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Abstract: Based on the ERA-5 meteorological data from 2015 to 2019, we establish the global tro-
pospheric delay spherical harmonic (SH) coefficients set called the SH_set and develop the global
tropospheric delay SH coefficients empirical model called EGtrop using the empirical orthogonal
function (EOF) method and periodic functions. We apply tropospheric delay derived from IGS
stations not involved in modeling as reference data for validating the dataset, and statistical results
indicate that the global mean Bias of the SH_set is 0.08 cm, while the average global root mean square
error (RMSE) is 2.61 cm, which meets the requirements of the tropospheric delay model applied in
the wide-area augmentation system (WAAS), indicating the feasibility of the product strategy. The
tropospheric delay calculated with global sounding station and tropospheric delay products of IGS
stations in 2020 are employed to validate the new product model. It is verified that the EGtrop model
has high accuracy with Bias and RMSE of −0.25 cm and 3.79 cm, respectively, with respect to the
sounding station, and with Bias and RMSE of 0.42 cm and 3.65 cm, respectively, with respect to IGS
products. The EGtrop model is applicable not only at the global scale but also at the regional scale
and exhibits the advantage of local enhancement.

Keywords: tropospheric delay; spherical harmonic function; empirical orthogonal function; ERA-5
data; Global Navigation Satellite System (GNSS)

1. Introduction

Tropospheric delay is one of the major error sources in GNSS positioning that must be
suitably modeled and corrected. In the process of GNSS navigation and positioning, it is
difficult to directly estimate the slant tropospheric delay (STD) along the signal path. A
mapping function is usually applied to project the STD from the zenith direction. The zenith
tropospheric delay (ZTD) can be divided into zenith hydrostatic delay (ZHD) and zenith
wet delay (ZWD) [1–3]. Research has demonstrated that high-precision tropospheric delay
correction can effectively improve the positioning accuracy and shorten the convergence
time of precise single-point positioning (PPP) [4]. To improve the application accuracy and
efficiency in the earth science field based on space geodesy techniques, it is necessary to
establish a stable and reliable tropospheric delay model.

The traditional Hopfield model [5] and Saastamoinen model [6] can obtain the zenith
tropospheric delay value based on measured meteorological data or standard atmospheric
data. However, if empirical meteorological values are adopted instead of measured me-
teorological data, the accuracy of these models decreases considerably [7]. At present,
the application of the traditional delay model is limited due to the lack of meteorological
measurement equipment at many GNSS stations. In recent years, many scholars have
developed a series of non-meteorological, parameter-based tropospheric delay empirical
models via reanalysis of atmospheric datasets expressed as a function of the station loca-
tion and time, such as the University of New Brunswick (UNB), European Geo-stationary
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Navigation Overlay System (EGNOS), Global Pressure and Temperature (GPT), IGGtrop,
Global Tropospheric Model (GTrop) and Wuhan-University Global Tropospheric Empirical
Model (WGTEM) models [7–14]. However, these models suffer from limited resolutions
(a spatial resolution lower than 1◦ and a temporal resolution lower than 6 h), which af-
fects their performance. The latest ERA-5 reanalysis meteorological data provided by
the European Centre for Medium-Range Weather Forecasts (ECMWF) exhibit a high spa-
tiotemporal resolution and provide high-precision and high-spatiotemporal resolution
data for tropospheric delay modeling. Sun, et al. [15] employed ERA-5 data to establish
a high-spatiotemporal resolution tropospheric delay and weighted average temperature
model in China and adopted different data to verify the new model. The results show that
the proposed model is better than those obtained with Global Pressure and Temperature
2 wet (GPT2w). Zhang, et al. [16] applied ERA-5 data to establish a four-layer model of
the tropospheric delay reduction factor in China. The model attained a higher modeling
accuracy than that of the single-layer model and more effectively shortened the PPP conver-
gence time. This means that the methods used in these models are artificially pre-designed,
while the empirical orthogonal function (EOF) is naturally determined by the original data
to be decomposed.

The EOF method, also referred to as principal component analysis (PCA) or the natural
orthogonal component (NOC) algorithm, was originally proposed by Pearson [17]. EOF
is a statistical method that uses feature technology. It can decompose the variable field
into mutually independent spatial function parts that do not change with time and time
function parts that only change with time, and express the main spatiotemporal changes
with as few modes as possible. This method was first introduced into meteorology as the
main way to extract meteorological spatial changes. The method has been widely applied
in the empirical modeling of ionospheric parameters and the study of data analysis [18–22].
Chen, et al. [23] analyzed the quiet monthly average total electron content (TEC) value
in North America from 2001 to 2012 based on the EOF method and established a TEC
experience model. The results present that the regional model established by EOF can
reverse the main calm monthly average and spatiotemporal changes. Le, et al. [24] used
TEC data in mid-high-latitude regions from 1999 to 2015 to analyze the changes of TEC
with latitude at night and established an empirical model for mid-high-latitude regions
based on EOF. The results show that the model can reproduce TEC better and reproduce
well the dependence of mid-latitude trough on local time, season, solar cycle and geo-
magnetic activity. Andima, et al. [25] established a TEC model for low-latitudes regions
in Africa based on EOF and least square regression analysis. The results show that the
error of EOF-based models in predicting Malindi’s TEC is less than IRI-2016. In the case of
regional models, the TEC model can reproduce the TEC characteristics in the equatorial
ionization anomaly.

Based on the advantages of EOF analysis modeling, we extend this method to tro-
pospheric delay modeling. Considering that the amount of data is too large for EOF
decomposition, a secondary decomposition is usually required, which will lead to a loss
of accuracy. We establish a global tropospheric delay spherical harmonic (SH) coefficients
set with only 256 parameters at each time, which is convenient for EOF decomposition
and formula fitting. Therefore, the global tropospheric delay SH coefficients model is
established by using the EOF method and periodic function. The purpose is to preserve
tropospheric delay information, improve the tropospheric delay modeling effect, provide
a reference for generating near real-time tropospheric delay products, and realize more
effective tropospheric monitoring.

The experimental data and methods of this study are briefly introduced in the next
section. The third section describes the generation process of the global tropospheric
delay SH coefficient set and the time series characteristics of the data set. The fourth
section describes the implementation and modeling of the EOF analysis of global spherical
harmonic coefficients. The fifth section verifies the validity and accuracy of the new model
through different data. The last section gives a summary and conclusion.
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2. Data

In this study, ERA-5 data were used for ZTD determination. Then, we preprocessed
the ZTD from 2015 to 2019 to generate the global tropospheric delay spherical harmonic
coefficient dataset for modeling.

2.1. ERA-5 Data

ERA-5 is the fifth-generation global meteorological reanalysis dataset provided by
the ECMWF, which is widely applied in the field of meteorology. The temporal resolution
of ERA-5 data is 1 h, and the spatial resolution is 0.25◦ × 0.25◦. ERA-5 data provides
meteorological parameters of 37 vertical pressure layers ranging from the top of 1 hPa to
the bottom of 1000 hPa [26], which facilitates the determination of the spatial distribution
of atmospheric parameters in greater detail and analysis of its short-term variation.

Considering that the calculation time is too long due to the large amount of global
ERA-5 data, we resampled the ERA-5 data and set the horizontal spatial resolution as
2◦ × 2◦ and the time resolution as 1-h. Through the calculation of the atmospheric parame-
ters of the 37 layers, including geopotential, pressure, temperature and specific humidity,
the refractive index at each pressure level is obtained, and the refractive index between
a specific pressure layer and top layer is then integrated to calculate the tropospheric
retardation. The equations are defined as follows [2,27,28]:

N =
k1 (P−e)

T +
k2 e
T +

k3 e
T2

e = rh × P
0.622

ZTD =10−6
∫
s

Ndh = 10−6∑
i

Ni∆hi

(1)

where k1= 77.604 K/hPa, k2 = 64.79 K/hPa, k3 = 377600.0 K2/hPa, N is the interlaminar
refractive index, T is the temperature (in K), P is the atmospheric pressure (in hPa), e is the
water vapor pressure (in hPa), and rh is the specific humidity. Due to the ellipsoidal height
system considered by GNSS stations and the geopotential considered in ERA-5 data, it is
necessary to convert the geopotential derived from the ERA-5 dataset into the ellipsoidal
height. The specific process is as follows:

hd =
C
gn

(2)

where C is the geopotential and gn is the gravity constant, with gn = 9.80665 m/s2.
Then, the geometric height is transferred to the ellipsoidal height by using Equation (3).

hg = 1
2·c ·

(
1−
√

1− γ
)

γ = 4·c·hd
1−a·cos(2·ϕ)+b·cos2(2·ϕ)

(3)

where a = 0.0026373, b = 0.0000059, c = 1.57 × 10−7, and ϕ is the latitude of the grid. Finally,
we get the ellipsoid height through geoid correction as follows:

h = hg + hN (4)

where hN is the geoidal undulation that derived from the Earth Gravitational Model 2008
(EGM2008) [29].

2.2. Global Tropospheric Delay SH Coefficients Set

A global tropospheric delay SH coefficients dataset, namely SH_set, is established
by using ERA-5 reanalysis meteorological data from 2015 to 2019, which includes an SH
coefficients dataset of the altitude correction coefficient and tropospheric delay at mean
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sea level. The temporal resolution of the dataset is 1-h, and it provides 256 parameters per
hour. The calculation steps are as follows:

First, the height correction coefficient β and ZTD0 of each grid point at mean sea level
are obtained by exponential function, the formula is as follows:

ZTD = ZTD0 · eβh (5)

Second, the global altitude correction coefficient β and ZTD0 at each time is expanded
in spherical harmonics up to degree 15, and the SH coefficient of altitude correction
coefficient at each time is obtained. The SH function is defined as:

TB =
15

∑
n=0

n

∑
m=0

Pnm(sin ϕ)[Anm cos(mλ) + Bnm sin(mλ)] (6)

where TB is a pending value (ZTD0 and β), Pnm is the normalized associated Legendre
function of degree n and order m, ϕ and λ are the latitude and longitude, respectively. Anm
and Bnm are spherical harmonic coefficients. The spherical harmonic coefficients are solved
by the least square method. The SH coefficients at a single time are stored or released in sets.

In Section 4.1, we use the tropospheric delay calculated by ERA-5 data to verify and
analyze the SH_set data. The results show that the tropospheric delay generated by the
SH_set data has a very high accuracy (Bias: −1.0 × 10−4 cm, RMSE: 1.97 cm), which can
better represent the original data, indicating that the spherical harmonic coefficient set can
be used as the basic experimental data.

3. Construction of the EOF-Based Model

Since the tropospheric delay exhibits a strong correlation with the altitude correction
coefficient [14,16], the modeling effect is similar. In addition, with the limited length of the
article, we only introduce the modeling process of the SH coefficients of the tropospheric
delay in the SH_set products.

3.1. Empirical Orthogonal Function and Analysis
3.1.1. EOF Method

The EOF method is a statistical method that decomposes the original data into several
main orthogonal basis functions and related variables. Its physical mechanism is to reduce
the dimensionality of the original dataset while retaining the internal characteristics and
most of the variations in the data as much as possible. Thus, eigen components yield the
advantages of fast convergence and high calculation accuracy. However, the dependence
of the EOF method on the dataset may cause the model to change with increasing new
data, so many observations are needed to build the model. For further details on the EOF
method, the reader is referred to Dvinskikh [18]. In this paper, the spherical harmonic
coefficient of the tropospheric delay with a temporal resolution of 1-h is decomposed by
the EOF method. The formula is as follows:

SH_set(k, h) =
m

∑
i=1

Ui(k)× Ai(h) (7)

where SH_set (k, h) is the SH coefficients that the SH_set provides every 1 h and expresses a
256 × 43,824 array with the rows corresponding to the SH coefficients (k = 1, 2, 3 . . . , 256),
and the columns corresponding to the combination of data every 1 h (h = days × 24,
days = 1, 2, 3 . . . , 1826). Ui(k) is the ith basis function of SH_set (k, h), which reflects
the relevant information between the spherical harmonic coefficients. Ai(k) is the corre-
lation coefficient of Ui(k), representing the change in the SH_set (k, h) over time (such as
annual, quarterly, and daily changes). m is the number of basic functions or correlation
coefficient functions.
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We adopted the method of singular value decomposition (SVD) to determine the EOF
modes that explain most of the variability in the SH_set data [25]. The SH_set data matrix
M was decomposed into left basis vectors U and right basis vectors V, and S is a matrix of
singular values of M as

M = USVT (8)

Ai(h) = SVi
T (9)

The basis vectors of the first m-order EOF modes in matrix U and their corresponding
associated coefficients Ai(h) are computed using Equations (8) and (9). The cumulative
contribution percentage of the ith EOF component relative to the total variance and the
first m EOF components [30] can be calculated according to the following.

γi =
λi

∑t
j=1 λj

× 100% (10)

φm =
∑m

i=1 λi

∑t
j=1 λj

× 100% (11)

where t is the total number of EOF components and λi is the variance in the ith EOF
component.

Table 1 lists the variance and cumulative variance of the first six orders of the EOF
basis function sequence. The table reveals that the first fourth-order EOF sequences account
for 99.9503%, 0.0184%, 0.004% and 0.0031% of the total variance. The first fourth-order
cumulative variance accounts for 99.9758% of the total variance, indicating that only
the first fourth-order EOF component can suitably describe the characteristic changes in
the metadata.

Table 1. Summary of the variance through decomposition of SH coefficients under the first six-order
EOF mode.

EOF Mode 1 2 3 4 5 6

Variances (%) 99.9503 0.0184 0.0040 0.0031 0.0029 0.0014
Cumulative var. (%) 99.9503 99.9687 99.9727 99.9758 99.9787 99.9801

3.1.2. Timing Characteristics of Ai(h)

Figure 1 shows the time series of the first four orders coefficient Ai(h). As such,
coefficient Ai(h) reflects the average variation in the tropospheric SH coefficients. The
chart shows that coefficient Ai(h) exhibits obvious annual and semiannual cycles, and
coefficients A3(h) and A4(h) also exhibit obvious quarterly variations. Through high-
precision modeling of coefficient Ai(h), the SH coefficient is accurately inverted, and the
high-precision tropospheric delay can then be obtained quickly and efficiently.

Cooley and Tukey [31] proposed fast Fourier transform (FFT), which is usually used
to analyze linear systems and identify frequency components. To accurately detect the
period of correlation coefficient Ai(h), we performed the FFT analysis of the first four orders
coefficient Ai(h) from 2015 to 2019 and focused on certain positions to obtain more details,
as shown in Figure 2. The chart reveals that Ai(h) is dominated by both annual, semiannual,
diurnal, and semidiurnal variations. In addition, A1(h) exhibits certain 1/3-year variation,
A2(h) experiences certain 1/4-year variation, and A3(h) and A4(h) reveal certain 1/3-year
and1/4-year variations.
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Figure 1. Time series of the first four orders correlation coefficient from 2015 to 2019. The resolution
of the time series is 1-h, and the width of each gray grid is one year in the x-axis direction.

Figure 2. Spectral analysis of the four orders correlation coefficients from 2015 to 2019. The block in
the figure represents a short-time power spectrum. The blue font represents the period corresponding
to the high-power spectrum.
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3.2. EGtrop Model Construction

Based on the analysis in the previous section, Ai(h) exhibits obvious periodic char-
acteristics, and the periods of the different parameters are distinct. Therefore, we use
trigonometric functions with different periods to model EGtrop. The specific fitting equa-
tion is as follows:

A1(h) = a0 +
3
∑

i=1
bi cos(i · η) + ci sin(i · η) +

2
∑

l=1
dl cos(l · λ) + el sin(l · λ)

A2(h) = a0 +
4
∑

i = 1
i 6= 3

bi cos(i · η) + ci sin(i · η) +
2
∑

l=1
dl cos(l · λ) + el sin(l · λ)

A3(h) = a0 +
4
∑

i=1
bi cos(i · η) + ci sin(i · η) +

2
∑

l=1
dl cos(l · λ) + el sin(l · λ)

A4(h) = a0 +
4
∑

i=1
bi cos(i · η) + ci sin(i · η) +

2
∑

l=1
dl cos(l · λ) + el sin(l · λ)

(12)

where η = 2π· doy/365.2, λ = 2π · Hod/24, doy is the day of the year and Hod is the uni-
versal time (UT). Moreover, ai, bi, ci, di, ei and fi are all unknown parameters, which
can be solved by the least-squares method. Please refer to Appendix A for the detailed
establishment process.

The retrieve of Ai(h) can be achieved with a few coefficients, and then, the reconstruc-
tion of the SH coefficients also can be realized by using Equation (7). Only by giving doy
and Hod, the user can obtain 256 tropospheric SH coefficients and the global tropospheric
delay based on the mean sea level can be obtained by using the SH function. The global
altitude correction coefficient is obtained by the same method. Finally, the ZTD at the
specified position is obtained by Equation (5).

Figure 3 shows the time series diagram of the first four orders EOF parameters and
fitting parameters. It can be seen from the figure that the trigonometric function achieves a
better fitting effect on Ai(h).

Figure 3. Time series diagram of the first four orders EOF parameters and fitting parameters. Red
dots indicate the fitting data, and cyan dots indicate the metadata.
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4. Results

To assess the performance of the SH_set and EOF-based model EGtrop, we compared
the set and model results with the ZTD derived from the IGS stations and radiosonde data.
The mean Bias and root mean square error (RMSE) are adopted as accuracy indicators of
the model or data quality. The calculation equation is as follows:

Bias = 1
M

M
∑

i=1

(
ZTDmod

i − ZTDdat
i
)

RMSE =

√
1
M

M
∑

i=1
(ZTDmod

i − ZTDdat
i )

2 (13)

where ZTDmod and ZTDdat are the model value and the reference value, respectively. M is
the number of observations.

4.1. Global Tropospheric Delay SH Coefficients Set Validation

In this contribution, the tropospheric delay calculated by the ERA-5 meteorological
data from 2015 to 2019 and the tropospheric delay in 2018 of the IGS stations that did
not participate in modeling are employed as reference data to verify the accuracy of the
SH_set datasets.

Table 2 summarizes the statistical results of the Bias and RMSE of the SH_set datasets
compared to ZTD derived from ERA-5. The table indicates that the average Bias in the
SH_set dataset is very small and almost zero, the average RMSE is 1.97 cm, and the error
remains almost the same in the different years, indicating that the SH_set dataset has a
good fitting effect and can suitably describe the spatiotemporal characteristics of the global
tropospheric delay.

Table 2. Error statistics of the SH_set dataset compared to the ERA-5 ZTD.

Year
Bias [cm] RMSE [cm]

Min Max Mean Min Max Mean

2015 −5.78 4.03 −1.1 × 10−4 0.38 6.64 1.98
2016 −5.97 3.78 −1.0 × 10−4 0.40 6.91 2.01
2017 −5.99 3.79 −1.1 × 10−4 0.39 6.79 1.93
2018 −6.28 3.72 −1.1 × 10−4 0.41 7.01 1.97
2019 −6.00 3.73 −1.1 × 10−4 0.42 6.74 1.96

Mean −1.0 × 10−4 1.97

More detailed verification of the SH_set products is conducted from the perspective
of time. Figure 4 shows the time series diagram of the ZTD at the different latitudes solved
by ERA-5 and the SH_set. The chart shows that although there exist significant differences
in the tropospheric delay between the different latitudes, the tropospheric delay values
calculated by the SH_set reflect the periodic changes and are in good agreement with those
of the ERA-5 ZTD, which further verifies that the spherical harmonic coefficient model
achieves a good adaptability.

High-precision IGS tropospheric delay products are reliable data to verify the accuracy
of other tropospheric delay data or models. In this paper, IGS stations with an annual data
volume of not fewer than 120 days are selected for comparison to the SH_set datasets, and
the Bias and RMSE between these datasets are calculated.
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Figure 4. Tropospheric delay sequence diagram solved by ERA-5 and SH_set. Red spots indicate
the tropospheric delay of the ERA-5 solution, and green spots indicate the tropospheric delay of the
SH_set solution.

Figure 5 shows the error distribution of the SH_set data compared to the global IGS
stations in 2018. The coincidence between the SH_set and IGS ZTD is high, the global
distribution of the Bias is highly uniform, and the average Bias is 0.8 mm. The maximum
and minimum values of the Bias are 4.4 cm and −4.6 cm, respectively, indicating that the
tropospheric delay calculated by the SH_set yields good global applicability. The stations
with large Bias are mainly concentrated in the low latitudes, especially those along the
coast. In addition, the Bias values in the middle and high latitudes of the Northern and
Southern Hemispheres are almost all positive, and the Bias in the area near the equator
includes both positive and negative values.

The RMSE ranges from 0.94 to 4.58 cm, with an average value of 2.61 cm, and the
distribution is relatively uniform in the Northern and Southern Hemispheres. Several
stations with RMSEs greater than 4 cm are mostly distributed near the equator, especially
in the Atlantic Ocean. This is related to the different effects of the marine climate and
geographical location on the ZTD on the east and west sides of the equator, while the
SH_set, as an empirical dataset, is insensitive to this effect. Based on the verification of
the IGS_ZTD data, the accuracy of the SH_set products (Bias: 0.8 mm; RMSE: 2.61 cm) is
slightly lower than that of the Global Geodetic Observing System (GGOS) tropospheric
delay products (Bias: −0.54 cm; RMSE: 1.31 cm) [32]. GGOS grid products spatial resolution
is 2.5◦(longitude) × 2◦ (latitude) and the temporal resolution is 6 h, i.e., 13,195 (145 × 91)
ZTD data at a time. Compared to the GGOS products, the number of parameters of the
SH_set products per day is reduced by approximately 94%, which is more convenient
for users.
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Figure 5. Error distribution map of the SH_set data compared to the global IGS stations in 2018. The left side of the picture
is the Bias distribution diagram, and the right side is the RMSE distribution diagram.

In summary, compared with the tropospheric delay calculated by ERA-5, SH data has
a good performance in retrieving tropospheric delay, which further shows the feasibility of
being a complement to the original data. Moreover, in comparison with IGS tropospheric
delay products, it can be seen that the SH_set dataset attains a good global correction effect
and can be used as a tropospheric delay product by users.

4.2. Verification of SH Coefficient for EGtrop Model

To test the stability and reliability of the EGtrop model, we use the SH coefficients
provided by the SH_set to verify and analyze the EGtrop. Figure 6 displays scatter plots of
SH provided by the SH_set and modeled values of SH from 2015 to 2019. In all years, the
correlation coefficients R of the SH coefficients provided by the EGtrop and SH_set are all
greater than 0.99, which means the model value has a strong correlation with the original
value, indicating that the EGtrop model is appropriate for representing the majority of
variations in the original data set. Bias and RMSE are very stable in all years. RMSE is
basically 0.002 and the Bias is basically 0, indicating that the EGtrop has no systematic
deviation, which further shows that the EGtrop model has a good performance in retrieving
spherical harmonic coefficients.

To further illustrate the reliability of the SH coefficients calculated by the EGtrop
model, we randomly select five coefficients and display their time series, as shown in
Figure 7. Figure 7 shows the first SH coefficient with larger values, and Figure 7 shows
the SH coefficient with smaller values. It can be found from the figure that the EGtrop has
a good performance in both large and small values of the SH coefficient. The correlation
coefficient R of each SH coefficient is greater than 0.9, indicating that the SH coefficients
calculated by the EGtrop are in good agreement with the original coefficient.
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Figure 6. Scatter plots of observational data versus modeled values of SH coefficients for the period 2015−2019. The
blue-green box shows the first spherical harmonic coefficient. The correlation coefficient (R), RMSE (RMS) and Bias (Mean)
are also shown in the panels.

Figure 7. Time series of SH coefficients between EGtrop and SH_set for the period 2015−2019. Cyan spots represent SH
coefficients provide by SH_set, and red spots represent SH coefficients derived by EGtrop.
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4.3. Verification of the Tropospheric Delay for EGtrop Model

In this study, the tropospheric delay calculated based on ERA-5 meteorological data
and radiosonde data and IGS tropospheric delay products are considered to verify the
EGtrop model. To objectively verify the validity of the EGtrop model, the UNB3m model
and GPT2w (1◦ × 1◦) model are introduced, and the accuracy is evaluated and analyzed
under the same conditions.

Table 3 lists the statistical results of the Bias and RMSE of each model compared to
those of the tropospheric delay calculated by the ERA-5 meteorological data in 2020. The
table indicates that the accuracy of the EGtrop model is better than that of the GPT2w
and UNB3m models, and the estimated tropospheric delay is the closest to that obtained
with the ERA-5 ZTD. Compared to the other two models, the EGtrop model generates the
smallest error fluctuation range, which indicates that the model achieves better stability.

Table 3. Modeling errors of the different models validated against ERA-5 ZTD over 2020.

Bias [cm] RMSE [cm]
Min Max Mean Min Max Mean

EGtrop −10.84 6.04 −0.25 1.06 11.69 3.79
GPT2w −9.20 16.11 −1.02 1.19 15.79 4.32
UNB3m −13.28 17.32 3.11 1.06 17.72 6.60

Figure 8 shows the global distribution of the annual average Bias and average RMSE
of each model based on the global ERA-5 ZTD in 2020. As shown, the overall Bias of the
EGtrop model is small, and the Bias value in most areas is 2 cm, which is closer to the
reference value than are the GPT2w and UNB3m models.

Figure 8. Error distribution map of each model compared to the global ERA-5 ZTD product over 2020.
The left side of the picture is the Bias distribution diagram, and the right side is the RMSE distribution
diagram. From top to bottom are the error distributions of the EGtrop, GPT2w and UNB3m.
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By comparing the Bias distribution of each model, it is revealed that the average Bias
of the EGtrop and GPT2w models experiences no obvious change with the longitude and
latitude, and the accuracy of the UNB3m model in the Northern Hemisphere is higher than
that in the Southern Hemisphere, which is related to the fact that the global tropospheric
delay of the UNB model is symmetrical in the north and south by default, and only the
Northern Hemisphere data are used for the model. A larger Bias of the EGtrop model
occurs in Antarctica and near the equator, especially in the Central Pacific and eastern
Africa, and the value is negative. The Bias distribution of the EGtrop model is very uniform,
and the overall Bias is smaller than that of the GPT2w model. Compared to the GPT2w
model, the EGtrop model is much better in areas near the equator, especially in the Central
Pacific region, the east and west sides of Africa, and the northern region of Australia.

By comparing the RMSE distribution of each model, it is found that the overall
correction effect of the EGtrop model is better than that of the GPT2w and UNB3m models.
By assessing Figure 8, it is found that the effect of the EGtrop model is better than that of
the GPT2w model in the Southern Hemisphere, especially in the Antarctic and Australian
regions. Larger RMSEs of the EGtrop and GPT2w models occur in the middle and low
latitudes, and the maximum RMSE values are mainly distributed in the Central Pacific
Ocean, western South America, and the Australian continent. This may be caused by two
factors: on one hand, due to the severe variation in the tropospheric delay in the middle
and low latitudes, the fitting effect is poor; on another, the tropospheric delay is affected
by the land and sea distributions and topography. Among the three models, the RMSE
of the UNB3m model with the lowest accuracy in the Northern Hemisphere is notably
smaller than that in the Southern Hemisphere. It should be noted that the accuracy of the
UNB3m model is similar to that of the GPT2w model in the high latitudes of the Northern
Hemisphere.

In this study, the ZTD calculated by radiosonde stations and IGS, respectively, which
does not participate in modeling in 2020, are used as reference data to verify the above
model, and statistical analysis is carried out by the region. Table 4 lists the accuracy results
of each model in each continental region compared to radiosonde and IGS. The table
indicates that the accuracy of the model based on the different data sources varies, and the
accuracy of the model verified against radiosonde data is relatively higher, which is related
to the use of meteorological data for modeling. Among these models, the overall accuracy
of the EGtrop model (Bias: 0.42 cm; RMSE: 3.65 cm) is equivalent to that of the GPT2w
model (Bias: 0.04 cm; RMSE: 3.75 cm) model, which is better than that of the UNB3m
model. The accuracy of the GPT2w model on all continents is slightly higher than that of
the EGtrop model. The region with the largest RMSE difference between the two models is
Oceania, with a difference of 6.9 mm. This is attributed to the low spatial resolution of the
data source established by the EGtrop model (2◦ × 2◦). The resulting inversion accuracy of
the regional tropospheric delay is not as good as that of the high-resolution GPT2w model
(1◦ × 1◦). There are two main reasons for the poor accuracy of the models verified against
the IGS ZTD data. On the one hand, this is caused by the systematic deviation between
the different data sources. On the other hand, this is affected by the station location and
data resolution, where the temporal resolution of the radiosonde is 12-h, and the temporal
resolution of the IGS_ZTD is 1-h.

By comparing the accuracy between the different regions, it is found that the accuracy
of the EGtrop model is higher than that of the GPT2w model in Europe and North America,
while the accuracy in the other regions is the same. Through the above analysis, it is further
demonstrated that the EGtrop model achieves good regional applicability. In addition,
although the overall accuracy of the UNB3m model is not high, the accuracy of the model in
Asia and Europe is similar to that of the other two models, which is related to the UNB3m
modeling data and consistent with the experimental results of the previous section.
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Table 4. Error statistics of the tropospheric delay models compared to the ZTD derived from IGS and Radiosonde.

Data
Area

Model
Error [cm] Asia Europe Oceania Africa North

America
South

America
Antarctica

IGS
ZTD

EGtrop Bias 1.73 −0.27 2.93 0.36 1.33 0.90 1.05
RMSE 4.97 3.14 3.66 3.09 3.98 4.09 3.36

GPT2w
Bias −0.11 −0.33 0.17 0.41 −0.30 1.01 0.02

RMSE 4.55 3.37 3.53 3.05 4.04 4.19 2.45

UNB3m
Bias −1.11 −2.44 4.44 2.30 2.19 0.51 8.70

RMSE 6.29 4.32 6.27 4.82 5.28 5.44 9.48

Radiosonde
ZTD

EEtrop Bias 0.89 0.06 3.24 −0.27 1.33 −0.52 0.96
RMSE 3.69 3.54 3.89 3.74 4.02 4.36 2.66

GPT2w
Bias −0.95 0.72 2.38 −0.23 −0.41 −0.32 −0.13

RMSE 3.49 3.52 3.20 3.59 3.88 4.43 2.64

UNB3m
Bias −0.10 −0.42 8.70 5.22 0.63 −0.60 9.00

RMSE 3.65 4.03 9.21 7.44 4.22 6.35 9.57

To validate the performance of the above models in different seasons, we statistically
analyzed the monthly average results of the three models at global radiosonde stations.
Figure 9 shows the monthly average Bias and RMSE of ZTD estimates between the models
and radiosonde. As shown in the figure, EGtrop performs best with smaller absolute
deviation and RMSE in different months when compared with other models. In terms of
Bias for all months, the absolute average Bias of the three models in all months is within
1 cm, and the stability of the EGtrop model is better. The deviation of the EGtrop model
in all months is positive, and the deviation of UNB3m is negative. In terms of RMSE for
all seasons, the EGtrop model shows 0.16–2.5 cm and 6.52–13.84 cm improvements over
the GPT2w and UNB3m models, respectively. Therefore, the performance of the EGtrop
model is better than that of other models in different seasons. In addition, the RMSE of
EGtrop, GPT2w, and UNB3m has obvious seasonal variations, and the accuracy in summer
is usually lower than that in other seasons. This is because the water vapor content over
the station changes sharply in summer, which leads to poor estimation results from the
empirical model.

Figure 9. Monthly Bias and RMSE for different models tested by radiosonde in 2020. Grey cyan,
green and orange represents EGtrop, GPT2w and UNB3m, respectively. At the top of the figure is the
distribution of the monthly average Bias of different models. The lower part of the figure shows the
distribution of the monthly average RMSE of different models.
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5. Conclusions

This study proposes a global tropospheric SH coefficient set (SH_set) and establishes
a global SH coefficients empirical model, namely EGtrop based on EOF methods and
periodic functions. The preliminary research results and conclusions are as follows:

1. This study adopts a spherical harmonic function to fit the tropospheric delay cal-
culated with global ERA-5 meteorological data at each time, and an SH coefficients
dataset is obtained in the calculation, which is convenient for EOF decomposition
and formula fitting. It is verified that the SH_set yield a good accuracy (ERA-5 ZTD,
Bias: −1.0 × 10−4 cm; RMSE: 1.97 cm; IGS ZTD, Bias: 0.08 cm; RMSE: 2.6 cm), indi-
cating the feasibility and reliability of this strategy, which provides a reference for
near-real-time model products.

2. Based on the analysis of the SH_set data from 2015 to 2019, it is found that the spherical
harmonic coefficients exhibit a certain periodic variation. Based on this phenomenon,
this study implements the EOF method and trigonometric functions to establish an
SH coefficients model for the SH_set data called EGtrop and combines it with the
spherical harmonic function to complete the establishment of the global tropospheric
delay model. The results indicate that the accuracy of the new model is higher than
that of GPT2w and UNB3m on the different reference data. In addition, through
verification of the model accuracy, it is found that the EGtrop model is applicable
not only at the global scale but also at the regional scale, and this model yields the
advantage of local enhancement.

3. Compared to GGOS tropospheric delay grid data, the SH_set proposed in this study
experiences a slight loss of accuracy, but it greatly reduces the number of parameters
and is more convenient for users.

When the EOF and trigonometric functions are used to fit the spherical harmonic
coefficients in this study, it is found that the fitting effect produces a large deviation in
certain years. The improvement of the fitting effect of the spherical harmonic coefficients
needs further study. In addition, the severe tropospheric delay in the middle and low
latitudes, especially in the low latitudes of the Southern Hemisphere, greatly affects the
accuracy of the model. The execution of high-precision tropospheric delay modeling in the
middle and low latitudes should be further investigated.
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Appendix A

For the reader to be able to replicate the models are described, the data used in each
stage and the process of building the model are further described, as shown in Figure A1.
The modeling process in detail is as follows:

https://apps.ecmwf.int/datasets/
https://apps.ecmwf.int/datasets/
ftp://ftp.ncdc.noaa.gov/pub/data/igra/
ftp://geodesy.noaa.gov/
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First, based on ERA-5 data from 2015 to 2019, the ZTD value is solved by Equation (1).
Considering the influence of altitude on tropospheric delay, the tropospheric delay grid
data is uniformly corrected to the grid data based on mean sea level by Equation (5),
including ZTD0 and the corresponding altitude correction coefficient β.

Then, based on the global grid data (ZTD0 and β), the global tropospheric spherical
harmonic coefficient set (SH_set) is established through the spherical harmonic function
(Equation (6)).

Last, we decompose the SH_set by the EOF method (Equations (8) and (9)) to obtain the
basis vectors (U) and corresponding coefficients (Ai(h)). The EGtrop model is established
by time fitting (Equation (12)) the EOF coefficients (Ai(h)).

The reconstruction of the SH coefficients can be realized by using Equation (7). Only
by giving doy and Hod, the user can get tropospheric SH coefficients. Then, the global
tropospheric delay based on the mean sea level can be obtained by using the SH function
and coefficients. The global altitude correction coefficient is obtained by the same method.
Finally, the ZTD at the specified position is obtained by Equation (5).

Figure A1. Flowchart of EGtrop model construction.
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