, Laplace distribution and gamma
distribution.

The latents are obtained from the same encoder network [30] over four datasets: the
Kodak dataset with RGB bands (natural images), two nature HSI datasets (KAIST [48],
CAVE [49]) with 31 spectral bands and one remote sensing HSI dataset (ROSIS-Pavia
data) with 102 spectral bands (e.g., Pavia University (Pavia_U)). The results are shown
in Figure 2.
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In Figure 2, different colors in the legend are sorted by the degree of distribution match,
and the orange lines are used to represent the best match. It is clear that the latents of HSIs
exhibit striking non-Gaussian behavior as compared with natural images, and Student’s
T can achieve a performance competitive with other distributions. Moreover, Student’s T
prior in VAEs can provide a more robust density than the Gaussian distribution [42]. These
results provide a statistical basis for our Student’s T hyperprior. Therefore, we choose the
Student’s T likelihood as the prior in HSI entropy modeling.

3.2. Statistics of the Compressed HSIs Characterized with Student’s T Likelihood

For a given variable set Z̃, the conditional distribution of Ỹ can be expressed as

p
(

Ỹ
∣∣∣Z̃) =

∫ ∞
0 gamma

(
$
∣∣∣l(Z̃

)
, s
(

Z̃
))
N
(

Ỹ
∣∣∣µθh

(
Z̃
)

, $−1
)

d$

=
Γ( v+1

2 )
Γ( v

2 )

(
ηθh(Z̃)

πv

) 1
2
[

1 +
ηθh(Z̃)

(
Ỹ−µθh(Z̃)

)2

v

]− v+1
2

= St(Ỹ
∣∣∣µθh

(
Z̃
)

, ηθh

(
Z̃
)

, v),

(11)

where $ = 1/σ2
θh

(
Z̃
)

is the inverse of the variance, l
(

Z̃
)

and s
(

Z̃
)

correspond to the
shape parameter and the inverse scale parameter of the gamma distribution, respectively,
precision ηθh = l

(
Z̃
)

/s
(

Z̃
)

is similar to $ but in some cases not identical, and the degree

of freedom ν = 2l
(

Z̃
)

. Similar to the solution of Gaussian parameters in [30] (as shown in
Figure 3, left side), we also use a hyperprior network (an encoder-decoder pair ha and hs)
to predict the parameters of Student’s T (as shown in Figure 3, right side), where θh denotes
the parameters of the hyperprior decoder hs. In this paper, we model the probability of each
latent as a zero-mean Student’s T distribution with a precision ηθh

(
Z̃
)

in our framework,
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that is, the mean µθh = 0 and ηθh = hs

(
Z̃; θh

)
under the condition of a fixed ν to simplify

the network in our experiments.
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(
Z̃
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, while the right side is the Student’s T hyperprior,

which is used to estimate the mean µθh

(
Z̃
)

, precision ηθh

(
Z̃
)

and the degree of freedom vθh

(
Z̃
)

.

In conclusion, the proposed HSI compression model with the Student’s T hyperprior
can be described as in Figure 4. This model is composed of two sub-networks. The core
autoencoder (Encoder Network and Decoder Network), also the first sub-network, is used
to learn a discrete latent representation of HSIs. The second is implemented to learn an
accurate entropy model over quantized latents for entropy coding, where we extend the
conditional Gaussian-based model with a conditional Student’s T for entropy modeling.
This hypernetwork is used to generate the parameters of the Student’s T, such as the
mean and the precision. The optimization problem can be summarized as minimizing the
expected rate-distortion loss function defined in Equation (8).
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Figure 4. An end-to-end HSI compression model with the Student’s T hyperprior. U|Q corresponds
to either additive uniform noise employed during training (yielding vectors signed with a tilde) or
rounding during testing (yielding vectors signed with a hat). The architecture of the hyperprior is
identical to [30], except that we use a Student’s T likelihood. The details of ga and gs are specified in
Section 3.3.
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To ensure a good match between Student’s T prior p
(

Ỹ
∣∣∣Z̃) and the variational poste-

rior q
(

Ỹ, Z̃
∣∣∣X), we apply the same approach as Ballé et al. [30], convolving p

(
Ỹ
∣∣∣Z̃) with

a standard uniform to make the continuous-valued latents subject to the uniform when
training. Then, the entropy model can be formulated as

P
(

Ỹ
∣∣∣Z̃) = ∏i

(
St(Ỹi

∣∣∣∣0, ηi, v) ∗ U
(
−1

2
,

1
2

))(
Ỹi

)
= c
(

Ỹi +
1
2

)
− c
(

Ỹi −
1
2

)
, (12)

where i is the location of each latent and c(.) specifies the collective cumulative distribution
function (CDF). The cumulative of Student’s T in our experiments is as follows [50].

For v odd and greater than 1:

P(tv) =
1
2
+

1
π

{
ξ +

[
cosξ +

2
3

cos3ξ + · · ·+ (2)(4) . . . (v− 3)
(3)(5) . . . (v− 2)

cosv−2ξ

]
sinξ

}
, (13)

For v even :
P(tv) =

1
2 + 1

2

[
1 + 1

2 cos2ξ + (1)(3)
(2)(4) cos4ξ + · · ·+ (1)(3)...(v−3)

(2)(4)...(v−2) cosv−2ξ
]
sinξ,

(14)

where ξ = arctan
(
tv/
√

ν
)
.

3.3. HSI Compression Network Construction

Our HSI compression architecture consists of two main parts. The comprehensive
architecture is shown in Figure 5. The left side is the primary encoder-decoder pair (ga
and gs) composed of SS-Nets, which is cascades of convolutions and generalized divisive
normalization (GDN) or inverse generalized divisive normalization (IGDN) [38] (here,
GDN and IGDN have been proven to be efficient nonlinear functions executing local
normalization for the image compression task [21]), while the right side is the hyperprior
network, which is identical to [30] but enhanced with a more accurate entropy model using
an adjustable Student’s T likelihood as its prior. Here, ha and hs are a series of convolutions
and rectified linear units, respectively. In addition, Q indicates quantization, AE is the
arithmetic encoder, and AD is the arithmetic decoder. Q is implemented using a rounding
operation when testing or replaced with a uniform noisy during training, while AE and
AD are implemented with a simple binary arithmetic. Note that the convolutions are not
restricted; they can be exchanged with residual blocks or dense blocks without changing
the fundamental model.

In order to fully exploit the spatial and spectral correlation, the design of ga and gs
networks should take the anisotropic characteristic of HSIs into consideration. We design
our spatial network (the spatial net circled with a green box in Figure 5) and spectral
network (the spectral net circled with a red box in Figure 5) separately. There are two
convolutional layers in the spatial network connected with GDN or IGDN. The first layer
employs N/B filters with a size of 5× 5 and down-sampling/up-sampling with a factor of
2, where B equals the number of spectral bands of HSIs, and N is the number of the filters.
The number of output channels of the last layer of the primary encoder is the bottleneck,
which determines the components that should be stored. The spectral network employs
N/B filters with a size of 1× 1. Note that the output channels of the final layer of the
primary decoder must be consistent with the band numbers of HSIs to generate identical
spectral resolution. The details of hyperparameters can be found in Appendix A.
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Figure 5. The HSI compression architecture. The green and red boxes, on the left side, represent spatial and spectral
networks, respectively. Q indicates quantization, and AE and AD correspond to the arithmetic encoder-decoder pair.
For the convolution operation, parameters are described as the number of filters × kernel size (height × width)/down-
sampling/up-sampling stride (the factor is 2), where <- denotes up-sampling and -> down-sampling. B is the band number
of HSIs (in this paper, B = 31 for CAVE and KAIST datasets and B = 102 for ROSIS-Pavia data). N is the number of filters; we
find performance gains will stagnate when the number of filters is increased to a certain level, and N = 192 yields a good
performance in our experiments.

4. Experiments

We first illustrate the advantage of the proposed spatial and spectral network for
the HSI compression task. Then, we find that Student’s T likelihood is more flexible
than Gaussian as the degree of freedom changes. Finally, we compare the rate-distortion
performance of our model to two commonly used linear transform coding methods and
a nonlinear transform method. The neural network-based compression methods are
executed on a server equipped with the NVIDIA GeForce RTX 2080Ti graphics card, and
the traditional compression methods are implemented in CPU i5-8279@2.4GHz.

4.1. Experimental Datasets

To comprehensively evaluate the proposed HSI compression architecture, we train
our models with three datasets of high quality HSIs and test our models without retraining
when compressing new HSIs. Specifically, we use two nature HSI datasets (KAIST [48] and
CAVE [49]) with 31 spectral bands and one remote sensing HSI dataset (ROSIS-Pavia data)
with 102 spectral bands (from Pavia University and Pavia Centre). In order to obtain an
effective visualization of different areas, we render the input gray image as a pseudocolor
image to visualize different areas so as to meet the requirement of human perception.

4.1.1. CAVE

There are 32 scenes in the CAVE database, which involve a large variety of daily
materials and objects. The spatial resolution is 512 × 512, while the 31 spectra at each pixel
are reflected at a wavelength step of 10 nm from 400 nm to 700 nm. Some representative
thumbnails are shown in Figure 6a.
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4.1.2. KAIST

The KAIST dataset is a high-resolution database including 30 scenes with a spatial size
of 2704 × 3376. The spectral range covers 420–720 nm at a step of 10 nm, thus producing
31 spectra. Some representative thumbnails are shown in Figure 6b.

4.1.3. ROSIS-Pavia

The Pavia database consists of two scenes captured by the ROSIS sensor. Therefore,
we call it ROSIS-Pavia in this paper. The first scene is Pavia Centre (Pavia_C), involving
102 spectral bands, with a spatial resolution of 1096 × 715. The second scene is Pavia
University, involving 103 spectral bands, with a spatial resolution of 610 × 340. We remove
one noise band (call it PaviaU_102) to maintain consistency with the number of bands of
the Pavia Centre. We set Pavia_C as the training set and Pavia University as the testing
set in the experiments. In the training process, we use the random crop trick to enlarge
our training set due to the small samples of Pavia_C. In addition, in order to evaluate the
model generalization, we also set the half resolution of Pavia_C as a part of testing set,
since there are only two images of ROSIS-Pavia, and scaling Pavia_C to half resolution
(named Pavia_C_1/2) can be seen as a data augmentation to enlarge our testing data. The
Pavia University and Pavia Centre are shown in Figure 6(c1,c2).
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4.2. Experimental Configuration
4.2.1. Metrics

We use bit per pixel per band (bpppb) to evaluate the compression ratio of HSIs and
use three common metrics to evaluate the distortion for compression task: PSNR, SSIM [51]
and spectral angle mapping (SAM) [52].

Bpppb is evaluated by Equation (5), and the accuracy of the entropy model has a
strong effect on this evaluation. In addition, PSNRs for HSIs are calculated as follows in
this paper:

PSNR = 10log10
max2

b
mse

, (15)

where b ∈ B and B is the number of bands of HSIs, and maxb denotes the maximum value
in this band. In addition, the unit is dB.

For SSIM, we first compute the SSIMs of each band and then average them over the
full spectral bands. SAM (represented as degree) is used to describe the angle of the pixels
between the reconstructed HSI and the original HSI. Note that large values of PSNR and
SSIM imply high spatial fidelity, and small values of SAM reflect high spectral fidelity.

4.2.2. Parameter Setup

In terms of the two nature HSI datasets, we randomly choose 28 HSIs from the CAVE
data and 27 HSIs from the KAIST data as the training set (10% as validation) and crop each
scene randomly into overlapping 128× 128 patches with full spectral bands. For Pavia
Centre, we also randomly extract 128× 128 overlapping patches for training, and scale a
half resolution for testing. The proposed HSI compression architecture is implemented
in the TensorFlow framework [30], with eight minibatches at a time. In addition, the
Adam stochastic gradient descent algorithm [53] is used in training, with a learning rate
of 1× 10−4.

4.2.3. Method in Comparison

First, to illustrate the advantage of the proposed spatial and spectral network for
the HSI compression task, we compare with [30] by keeping the entropy model identical.
Then, we demonstrate the superiority of Student’s T prior for HSI compression from the
spatial and spectral aspects. To further verify the effectiveness of this learned hyperspectral
compression approach, we compare it with two representative linear transform coding
based HSI compression methods, namely KLT + JPEG2000 [15] and the 3D version set
partitioned embedded block (3D SPECK) [54] and a state-of-the-art learned model [25]. For
the KLT + JPEG2000 method, a KLT transform is first applied to the spectral dimension,
and then JPEG2000 is applied in the spatial domain. Note that JPEG2000 is carried out with
Kakadu version 8.0.5 in this paper. For 3D SPECK, the main idea is to employ a 3D DWT
to HSIs and then provide a sequence for significant pixels with a block splitting algorithm.
Note that 3D SPECK is implemented with QccPack in our experiments. For the learned
model [25], we use the open sources provided by the authors.

4.3. Experimental Results
4.3.1. Potential of the SS-Net for HSI Compression

One of the key points of the proposed HSI compression model is the SS-Net, which
can be more efficient and robust for spatial and spectral feature extraction, particularly for
scenes involving rich texture details. If we just consider the spatial transform (e. g. Ballé’s
Net [30]), we may miss some data of HSIs in training, therefore reducing the performance
for certain HSIs. Figure 7 shows this problem. There are some data and noise missing in
Figure 7c, while the entire spatial information can be reserved in Figure 7d with SS-Net.
Both PSNR and SSIM increase by approximately 50%. The SAM reduces by approximately
30%, and the reconstructed spectrum is closer to the ground truth (the red plot (SS-Net) is
closer to the black plot in Figure 7b (ground truth represents the original HSI)). Moreover,



Remote Sens. 2021, 13, 4390 13 of 25

when the Lagrange multiplier λ is set to the same value, SS-Net can achieve a smaller bpppb.
Note that the experiments are implemented with the Gaussian prior in the hyperprior.
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Figure 7. Impact of the SS-Net for HSI compression, false color (composed of bands 25, 10, 1),
λ = 0.0000001. (a) is the original spatial domain, also called ground truth; (b) shows the results of
the spectral accuracy comparisons for the bule point (169, 243) in the ground truth, and the number
in the chart is the value of RMSE (root mean squared error; a small value shows a better spectral
accuracy); (c) denotes the reconstructed HSI without considering the difference between the spectral
dimension and the spatial domain; (d) represents the reconstructed HSI with SS-Net.

4.3.2. Flexibility of Student’s T Likelihood for HSI Compression

The degree of freedom ν is a significant parameter to determine the shape of the
Student’s T. To reduce the number of training models, we evaluate the influence of the
degrees of freedom by observing the compression performance at a specific bpppb. Table 1
shows the results of CAVE and KAIST datasets as ν varies.

Table 1. Rate-distortion performance of various degrees of freedom for a particular bit rate. The
comparatively ideal choice is marked in bold. Bpppb represents bit per pixel per band.

Dataset Methods bpppb PSNR SSIM SAM

CAVE

Gaussian 0.6394 33.48 0.8985 0.2382

Student’s T

ν = 15 0.6404 36.05 0.9558 0.1453
ν = 17 0.6023 36.25 0.9555 0.1381
ν = 19 0.6357 36.23 0.9563 0.1370
ν = 20 0.6319 36.05 0.9548 0.1479
ν = 21 0.6024 34.76 0.9459 0.1559
ν = 23 0.6245 35.87 0.9550 0.1456

KAIST

Gaussian 0.4680 41.27 0.9782 0.0958

Student’s T

ν = 15 0.4294 42.48 0.9826 0.0755
ν = 17 0.4432 42.51 0.9819 0.0806
ν = 18 0.4390 42.86 0.9829 0.0677
ν = 20 0.4371 42.84 0.9825 0.0728
ν = 21 0.4041 42.42 0.9812 0.0826
ν = 24 0.4818 41.74 0.9785 0.0858
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An examination of the results presented in Table 1 shows that as ν changes, the
compression performance at a specific rate first increases and then decreases. Moreover,
most of the Student’s T priors (with different values of ν) obtain a better result than
the Gaussian prior, and this flexible characteristic is beneficial for obtaining an optimal
compression performance if ν is set appropriately. We can select various values of ν at each
rate to obtain the optimal rate-distortion performance. However, in the training process,
we find the best choice of ν for a specific dataset is almost the same at different rates.
Therefore, to simplify the training process, we choose an identical ν for all rates in a specific
dataset. Note that the value of ν may be different for various datasets. For example, we
choose ν = 17 for CAVE and ν = 18 for KAIST after a comprehensive analysis of three
distortion metrics.

4.3.3. Rate-Distortion Performance Analysis

In addition, the average rate-distortion performance for CAVE and KAIST datasets are
shown in Figures 8 and 9, where Figure 8 describes the rate-distortion curves and Figure 9
shows the reconstructed visualization of the individual HSIs. For ROSIS-Pavia, we find
that a large number of bands reduces the training speed. Therefore, we just train four
separate models, two relatively low bit rates and two relatively high bit rates, where two
models are based on the Gaussian prior and two models are based on the Student’s T prior.
The rate-distortion results are shown in Tables 2 and 3, where Table 2 corresponds to a
low bit rate and Table 3 corresponds to a high bit rate. Figure 10 shows the reconstructed
visualization of the individual HSIs at low bit rates (the quantitative results are shown
in Table 2).
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Figure 8. Rate-distortion performance displayed over CAVE and KAIST datasets. The left plots show average PSNRs. The
middle plots show average SSIMs, ranging from zero and one. The right plots show average SAMs. (a) Rate-distortion
performance displayed over CAVE; (b) Rate-distortion performance displayed over KAIST.
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Figure 9. The spatial and spectral fidelity of CAVE and KAIST datasets. The top four rows show the reconstructions of the
spatial domain, and quantitative values of distortion, PSNRs, SSIMs and SAMs are shown below. The false color bands
are given under the metrics. The last row shows the spectral accuracy, corresponding to the top four images in turn. The
plot legends show the reconstructed spectral accuracy of the white patches on ground truth, measured with RMSEs in
parenthesis (a small value denotes a better spectral accuracy).
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Table 2. Rate-distortion performance for relatively low bit rates; the comparatively ideal choice is
marked in bold (λ = 0.000005).

Dataset Methods bpppb PSNR SSIM SAM

PaviaU_102

Student’s T
likelihood 0.22 27.86 0.9760 0.1131

Gaussian
likelihood 0.24 26.99 0.9713 0.1278

KLT+
JPEG2000 0.25 26.23 0.9629 0.1964

3D SPECK 0.25 25.53 0.9559 0.2128

Pavia_C_1/2

Student’s T
likelihood 0.22 28.59 0.9774 0.1261

Gaussian
likelihood 0.23 28.56 0.9770 0.1280

KLT+
JPEG2000 0.25 25.49 0.9528 0.2949

3D SPECK 0.25 25.09 0.9471 0.3192

Table 3. Rate-distortion performance for relatively high bit rates; the comparatively ideal choice is
marked in bold (λ = 0.00005).

Dataset Methods bpppb PSNR SSIM SAM

PaviaU_102

Student’s T
likelihood 0.98 32.85 0.9926 0.0785

Gaussian
likelihood 1.04 32.22 0.9917 0.0831

KLT +
JPEG2000 1.00 32.72 0.9921 0.1107

3D SPECK 1.00 31.76 0.9897 0.1341

Pavia_C_1/2

Student’s T
likelihood 0.91 33.68 0.9934 0.0885

Gaussian
likelihood 0.93 33.38 0.9929 0.0938

KLT +
JPEG2000 1.00 31.28 0.9887 0.2024

3D SPECK 1.00 30.95 0.9873 0.2265
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Figure 10. The spatial and spectral fidelity of the ROSIS-Pavia dataset for relatively low bit rates. The first row shows the
results of Pavia_C_1/2, while the second row shows the results of PaviaU_102. The visualization of the spatial domain
shows the reconstructed quality of band 55. The last row shows the spectral accuracy of the white patches on ground truth,
measured with RMSEs in parenthesis. We also show another four HSI dataset comparisons in Appendix B to demonstrate
the superiority of our method for HSI compression across different spectral and spatial resolutions and sensors.

Rate-distortion performance with CAVE dataset. The average rate-distortion curves
of the CAVE dataset (Figure 8a) show that the nonlinear transform coding methods can
achieve competitive performance with the state-of-the-art linear transform coding methods
(e.g., KLT+JPEG2000) and outperform them at low bit rates in three distortion metrics,
where the Student’s T prior-based models can achieve competitive performance with
Minnen (2018) [25], without the context model and the mean parameter (a parameter of
entropy model) provided by [25]. Compared with linear transform coding methods, this
characteristic is more striking when observing the reconstructed individual images in
Figure 9a. Both 3D SPECK and KLT+JPEG2000 generate visual artifacts (noise or transform
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artifacts) in the spatial domain and provide poor spectral accuracy, while the proposed
model using Student’s T hyperprior outperforms all of the reconstructed HSIs with respect
to both the spatial domain and spectral accuracy.

Rate-distortion performance with KAIST dataset. The average rate-distortion curves
of the KAIST dataset (Figure 8b) show that the nonlinear transform coding methods can
significantly outperform the state-of-the-art linear transform coding methods on three
distortion metrics. This is not surprising because the spatial resolution of individual
KAIST scenes is almost 35 times higher than that of CAVE data, and a large percentage
of training patches will lead to good testing performance. In addition, an examination
of the reconstructed individual images in Figure 9b shows that both 3D SPECK and KLT
+ JPEG2000 generate obvious visual artifacts (mainly noise) in the spatial domain and
provide poor spectral accuracy, while the learned models outperform all the reconstructed
HSIs both in spatial domain and spectral accuracy. The Student’s T prior-based models
also perform better than other learned models overall.

Rate-distortion performance with ROSIS-Pavia dataset. In the experiments, we find
the rate-distortion performance is better when ν = 17. The results illustrate the efficiency
and effectiveness of the proposed compression model from the spatial domain and the
spectral accuracy. First, the results presented in Tables 2 and 3 show that the learned models
in the Pavia_C_1/2 scene are significantly better than the state-of-the-art linear transform
coding methods due to the similar statistics between the training set and the testing set.
This characteristic may provide a solution for low-resolution HSI compression. This means
training with a high-resolution HSI and testing with its counterpart low-resolution HSI. In
terms of the PaviaU_102 scene, the learned models also surpass linear transform coding
methods, especially in spectral accuracy under the SAM distortion metric. Figure 10
visualizes the reconstructions of the Pavia_C_1/2 and PaviaU_102 scenes in Table 2 from
the spatial domain and the spectral accuracy. The first row shows the comparison results of
Pavia_C_1/2, while the second row shows PaviaU_102. Both rows exhibit a color distortion
in the spatial domain when HSIs are compressed with the linear transform coding methods,
which means that there may be a spectral distortion in the reconstructions. The results
show that the learned models have the advantage of retaining the spectral information
and achieve better spectral accuracy. The spectral curves in the last plots (the red line (the
Student’s T hyperprior) fits to the ground truth (the black line) better), and the distortion
measured with SAMs both clearly demonstrate this point.

4.4. Discussion

A spatial-spectral block, involving a spatial net and a spectral net, is developed as
the basis component of the core autoencoder, which resembles the pseudo-3D idea [48],
consistent with anisotropic hyperspectral cubes. This nonlinear compression architecture
possesses a more powerful representation capability than traditional linear transform
codecs due to the non-Gaussian characteristic of HSIs. Moreover, we augment this with a
more flexible and accurate entropy model by introducing Student’s T distribution over the
latents for entropy coding. Like all the deep-learning based methods, our model can be
optimized end-to-end with rate and distortion losses. From experiments, we find that the
learned models may exhibit high potential if the training set is sufficiently diverse or the
compressed HSIs have statistics similar to the training set. Otherwise, the model may lead
to a suboptimal performance in some datasets. We will focus on this in our future research.

5. Conclusions

We propose an end-to-end network architecture for the hyperspectral compression
task, which not only involves particular characteristics of HSIs, but also embeds an accurate
entropy model. First, an SS-Net is designed to match the anisotropic characteristic of HSIs to
capture a more powerful latent representation. Then, a Student’s T hyperprior is proposed
to reduce the mismatch between the entropy model and latent representation, since the
latents exhibit striking non-Gaussian characteristics, and an inaccurate or unmatched prior
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of the latent representation can lead to an inexact rate estimation. The summarized results
illustrate that our method displays better rate-distortion performance than the state-of-the-
art linear transform coding methods, which suffer from issues with visual artifacts at low
bit rates.

Our study verifies the potential of ANNs for the HSI compression task. The excellent
rate-distortion performance over the low-resolution remote sensing HSI dataset can provide
convenient storage and transmission for some low-resolution HSI tasks (e.g., HSI fusion).
To some extent, our HSI compression method may reduce the impact on the accuracy of
other HSI tasks, as our Student’s T prior based models are considerable compared with
other compression methods. Although the choice of the degree of freedom increases the
flexibility of the entropy model, it also brings a difficulty in selecting the best value, as we fix
it in our experiments. In addition, our model may not match the performance of carefully
optimized traditional compression methods due to the domain shift between the training
set and the testing set. Therefore, the construction of a model that can quickly adapt to
different HSI compression tasks and achieve an optimal rate-distortion performance needs
to be performed in the future.
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Abbreviations

HSI(s) Hyperspectral image(s)
ANN Artificial neural network
SS-Net Spatial-spectral network
TC Transform Coding
JPEG2000 Joint photographic experts group 2000
SPIHT Set partitioning in hierarchical trees
EZBC Embedded zero block coding
3D-DCT 3D discrete cosine transform
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3D-DWT 3D discrete wavelet transform
JP3D Part 10 of the JPEG2000 standard
KLT Karhunen–Loève Transform
GSMs Gaussian scale mixtures
MSE Mean square error
Pavia_C Pavia Centre
PaviaU_102 Pavia University with 102 bands
Pavia_C_1/2 Pavia Centre with half resolution
GDN Generalized divisive normalization
IGDN Inverse generalized divisive normalization
bpppb bit per pixel per band
PSNR Peak signal-to-noise ratio
SSIM Structural similarity index metric
SAM Spectral angle mapping
3D SPECK 3D version set partitioned embedded block
RMSE Root mean squared error
AE arithmetic encoder
AD arithmetic decoder

Appendix A

This table provides the hyperparameters of the network in Figure 5.

Table A1. Table of hyperparameters of the network.

Layer Name Number of Filters Filter Size Sampling

ga

Conv 1 192 5 × 5 Down-sampling
stride = 2

GDN

Conv 2 Band (B = 31 or 102) 5 × 5 Down-sampling
stride = 2

Conv 3 192 1 × 1 no
GDN

Conv 4 192 5 × 5 Down-sampling
stride = 2

GDN

Conv 5 Band (B = 31 or 102) 5 × 5 Down-sampling
stride = 2

Conv 6 192 1 × 1 no

ha

abs
Conv 7 192 3 × 3 no
ReLU

Conv 8 192 5 × 5 Down-sampling
stride = 2
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Table A1. Cont.

Layer Name Number of Filters Filter Size Sampling

ReLU

Conv 9 192 5 × 5 Down-sampling
stride = 2

hs

Conv 10 192 5 × 5 up-sampling stride
= 2

ReLU

Conv 11 192 5 × 5 up-sampling stride
= 2

ReLU
Conv 12 192 3 × 3 no

ReLU

gs

Conv 13 192 5 × 5 up-sampling stride
= 2

IGDN

Conv 14 Band (B = 31 or 102) 5 × 5 up-sampling stride
= 2

Conv 15 192 1 × 1 no
IGDN

Conv 16 192 5 × 5 up-sampling stride
= 2

IGDN

Conv 17 Band (B = 31 or 102) 5 × 5 up-sampling stride
= 2

Conv 18 Band (B = 31 or 102) 1 × 1 no

Table A2. Table of hyperparameters in training.

Parameter Value

Learning rate (Adam optimizer) 1 × 10 −4

λ [0.000005,0.0005]
HSI shape in training 128 × 128 × B (B = 31 or 102)

Batch size 8
epoch 1000

Appendix B. Evaluation Results of Additional Three Sample HSI Datasets

The following section specifies the compression results of the other four classical hy-
perspectral scenes, including the Houston scenes gathered in 2012, Salinas Valley, Botswana
and the recent University of Houston scenes, to demonstrate the superiority of our method
for HSI compression across different spectral and spatial resolutions and sensors. The
compression results of these four hyperspectral scenes can be found in Tables A3 and A4.

Table A3. Rate-distortion performance for relatively low bit rates; the comparatively ideal choice is
marked in bold (λ = 0.000005).

Dataset Methods bpppb PSNR SSIM SAM

Houston2012

Student’s T
likelihood 0.52 39.15 0.7210 0.0284

Gaussian
likelihood 0.60 38.95 0.7095 0.0285

KLT+
JPEG2000 0.60 36.21 0.4651 0.1577

3D SPECK 0.60 32.04 0.4538 0.1771



Remote Sens. 2021, 13, 4390 22 of 25

Table A3. Cont.

Dataset Methods bpppb PSNR SSIM SAM

Salinas Valley

Student’s T
likelihood 0.18 31.78 0.9935 0.0452

Gaussian
likelihood 0.18 30.53 0.9920 0.0504

KLT+
JPEG2000 0.18 30.75 0.9898 0.0705

3D SPECK 0.18 30.18 0.9879 0.0837

Botswana

Student’s T
likelihood 0.25 30.95 0.9821 0.0472

Gaussian
likelihood 0.26 29.91 0.9810 0.0513

KLT+
JPEG2000 0.28 30.36 0.9785 0.0600

3D SPECK 0.28 29.89 0.9762 0.0729

The recent
Houston

scenes

Student’s T
likelihood 0.30 39.06 0.9796 0.0626

Gaussian
likelihood 0.30 36.75 0.9618 0.0712

KLT+
JPEG2000 0.30 34.41 0.9329 0.1444

3D SPECK 0.30 33.72 0.9213 0.1612

Table A4. Rate-distortion performance for relatively high bit rates; the comparatively ideal choice is
marked in bold (λ = 0.00005).

Dataset Methods bpppb PSNR SSIM SAM

Houston2012

Student’s T
likelihood 0.91 39.72 0.7258 0.0284

Gaussian
likelihood 1.09 39.03 0.7219 0.0285

KLT+
JPEG2000 1.10 39.29 0.6073 0.1200

3D SPECK 1.10 33.87 0.6013 0.1253

Salinas Valley

Student’s T
likelihood 0.50 34.94 0.9970 0.0312

Gaussian
likelihood 0.50 32.04 0.9948 0.0366

KLT+
JPEG2000 0.50 34.68 0.9960 0.0486

3D SPECK 0.50 34.11 0.9953 0.0531
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Table A4. Cont.

Dataset Methods bpppb PSNR SSIM SAM

Botswana

Student’s T
likelihood 0.50 32.85 0.9890 0.0400

Gaussian
likelihood 0.58 31.68 0.9851 0.0449

KLT+
JPEG2000 0.58 32.74 0.9872 0.0520

3D SPECK 0.58 32.37 0.9861 0.0550

The recent
Houston

scenes

Student’s T
likelihood 0.70 41.01 0.9855 0.0510

Gaussian
likelihood 0.78 39.91 0.9834 0.0548

KLT+
JPEG2000 0.80 40.57 0.9829 0.0730

3D SPECK 0.80 39.85 0.9785 0.0890
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