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Abstract: For remote sensing scene image classification, many convolution neural networks improve
the classification accuracy at the cost of the time and space complexity of the models. This leads to a
slow running speed for the model and cannot realize a trade-off between the model accuracy and the
model running speed. As the network deepens, it is difficult to extract the key features with a sample
double branched structure, and it also leads to the loss of shallow features, which is unfavorable to
the classification of remote sensing scene images. To solve this problem, we propose a dual branch
multi-level feature dense fusion-based lightweight convolutional neural network (BMDF-LCNN).
The network structure can fully extract the information of the current layer through 3 × 3 depthwise
separable convolution and 1 × 1 standard convolution, identity branches, and fuse with the features
extracted from the previous layer 1 × 1 standard convolution, thus avoiding the loss of shallow
information due to network deepening. In addition, we propose a downsampling structure that
is more suitable for extracting the shallow features of the network by using the pooled branch to
downsample and the convolution branch to compensate for the pooled features. Experiments were
carried out on four open and challenging remote sensing image scene data sets. The experimental
results show that the proposed method has higher classification accuracy and lower model complexity
than some state-of-the-art classification methods and realizes the trade-off between model accuracy
and model running speed.

Keywords: remote sensing scene image; classification; convolutional neural network (CNN); down-
sampling; lightweight

1. Introduction

At present, remote sensing images with high resolution have been applied to many
fields such as remote sensing scene classification [1], hyperspectral image classification [2],
change detection [3,4], geographic image, and land use classification [5,6], etc. However,
remote sensing images’ complex spatial patterns and geographical structure bring great
difficulties to image classification. Therefore, it is particularly important to understand the
semantic content of remote sensing images effectively. The purpose of this study is to find
a simple and efficient lightweight network model, which can accurately understand the
semantics of remote sensing images and efficiently classify remote sensing scene images.
In order to effectively extract image features, researchers have proposed many methods.
Initially, manually made feature descriptors were used to extract image features, such as
color histograms [7], texture descriptors [8], local binary mode [9], GIST [10], directional
gradient histograms [11], bag-of-visual words (BOVW) [12], etc. Then, in order to solve
the disadvantages brought by the method of manually extracting features, researchers
proposed some unsupervised feature learning methods that can automatically extract
shallow detail features from images, such as principal component analysis (PCA), sparse
coding [13], autoencoders [14], Latent Dirichlet allocation [15], and probabilistic latent
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semantic analysis [16]. The above two feature extraction methods are very effective for
the extraction of shallow image information. However, it is difficult to extract high-level
features of images with these methods, which limits the improvement of classification
accuracy. To overcome the drawbacks of these methods, researchers have proposed convo-
lutional neural networks that are able to automatically extract significantly discriminative
features from images [17–30]. Since then, the model based on convolution neural networks
has become the mainstream method in the field of remote sensing scene image classifica-
tion. With the development of convolution neural networks, a lightweight convolution
neural network can achieve a balance between the speed of model operation and the
accuracy of model classification. At present, lightweight networks have been applied
to many tasks, including image classification, image segmentation, target detection [31],
etc. SqueezeNet proposed the fire module, which divides the original standard convo-
lution layer into an extrusion layer and expansion layer. The extruded layer consists of
a continuous set of 1 × 1 convolution, and the extension layer is composed of a set of
continuous 1 × 1 convolution and 3 × 3 convolution channels [32]. MobileNet, proposed
by the Google team, has three versions: V1, V2, and V3. MobileNetV1 uses depthwise
separable convolution to split the ordinary convolution into depthwise convolution and
1 × 1 convolution, which greatly reduces the number of network parameters and improves
the accuracy to a certain extent [33]. MobileNetV2 proposed an inverse residual module
and a linear bottleneck structure. This bottleneck structure was first subjected to the convo-
lution of 1 × 1 for ascending dimension, then 3 × 3 depthwise separable convolution for
feature extraction, and 1 × 1 convolution for dimension reduction [34]. MobileNet V3 adds
the SE module [35] and searches the configuration and parameters of the network using
the neural structure search [36]. ShuffleNet is a highly efficient convolution neural network
architecture designed for mobile devices with limited computing power. The architecture
uses two operations, group convolution and channel mixing, which greatly reduces com-
putational cost compared with some advanced models with similar accuracy [37]. Wan
et al. [38] proposed a lightweight convolution neural network for multiscale feature fusion
recognition, which fuses shallow edge information of the network with deep semantic
information to enhance the ability of feature representation and uses multiscale features
for joint recognition. Bai et al. [39] proposed a novel and lightweight multiscale depthwise
network (MSDWNet) with efficient spatial pyramid attention (ESPA) for remote sensing
scene image classification. Li et al. [40] proposed a random multiscale mapping method to
generate a multiscale and lightweight architecture for remote-sensing image recognition.
The experimental results show that the multiscale network is more suitable than the single-
scale network for extracting remote sensing scene image features. Shi et al. [41] proposed
a two-branch fusion structure for remote sensing scene image classification, stacked by
traditional convolution and depthwise separable convolution sequences. The dual branch
structure can enhance feature information by fusing, but as the network deepens, it is
difficult to extract critical information, and shallow information is also lost. To solve this
problem, based on the dual branch structure and fully considering the information ex-
change between different hierarchical features, a dual branch multi-level feature dense
fusion-based lightweight convolutional neural network (BMDF-LCNN) is proposed. Ex-
periments show that the proposed method considerably improves computational speed
compared to classification methods with the same or even fewer parameter quantities.
Moreover, the proposed method can provide better classification accuracy and realize the
balance of speed and classification performance.

To verify the effectiveness of this method, a large number of experiments were per-
formed on four open and challenging remote sensing image scene datasets. The experimen-
tal results show that the classification accuracy of the proposed method is equivalent to or
even better than that of some state-of-the-art classification methods with lower complexity.
The main contributions of this study are as follows:

(1) Pooling can reduce the feature map size to reduce the computational load of the
model, but it also results in the loss of some key features. To solve this problem, we
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propose a hybrid downsampling method, which compensates for the pooled features by
using a convolution branch to achieve the minimum loss of critical information while
downsampling. Experiments show that the hybrid downsampling method is helpful in
improving the performance of the model.

(2) The pure bi-branching structure is difficult to extract the key features of the feature
map with the deepening of the network. It also causes the loss of shallow features due to
the deepening of the network, which is catastrophic for the classification of remote sensing
scene images. To solve this problem, we propose a multi-level feature-intensive fusion
structure based on dual branches. Each layer of the structure not only uses 3 × 3 depthwise
separable convolution, 1 × 1 standard convolution, and Identity for feature extraction but
also integrates with the features extracted by 1 × 1 standard convolution in the previous
layer. Through the three branches of 3× 3 depthwise separable convolution, 1× 1 standard
convolution, and identity, the information of the current layer can be fully extracted and
fused with the features extracted by 1 × 1 standard convolution in the previous layer,
which can avoid the loss of shallow information due to network deepening.

(3) A lightweight convolution neural network composed of shallow mixed down-
sampling structure and deep dual branch multi-level feature-intensive fusion structure
is presented. A series of experimental results show that the proposed network is more
suitable for remote sensing scene image classification.

The rest of this paper is as follows. In the second section, the proposed dual branch
multi-level feature dense fusion-based lightweight convolutional neural network (BMDF-
LCNN) is introduced in detail. In the third section, experiments and analysis are carried out
and compared with some state-of-the-art methods to prove the superiority of the proposed
method’s performance. The fourth section contains the conclusion.

2. Methods
2.1. The Structure of the Proposed Method

The overall structure of the model is shown in Figure 1, which is divided into nine
parts. In the first and second groups, we propose a feature extraction structure suitable for
the shallow layers of the network (see Section 2.2 for the specific structure model). In the
third group, the combination of standard convolution and depthwise separable convolution
is adopted, and the maximum pool layer is used for downsampling to compress the spatial
dimensions of the input images and reduce the risk of overfitting caused by irrelevant
features. Groups 4 through 8 mainly extract representative features of remote sensing
images. Groups 4 through 7 adopt the designed dual branch multi-level feature intensive
fusion method to extract richer feature information. In Group 8, we used sequential
1 × 1 standard convolution, 3 × 3 standard convolution, and 3 × 3 depthwise separable
convolution to extract deep-level features. On the basis of double branch fusion, the multi-
level features are fully exchanged and fused, which not only improves the classification
accuracy but also greatly improves the speed of the network and realizes the balance
of accuracy and speed. In addition, in order to extract more features, the number of
convolution channels in Groups 5 and 8 is widened to 256 and 512, respectively (see
Section 3.2 for the specific channel number setting of other groups). Group 9 is used
for classification, and the feature information obtained by the final fusion is utilized for
calculating the probability of each scene category.

In deep feature extraction structures from Group 4 to Group 7, each layer can fully
extract the information of the current layer through three branches of 3 × 3 depthwise
separable convolution, 1 × 1 standard convolution, and Identity. In addition, by fusing
the features extracted by 1 × 1 standard convolution with each previous layer, the shallow
information loss due to network deepening can be effectively avoided. Using batch nor-
malization (BN) [42] can reduce the dependence of the network on parameter initialization,
make the training faster, and use a higher learning rate. In addition, compared with the
natural image data set [43], the number of remote sensing images available for training
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is very small. To avoid possible over-fitting during training, L2 regularization is adopted
after the cost function, which is:

J(�) = 1
2m

[
m

∑
i=1

(h�(x(i))− y(i))2 + γ

(
n

∑
j=i
�2

j

)]
(1)

The partial derivative of the above formula is:

∂J(�)
∂�j

=
1
m
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γ

m
�j (2)

In the gradient descent algorithm, in order to converge as quickly as possible, the
parameters will be updated along the negative direction of the gradient, so a negative sign
is added before the partial derivative of Formula (2) and multiplied by a learning rate
factor χ to obtain the final iteration weight parameter �j, that is:

�j = �j − χ·∂J(�)
∂�j

(3)
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(

1− χγ

m

)
�j −

χ

m

m

∑
i=1

(
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(

x(i)
)
− y(i)

)
x(i)j (4)

where γ is the regularization factor, we set it to 0.005, J() is the objective function, x is
the training sample, y is the label corresponding to the training sample, and h�(x(i)) is
the predicted value. As can be seen from Formula (4), each time the gradient is updated
�j is multiplied by a factor 1− χγ

m less than 1, so as to attenuate the weight parameters
and prevent overfitting. In Group 9, global average pooling [44] is used instead of the
traditional full connection layer to avoid the overfitting of the full connection layer.
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Figure 1. The proposed BMDF-LCNN network model.
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2.2. Shallow Feature Extraction Strategy

The first and second sets of downsampling structures are designed to extract the
shallow features of the network. In the process of shallow feature extraction, the effect of
downsampling on network performance is significant. Downsampling is the reduction
of the convoluted feature map to a certain scale, reducing the spatial size of the image
while preserving the main features of the image. The main methods of downsampling in
deep convolution neural networks are maximum pooling downsampling and convolution
downsampling. Pooling is a non-linear downsampling method that requires a deep con-
volution overlay. Generally speaking, it is better to use pooled downsampling for small
convolution networks, but when the network is deep, multi-layer overlay convolution can
learn better non-linear features from the training set. After analyzing the advantages and
disadvantages of the two downsampling methods, a hybrid downsampling method based
on pooling and convolution is proposed. The proposed hybrid downsampling structure is
shown in Figure 2c. The pooling branch in this structure is used for downsampling, but
pooling will lead to the loss of some key feature information, which is not conducive to
extracting deep network features. Therefore, we use convolution to compensate for the
lost features in another branch, which reduces the feature size and ensures the integrity of
information to a great extent. Figure 2a,b are multi-layer convolution downsampling and
pooling downsampling, respectively. In order to verify the performance of the proposed
downsampling methods, the experimental comparisons of the three sampling methods are
carried out in the third section.
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2.3. Strategies to Optimize Time and Space Complexity

Figure 3a is the basic structure for optimizing time and space complexity. The struc-
ture is derived from the fusion of two branches with similar structures. For the sake of
description, one of the branches is explained. According to the number of input and output
channels in the first layer, two different structures are shown in Figure 3b,c. Each layer of
the structure uses 3 × 3 depthwise separable convolution, 1 × 1 standard convolution, and
Identity for feature extraction. Starting from the second layer, each layer of the structure not
only uses 3 × 3 depthwise separable convolution, 1 × 1 standard convolution, and Identity
for feature extraction but also integrates with the features extracted by 1 × 1 standard
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convolution in the previous layer. The process of dense fusion of multi-level features is
as follows:
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When the number of input and output channels of the first layer is the same (C1 = C2),
the structure is as shown in Figure 3b. The 3× 3 branch of layer i− 1 in this structure is rep-
resented by δ(BN(M(i−1) ∗W(3))), and the Identity branch of layer i− 1, by δ(BN(M(i−1))).
Since each layer is fused with the 1 × 1 convolution branch of the previous layer starting

from the second layer, we use
i

∑
i=1

δ(BN(M(i−1) ∗W(1))) to represent the 1 × 1 convolution

branch. The input of layer i feature M(i) is M(i−1). In particular, we specify that the input
of the first layer M(1) is M(0). The output features of each layer can be represented as:

M(i) = δ(BN(M(i−1) ∗W(3))) + δ(BN(M(i−1))) +
i

∑
i=1

δ(BN(M(i−1) ∗W(1))), i = 1, 2, 3 (5)

Here, BN is batch standardization; δ is the ReLU activation function; W(3) ∈ RC1×C2×3×3

represents the 3 × 3 depthwise separable convolution where the number of input chan-
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nels is C1 and the number of output channels is C2. W(1) ∈ RC1×C2 represents the
1 × 1 convolution where the number of input channels is C1 and the number of output
channels is C2.

When the number of input and output channels of the first layer is not the same
(C1 6= C2), the structure is shown in Figure 3c. Only the first layer has no Identity branch,
and the other layers have the same structure as in the case. The output feature of each
layer is:

M(1) = δ(BN(M(0) ∗W(3))) + δ(BN(M(0) ∗W(1))), i = 1 (6)

M(i) = δ(BN(M(i−1) ∗W(3))) + δ(BN(M(i−1))) +
i

∑
i=1

δ(BN(M(i−1) ∗W(1))), i = 2, 3 (7)

The process of reducing model complexity is analyzed in detail as follows. The time
complexity of a convolution neural network can be represented as:

T ∼ O

(
L

∑
i=1

M2
i ·K2

i ·Ci−1·Ci

)
(8)

Here, L denotes the number of convolution layers of the neural network, Mi denotes
the size of the output feature map of the i convolution layer, Ki denotes the convolution
kernel size of the i convolution layer, i denotes the i convolution layer of the neural network,
and Ci−1 and Ci denote the number of input and output channels Cin and Cout of the i
convolution layer of the neural network, respectively.

The spatial complexity of convolution neural networks is:

S ∼ O

(
L

∑
i=1

K2
i ·Ci−1·Ci +

L

∑
i=1

M2
i ·Ci

)
(9)

In Formula (9), the first summation expression represents the total weight parameters
of all the layers with parameters in the model, and the second summation expression
represents the size of the output feature map of each layer in the model.

2.3.1. Replace the Full Connection Layer with Global Average Pooling

Full Connection Layer is a special convolution layer whose convolution kernel size is
the same as the input data size. The output feature map of each convolution kernel is a
scalar, i.e., M = 1. The time and space complexity of the full connection layer are:

T ∼ O(12·X2·Cin·Cout) (10)

S ∼ O(X2·Cin·Cout + Cout) (11)

where X represents the size of the input image, M represents the size of the output feature
map for each convolution kernel, K represents the size of the convolution kernel, Cin and
Cout represent the number of input and output channels, respectively.

Formulas (10) and (11) show that the complexity of the full connection layer is related
to the size of the input data. For global average pooling, the time and space complexity are:

T ∼ O(Cin·Cout) (12)

S ∼ O(Cin·Cout) (13)

As seen from (12) and (13), after using global average pooling, both time and spatial
complexity are only related to the number of input-output channels, and the number of
operations and parameters are greatly reduced.
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2.3.2. Replacing Standard Convolution with Depthwise Separable Convolution

The standard convolution operation is to convolute all the channels of the input for
each convolution kernel, and the depthwise separable convolution is that each convolu-
tion kernel acts on only a certain channel of the input, which reduces the complexity of
the model.

The time complexity of standard convolution is:

T ∼ O(M2·K2·Cin·Cout) (14)

The time complexity of depthwise separable convolutions is:

T ∼ O(M2·K2·Cin + M2·Cin·Cout) (15)

The number of parameters Pconv of the standard convolution is:

Pconv = K·K·Cin·Cout (16)

The number of parameters Pdsc for the deep separable convolution is:

Pdsc = (K·K·Cin + Cin·Cout) (17)

The parameter number ratio of the depthwise separable and standard convolutions is:

Pconv/Pdsc =
K·K·Cin + Cin·Cout

K·K·Cin·Cout
=

1
Cout

+
1

K2 (18)

As can be seen from (14)–(18), when using a convolution kernel of 3× 3, the parameter
amount of the depthwise separable convolution is about 1/9 that of the standard convolu-
tion. Therefore, the depthwise separable convolution is adopted, which can greatly reduce
the number of parameters, effectively reduce the complexity of the model, and improve
the running speed of the model.

2.3.3. Identity

In terms of network structure, the shallow network extracts simple and specific
features. With the deepening of network structure, the extracted features become more
complex and abstract. Since simple and abstract features can describe images from different
aspects, the classification performance can be effectively improved through the information
interaction between different hierarchical features. If Identity is not used, the classification
of all images can only rely on complex features. After Identity is adopted, the shallow
features can be retained, which can accelerate the running speed of the network.

3. Results

In this section, the proposed dual branching multi-level feature dense fusion method
is comprehensively evaluated. Experiments are performed on four challenging datasets.
The proposed BMDF-LCNN method is compared with some state-of-the-art classification
methods. Experimental results demonstrate that the proposed method performs well with
respect to various contrast indexes.

3.1. Dataset Settings

To prove the superiority of the proposed BMDF-LCNN method, the proposed BMDF-
LCNN method and some state-of-the-art classification methods were compared experimen-
tally in four datasets, the UC dataset [45], RSSCN dataset [46], AID dataset [47], and NWPU
dataset [26]. The UC dataset is a remote sensing dataset of land use images from the USGS
national map urban area imagery with a total of 2100 land use images in 21 categories,
with 256 × 256 pixels per image. The RSSCN dataset is a remote sensing image dataset
from Wuhan University with seven categories consisting of 2800 images, with 400 × 400
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pixels per image. These images are sampled using different scales in different seasons and
different weather conditions, making this dataset relatively challenging. The AID dataset
is published jointly by Huazhong University of Science and Technology and Wuhan Uni-
versity. It has 10,000 remote sensing image datasets in 30 categories, with 600 × 600 pixels
per image. The NWPU dataset is a remote sensing image dataset with 45 categories and
31,500 images created by Northern Polytechnic University, with 256 × 256 pixels per image.
This dataset has the largest image size among the four datasets and the highest intra-class
differences and inter-class similarities, which causes great challenges for classification tasks.

3.2. Setting of the Experiments

For the UC dataset, 80% of the images were randomly selected in each category as
training data for model learning, and the remaining 20% of the images were used as
test data to examine the performance of the model. For the RSSCN dataset, 50% of the
images in each category were randomly selected as training data for model learning, and
the remaining 50% were used as test data to verify model performance. For the AID
dataset, 50% and 20% of the images were randomly selected in each category as training
data for model learning, and the remaining images were used as test data to examine the
performance of the model. For the NWPU45 dataset, 20% and 10% of the images in each
category were randomly selected as training data for model learning, and the rest of the
images were used as test data to verify the performance of the model.

The size of each convolution kernel is shown in Figure 1. Other settings are as follows:
In Group 1 and Group 2, the number of convolution filters is 32 and 64, respectively,

with the first convolution step being 2 and the remaining convolution step being 1. To
further extract high-level features, the number of convolution filters from Group 3 through
Group 8 are 128, 128, 256, 256, and 512, respectively. Set the max-pooling size from Group
1 to Group 8 to 2 × 2, and the pool step is 2. All the steps of Group 3 through Group 8
are 1. To overcome the drawbacks of the small size of the training data and improve the
generalization ability of the model, we used data enhancement to increase data diversity.
The settings for data enhancement are as follows:

(1) Multiplying all pixels of the input image by a scaling factor, which was set to 1/255,
reduced the pixel value to between 0 and 1 and favored convergence of the model.

(2) Select the appropriate angle to rotate the input image to change the orientation of the
image content. Here, we chose a rotation angle of 0–60.

(3) The input image was translated horizontally and vertically with a shift factor of 0.2.
(4) The input image was randomly flipped to horizontal or vertical.

Furthermore, to reduce the risk of spillover of memory during training caused by
excessive amounts of data, the input images were resized 256 × 256 with the bilinear
interpolation method before training. Throughout the training process of the model, using
an automatic learning rate reduction mechanism can reduce the learning rate according
to the training situation and can quickly and accurately find the optimal model. The
initial learning rate was set to 0.01. During the training process, the batch size was set
to 16, and the momentum optimization algorithm was used to optimize the network
for better and more stable convergence. Here we set the momentum factor to 0.9. The
software used throughout the experiment was PyCharm. The final results were obtained
by averaging the results of 10 experiments. The computer’s configuration is as follows:
RAM: 16GB; Processor: AMD Ryzen 7 4800H with RadeonGraphics@2.90GHz; GPU:
NVIDIAGeForceRTX2060 6G.

3.3. The Performance of the Proposed Model

To verify the advantages of the proposed BMDF-LCNN method over other methods,
six evaluation indexes, including overall accuracy (OA), average accuracy (AA), Kappa
coefficient (Kappa), confusion matrix, average training time (ATT), and weighting param-
eters were used to evaluate the proposed method comprehensively. OA represents the
ratio of the correct number of classes to the total number of classes on all test sets, AA
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represents the ratio of the correct number of predictions for each class to the total number
of classes and measures the quality of classification on each class by the proposed methods,
ATT represents the average time spent training each image by the proposed methods, and
F1 score can be regarded as the weighted average of model accuracy and recall rate. The
higher the F1 value, the better the model. During the experiments, to ensure fairness of
the experiments, all comparative experiments were conducted in the same experimental
setting. Considering the proposed method is an improvement on the lightweight convolu-
tional neural network-branch feature fusion (LCNN-BFF) method, in order to verify the
advantages of the improved BMDF-LCNN method over the LCNN-BFF method, we use
OA, AA, Kappa, and confusion matrix as evaluation indicators to compare the proposed
method with LCNN-BFF method on four datasets: UC [45], RSSCN [46], AID [47], and
NWPU [26]. The OA and Kappa results of the LCNN-BFF and BMDF-LCNN methods on
six datasets are shown in Table 1.

Table 1. Performance Comparison between LCNN-BFF and the Proposed Method.

BMDF-LCNN LCNN-BFF

OA (%) Kappa (%) OA (%) Kappa (%)
80/20UC 99.53 99.50 99.29 99.25

50/50RSSCN 97.86 97.50 94.64 93.75
20/80AID 94.46 94.26 91.66 91.37
50/50AID 96.76 96.24 94.62 94.41

10/90NWPU 91.65 90.65 86.53 86.22
20/80NWPU 93.57 93.42 91.73 91.54

As can be seen in Table 1, except for the 80/20UC dataset, both the OA and Kappa
values of the proposed BMDF-LCNN method were elevated by more than 1% over those of
the LCNN-BFF [41] method. The classification accuracy and Kappa value of the proposed
BMDF-LCNN method on the UC dataset are close to 100%, which indicates that the method
has better classification advantages on the UC dataset. Similarly, the BMDF-LCNN method
has also achieved good classification results for the AID and NWPU datasets, with the
most improvement on 10/90NWPU datasets, 5.12% higher classification accuracy, and
4.43% higher Kappa value than LCNN-BFF [41], indicating that the proposed method has
better performance. Further, we use AP, F1, and confusion matrix as indicators to validate
the advantages of the proposed method over other state-of-the-art classification methods.

The comparison of AA and F1 results between BMDF-LCNN and LCNN-BFF [41] is
shown in Figure 4. Figure 4a shows that AA values obtained by BMDF-LCNN are superior
to LCNN-BFF [41] in all comparison datasets. The highest performance improvement was
achieved on 20/80AID, 50/50RSSCN, 20/80NWPU, and 10/90NWPU datasets, which
were 2.52%, 2.78%, 1.85%, and 4.62% higher than LCNN-BFF, respectively.

As shown in Figure 4b, the F1 values obtained by the BMDF-LCNN method were also
higher than that of LCNN-BFF. The four datasets, 20/80AID, 50/50RSSCN, 20/80NWPU,
and 10/90NWPU, with the highest classification performance improvement, which was
2.6%, 3.22%, 1.79%, and 4.68% higher than LCNN-BFF [41], respectively.

Next, the confusion matrix is adopted to evaluate the performance of this method
on four datasets, 20/80AID, 50/50RSSCN, 10/90NWPU, and 80/20UC. Each column in
the confusion matrix represents the prediction category. Each line represents the actual
category. The value on the diagonal line represents the probability value of the correct
classification. The value outside the diagonal line indicates the probability of being wrongly
classified as the current class.
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From the results in Figure 5a, it can be seen that the classification accuracy of the
BMDF-LCNN method for ‘Overpass’ and ‘Storage tanks’ is 95% on the 80/20UC dataset
and 100% for other scenarios, which proves that this method has excellent performance on
the UC dataset. Figure 5b shows that the BMDF-LCNN method achieves a classification
accuracy of more than 96% for most scenes on the 50/50 RSSCN dataset. The recognition
rate for ‘Industry’ is 94%. This is because the two scenes, ‘Industry’ and ‘Parking’, have
mutually inclusive relationships, with the presence of cars in the industry and industry
in the parking, which leads to easy confusion when classifying. Nevertheless, the BMDF-
LCNN method still achieves high classification accuracy.



Remote Sens. 2021, 13, 4379 12 of 25

Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 26 

 

have mutually inclusive relationships, with the presence of cars in the industry and in-
dustry in the parking, which leads to easy confusion when classifying. Nevertheless, the 
BMDF-LCNN method still achieves high classification accuracy. 

 
(a) 

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 26 

 

 
(b) 

Figure 5. Confusion Matrices of BMDF-LCNN Method on UC and RSSCN Datasets. (a) Confusion matrix obtained on 
80/20 UC datasets. (b) Confusion Matrix on 50/50 RSSCN Dataset. 

For the confusion matrix in Figure 6a, we can see that there are 20 categories on the 
20/80AID datasets with classification accuracy above 95%, with the accuracy of ‘Forest’ 
and ‘Park’ at 100%. Five percent of the ‘Squares’ are misclassified as ‘Parks’, and five per-
cent of the ‘Schools’ are misclassified as ‘Commercial’, mainly due to the high class simi-
larity between ‘Parks’ and ‘Squares’, and ‘Schools’ and ‘Commercial’. In Figure 6b, on the 
10/90NWPU datasets with high similarities between classes and intra-class differences, 
the classification accuracy of 39 classes is more than 90%, and that of ‘Chaparral’ and 
‘Snowberg’ are 100%. Due to the high class similarity between ‘Palaces’ and ‘Churches’, 
12% of palaces are misclassified as churches. 

The above experiments fully demonstrate the validity of the proposed method 
through multiple evaluation indexes. The experimental results show that the dense fusion 
structure of two-branch and multi-layer features can significantly improve the classifica-
tion accuracy and robustness of the network through the dense communication of differ-
ent hierarchical features. 

Figure 5. Confusion Matrices of BMDF-LCNN Method on UC and RSSCN Datasets. (a) Confusion matrix obtained on
80/20 UC datasets. (b) Confusion Matrix on 50/50 RSSCN Dataset.



Remote Sens. 2021, 13, 4379 13 of 25

For the confusion matrix in Figure 6a, we can see that there are 20 categories on the
20/80AID datasets with classification accuracy above 95%, with the accuracy of ‘Forest’
and ‘Park’ at 100%. Five percent of the ‘Squares’ are misclassified as ‘Parks’, and five
percent of the ‘Schools’ are misclassified as ‘Commercial’, mainly due to the high class
similarity between ‘Parks’ and ‘Squares’, and ‘Schools’ and ‘Commercial’. In Figure 6b, on
the 10/90NWPU datasets with high similarities between classes and intra-class differences,
the classification accuracy of 39 classes is more than 90%, and that of ‘Chaparral’ and
‘Snowberg’ are 100%. Due to the high class similarity between ‘Palaces’ and ‘Churches’,
12% of palaces are misclassified as churches.

The above experiments fully demonstrate the validity of the proposed method through
multiple evaluation indexes. The experimental results show that the dense fusion struc-
ture of two-branch and multi-layer features can significantly improve the classification
accuracy and robustness of the network through the dense communication of different
hierarchical features.

3.4. Comparison with Advanced Methods

In this section, in order to further verify the advantages of the proposed BMDF-LCNN
method in model complexity and classification accuracy, the most advanced remote sensing
scene classification methods proposed in the last two years were chosen and compared
with the proposed BMDF-LCNN method on the UC [45], RSSCN [46], AID [47], and NWPU
datasets [26]. These methods were evaluated using OA, AA, F1, the number of parameters,
Kappa, ATT, and FLOPs as evaluation indexes.

3.4.1. Experimental Results on UC-Merced Datasets

The comparison of the number of parameters, OA, AA, and F1 obtained by the
proposed BMDF-LCNN method and that of the advanced methods are shown in Table 2.
We can see in Table 2, for the UC dataset [45] with a training rate of 80%, the proposed
method achieves a classification accuracy of 99.53%, which exceeds all the comparison
methods. This indicates that the dense fusion module with two branches and multi-layers
can significantly improve classification accuracy. Inception-v3-CapsNet [35], SF-CNN
with VGGNet [32], SCCov [48] and PANNet [49] all achieve more than 99% classification
accuracy. However, these four methods have a large number of parameters and do not have
a good trade-off between the complexity of the model and the classification accuracy. The
parameters of SCCov [48] are only 6M, which is the same as that of the proposed BMDF-
LCNN method. However, the accuracy of SCCov [48] is only 98.04%, which is 1.49% lower
than the proposed method. The F1 score of the proposed method is 99.51%, 1.49% higher
than the lightweight method SCCov [48] and 1.42% higher than Contourlet CNN [50]. In
addition, the Kappa values of the proposed methods are compared with those of the most
advanced methods on the UC dataset [45], and the results are shown in Table 3. As shown
in Table 3, the Kappa value of the proposed BMDF-LCNN method is 99.50%, 1.69% higher
than that of Contourlet CNN [50], 1.87% higher than that of LiG with sigmoid kernrl [51],
and 1.76% higher than that of SE-MDPMNet [34]. The comparison of the above data shows
that the proposed BMDF-LCNN method can provide better classification performance.
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Table 2. Performance comparison of the proposed model with some state-of-the-art methods on UC Dataset.

The Network Model OA (%) AA (%) F1 Number of Parameters

MRBF [14] 94.19 ± 1.5 94.25 ± 0.52 94.19 ± 0.26 89M
VWMF [23] 97.79 96.85 96.51 35M

VGG16-DF [27] 98.97 98.86 98.23 130M
BAFF [30] 95.48 95.69 94.96 130M

SF-CNN with VGGNet [32] 99.05 ± 0.27 98.89 ± 0.12 98.76 ± 0.15 130M
WSPM-CRC [33] 97.95 98.02 97.89 23M

Inception-v3-CapsNet [35] 99.05 ± 0.24 99.10 ± 0.15 99.05 ± 0.46 22M
ADFF [52] 98.81 ± 0.51 97.95 ± 0.92 97.84 ± 0.25 23M

MG-CAP(Bilinear) [53] 98.60 ± 0.26 98.50 ± 1.5 98.46 ± 0.18 45M
SCCov [48] 98.04 ± 0.23 98.35 ± 0.48 98.02 ± 0.29 6M

LiG with sigmoid kernel [51] 98.92 98.75 98.59 23M
GBNet + global feature [54] 98.57 ± 0.48 98.46 ± 0.43 98.32 ± 0.62 138M

FACNN [55] 98.81 ± 0.24 98.86 ± 0.19 98.76 ± 0.38 130M
SSRL [56] 94.05 ± 1.2 94.35 ± 0.09 94.05 ± 0.27 210M

VGG_VD16 + SAFF [57] 97.02 ± 0.78 96.56 ± 0.29 96.49 ± 0.21 15M
PANNet [49] 99.21 ± 0.18 98.26 ± 0.51 98.10 ± 0.27 28M

EfficientNet [58] 94.37 93.59 93.38 65M
EfficientNet-B3-Attn-2 [59] 99.21 ± 0.22 99.05 ± 0.19 98.98 ± 0.13 15M

Siamese [50] 94.29 93.56 93.37 21M
Contourlet CNN [50] 98.97 98.27 98.09 12.6M

BMDF-LCNN (Proposed) 99.53 ± 0.24 99.50 ± 0.15 99.51 ± 0.27 6M

Table 3. Comparing the Kappa values of the proposed model with some advanced methods on the
UC dataset.

The Network Model Year Kappa (%)

R.D [13] 2019 94.50
LiG with sigmoid kernel [51] 2020 97.63

EfficientNet [58] 2020 92.37
SE-MDPMNet [34] 2019 97.74

Fine-tune MobileNet [34] 2019 96.92
Siamese [50] 2019 94.00

Contourlet CNN [50] 2020 97.81
BMDF-LCNN (Proposed) 2021 99.50

To verify the strong immediacy of the proposed method, the proposed BMDF-LCNN
method and several state-of-the-art methods were experimentally contrasted on UC
datasets [45] under the same configuration conditions. The ATT comparison results are
shown in Table 4. From Table 4, we can see that the ATT of the proposed method is 0.017s,
which saves 0.035s, 0.031s to process an image with the two methods in [54] and saves
0.036s and 0.022s to process an image with the two methods in [50]. This further verifies
the effectiveness of the method.

Table 4. The average time between the proposed model and some advanced methods for image
processing.

The Network Model ATT(s)

GBNet [54] 0.053
GBNet + global feature [54] 0.039

Siamese [50] 0.052
Siamese [50] 0.048

BMDF-LCNN (Proposed) 0.017
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3.4.2. Experimental Results on RSSCN Datasets

Table 5 lists the comparison results of OA, AA, F1 scores and the number of param-
eters between the proposed method and the comparison method. It can be seen that the
classification accuracy of this method is the highest. The OAs of the proposed methods
are 2.32%, 2.65%, 5.40%, and 1.69% higher than that of Contourlet CNN [50], ADFF [52],
SE-MDPMNet [34], and EffecientNet-B3-Attn-2 [59], respectively. The AAs of the proposed
methods are 1.9%, 2.17%, 4.44%, and 1.99% higher than that of Contourlet CNN [50],
ADFF [52], SE-MDPMNet [34], and EffecientNet-B3-Attn-2 [59], respectively. Moreover,
compared with other methods, the proposed method has the least number of parameters,
which accounts for only 4.61% of the parameters of VGG16+SVM [47], and 26.09% of
the parameters of SPM-CRC [33], WSPM-CRC [33], and ADFF [52]. The F1 score of the
proposed method is also the highest among all comparison methods. These indicators
verify that the proposed network model has good classification performance.

Table 5. Performance comparison of the proposed model with some advanced methods on RSSCN datasets.

The Network Model Year OA (%) AA (%) F1 Number of Parameters

VWMF [23] 2019 89.10 88.96 88.69 35M

WSPM-CRC [33] 2019 93.60 94.01 93.60 23M
SPM-CRC [33] 2019 93.86 93.79 93.75 23M

VGG16 + SVM [47] 2017 87.18 87.09 86.95 130M
ADFF [52] 2019 95.21 ± 0.50 95.35 ± 0.67 94.87 ± 0.56 23M

Two-stage deep feature fusion [60] 2018 92.37 ± 0.72 92.09 ± 0.53 92.35 ± 0.45 18M
Fine-tune MobileNet [34] 2019 94.71 ± 0.15 93.52 ± 0.25 94.59 ± 0.19 3.5M

SE-MDPMNet [34] 2019 92.46 ± 0.66 93.08 ± 0.42 92.46 ± 0.26 5.17M
EfficientNet-B3-Attn-2 [59] 2021 96.17 ± 0.23 95.68 ± 0.35 95.53 ± 0.76 15M

Contourlet CNN [50] 2020 95.54 ± 0.17 95.62 ± 0.26 95.06 ± 0.62 12.6M
BMDF-LCNN (Proposed) 2021 97.86 ± 0.25 97.52 ± 0.10 97.86 ± 0.19 6M

3.4.3. Experimental Results on AID Datasets

The comparison results between the proposed BMDF-LCNN method and the most
advanced method are listed in Table 6. When the training ratio is 20%, the overall classifi-
cation accuracy of the proposed method reaches 94.46%, which is 0.29% and 0.33% higher
than that of LiG with RBF kernel [61] and that of Fine-tuneMobileNetV2 [34], respectively.
The average accuracy of the proposed method is 94.24%, which is 2.89% and 0.19% higher
than the lightweight methods SCCov [48] and LiG with RBF kernel [61], respectively. When
the training ratio is 50%, the proposed method has the highest overall classification accu-
racy, which is 96.76%, which exceeds the accuracy of all the comparison methods. This
accuracy is 1.31% higher than that of FACNN [55], 0.57% higher than that of LiG with RBF
kernel [61], and 0.8% higher than that of Fine-tune MobileNetV2 [34]. Compared with the
lightweight networks SCCov [48] and VGG_VD16 + SAFF [57], the average classification
accuracy of the proposed method is improved by 3.07% and 2.76% respectively. This proves
that our method can extract the features of images more effectively and understand the
semantics of images more accurately. As far as the weight parameters are concerned, the
weight parameters of the proposed method are 6M, slightly higher than that of LiG with
RBF kernel [61], but our method can provide higher classification accuracy than LiG with
RBF kernel [61].

The Kappa values of the proposed BMDF-LCNN method are compared with those of
other methods, as shown in Table 7. It can be seen that the Kappa values of the proposed
method are 96.24%, 1.91% higher than that of LiG with RBF kernel [61] and 1.41% higher
than that of Fine-tune MobileNet V2 [34].
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Table 6. Performance comparison of the proposed model with some advanced methods on AID datasets.

The Network Model OA (20/80) (%) AA (20/80) (%) OA (50/50) (%) AA (50/50) (%) Number of Parameters

BAFF [30] 91.23 90.65 93.56 93.42 130M
VGG16-CapsNet [35] 91.63 ± 0.19 91.26 ± 0.59 94.74 ± 0.17 94.65 ± 0.36 22M

MG-CAP(Bilinear) [53] 92.11 ± 0.15 92.28 ± 0.25 95.14 ± 0.12 95.26 ± 0.24 130M
SCCov [48] 91.10 ± 0.15 91.35 ± 0.16 93.30 ± 0.13 93.45 ± 0.49 6M
GBNet [54] 90.16 ± 0.24 89.94 ± 0.27 93.72 ± 0.34 93.68 ± 0.56 18M

GBNet + global feature [54] 92.20 ± 0.23 91.87 ± 0.36 95.48 ± 0.12 94.97 ± 0.16 138M
FACNN [55] 90.87 ± 0.53 91.05 ± 0.48 95.45 ± 0.11 95.62 ± 0.19 25M

VGG_VD16 + SAFF [57] 90.25 ± 0.29 90.25 ± 0.68 93.83 ± 0.16 93.76 ± 0.28 15M
InceptionV3 [62] 93.27 ± 0.17 94.05 ± 0.49 95.07 ± 0.22 95.38 ± 0.17 45.37M

ResNet50 [62] 92.39 ± 0.15 91.69 ± 0.72 94.69 ± 0.19 95.02 ± 0.26 25.61M
VGG19 [62] 87.73 ± 0.25 87.80 ± 0.16 91.71 ± 0.42 91.54 ± 0.65 19M

EfficientNet [58] 86.56 ± 0.17 87.06 ± 0.15 88.35 ± 0.16 88.56 ± 0.53 65M
LiG with RBF kernel [61] 94.17 ± 0.25 94.05 ± 0.52 96.19 ± 0.28 96.27 ± 0.39 2.07M

Fine-tune MobileNetV2 [34] 94.13 ± 0.28 94.20 ± 0.18 95.96 ± 0.27 95.06 ± 0.28 10M
MSDFF [63] 93.47 93.56 96.74 96.46 15M

BMDF-LCNN (proposed) 94.46 ± 0.15 94.24 ± 0.10 96.76 ± 0.18 96.52 ± 0.23 6M

Table 7. Comparison of Kappa results between the proposed model and other advanced methods on
the AID dataset.

The Network Model OA (50%) Kappa (%)

VGG19 [62] 91.71 90.06
ResNet [62] 94.69 93.47

InceptionV3 [62] 95.07 93.91
EfficientNet [58] 88.35 87.21

LiG with RBF kernel [61] 96.19 94.33
Fine-tune MobileNet V2 [34] 95.96 94.83

BMDF-LCNN (Proposed) 96.76 96.24

3.4.4. Experimental Results on NWPU Dataset

Experiments were carried out on the NWPU data set. The comparison results between
the proposed BMDF-LCNN method and some of the most advanced methods are shown
in Table 8. In Table 8, when the training ratio is 10%, the overall classification accuracy of
the proposed method reaches 91.65%, which is 1.42% higher than that of LiG with RBF
kernel [61] and 1.46% higher than that of LiG with sigmoid kernel [51]. Compared with the
lightweight networks SCCov [48] and LiG with RBF kernel [61], the average classification
accuracy of the proposed method is improved by 7.59% and 1.87% respectively. When
the training ratio is 20%, the overall classification accuracy is 0.32%, which is 0.36% and
0.02% higher than that of LiG with RBF kernel [61], LiG with sigmoid kernel [51], and
MSDFF [63], respectively. The average accuracy of the proposed method is 93.56%, which is
4.48% and 0.8% higher than the lightweight methods Contourlet CNN [50] and MSDFF [63],
respectively. In terms of parameters, compared with LiG with RBF kernel [61] with small
parameters, when the training ratio is 10%, the classification accuracy of the proposed
method is improved by 1.42%, and when the training ratio is 20%, the classification accuracy
of the proposed method is improved by 0.32%. Compared with SSCov [48] with the same
parameters, when the training ratio is 10%, the classification accuracy of the proposed
method is improved by 7.32%, and when the training ratio is 20%, the classification
accuracy of the proposed method is improved by 6.27%. Experimental results show that
the proposed method has better classification performance and fewer parameters, which is
very suitable for mobile devices.
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Table 8. Performance comparison of the proposed model with some advanced methods on the NWPU dataset.

The Network Model OA (10/90) (%) AA (10/90) (%) OA (20/80) (%) AA (20/80) (%) Number of
Parameters Year

R.D [13] 89.36 89.05 91.03 90.68 20M 2019
VGG16-CapsNet [35] 85.08 ± 0.13 85.12 ± 0.22 89.18 ± 0.14 89.32 ± 0.19 22M 2019

MG-CAP with Bilinear [53] 89.42 ± 0.19 89.06 ± 0.16 91.72 ± 0.16 90.95 ± 0.33 45M 2020
SCCov [48] 84.33 ± 0.26 83.56 ± 0.48 87.30 ± 0.23 97.41 ± 0.53 6M 2020

LiG with sigmoid kernel [51] 90.19 ± 0.11 89.57 ± 0.36 93.21 ± 0.12 93.05 ± 0.15 23M 2020
VGG_VD16 + SAFF [57] 84.38 ± 0.19 84.23 ± 0.23 87.86 ± 0.14 88.03 ± 0.10 15M 2021

VGG19 [62] 81.34 ± 0.32 81.02 ± 0.64 83.57 ± 0.37 83.69 ± 0.23 19M 2020
Inception V3 [62] 85.46 ± 0.33 84.87 ± 0.15 87.75 ± 0.43 86.25 ± 0.45 45.37M 2020

ResNet50 [62] 86.23 ± 0.41 85.73 ± 0.28 88.93 ± 0.12 88.42 ± 0.16 25.61M 2020
EfficientNet [58] 78.57 ± 0.15 78.42 ± 0.18 81.83 ± 0.15 81.58 ± 1.19 65M 2020

LiG with RBF kernel [61] 90.23 ± 0.13 89.28 ± 0.32 93.25 ± 0.12 92.82 ± 0.64 2.07M 2020
MSDFF [63] 91.56 90.86 93.55 92.76 ± 0.35 15M 2020

Contourlet CNN [50] 85.93 ± 0.51 86.05 ± 0.26 89.57 ± 0.45 89.08 ± 0.25 12.6M 2020
BMDF-LCNN (Proposed) 91.65 ± 0.15 91.15 ± 0.10 93.57 ± 0.22 93.56 ± 0.35 6M 2021

The comparison of Kappa values of different methods is shown in Table 9. It can be
seen that the Kappa of the proposed method is 93.42%, which is 0.40% and 0.49% higher
than that of LiG with RBF kernel [61] and Fine-tune MobileNet V2 [34], respectively. The
validity of the proposed method is further proved.

Table 9. Comparison of Kappa values between the proposed method and some advanced methods
on 20% NWPU45 dataset.

The Network Model OA (20%) Kappa (%)

VGG19 [62] 83.57 82.17
ResNet [62] 88.93 87.61

InceptionV3 [62] 87.75 86.46
EfficientNet [58] 81.83 79.53

LiG with RBF kernel [61] 93.25 93.02
Fine-tune MobileNet V2 [34] 93.00 92.93

BMDF-LCNN (Proposed) 93.57 93.42

3.5. Comparison of Three Downsampling Methods

To validate the performance of our proposed downsampling methods, three down-
sampling methods mentioned in Section IIB are used in the first and second layers of the
network. Experiments were performed on two datasets, i.e., UC and RSSCN, and the
OA and Kappa were used as evaluation indicators. As shown in Figure 2, for the Conv-
Downsampling (CD), the first and third convolution steps are 1, and the second and fourth
convolution steps are 2. For the pooling downsampling (Maxpooling-Downsampling,
MD), the convolution kernels are all 3 × 3, with convolution steps of 1 × 1. The size
of max-pooling is 2 × 2, and the pooling step size is 2. A new downsampling method
is proposed in Figure 2c. The experimental results are shown in Table 10. As shown in
Table 10, both the classification accuracy and Kappa values of pooling downsampling are
lower than those of convolution downsampling on the two datasets. The reason is that
convolution downsampling in deep networks yields better non-linear performance than
pooled downsampling. The classification accuracy of the proposed downsampling meth-
ods on 80/20UC and 50/50RSSCN datasets is 99.53%, 97.86%, and the Kappa values are
99.50%, 97.50%, respectively, which are higher than those of the other two downsampling
methods. This further proves that the multi-level features dense fusion method can classify
remote sensing scene images more effectively.
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Table 10. Comparison results of OA and Kappa of three downsampling methods on UC and RSSCN datasets.

Downsampling Method OA (80/20UC) (%) Kappa (80/20UC) OA (50/50RSSCN) (%) Kappa (50/50RSSCN)

CD 99.29 99.15 94.56 94.30
MD 98.81 98.53 93.64 93.25

Proposed 99.53 99.50 97.86 97.50

3.6. Evaluation of Size of Models

To further validate the effectiveness of our proposed method, we used FLOPs and
parameter quantities to compare it with advanced methods, where FLOPs measure the
complexity of the model, and the parameter quantities measure the size of the model. The
results are shown in Table 11. It can be seen from Table 11 that compared with LCNN-
BFF, the proposed method has slight advantages in parameter quantity and FLOPs, and
the classification accuracy is still 3.22% higher than that of LCNN-BFF, which proves the
great advantages of the proposed method. In addition, compared with other lightweight
methods, such as MobileNetV2 [34] and SE-MDPMNet [34], the proposed method also
can achieve a higher classification accuracy with fewer FLOPs and realize a good balance
between model accuracy and complexity.

Table 11. Evaluation of some models.

The Network Model OA (%) Number of Parameters FLOPs

LCNN-BFF [41] 94.64 6.1M 24.6M
GoogLeNet [47] 85.84 7M 1.5G

CaffeNet [47] 88.25 60.97M 715M
VGG-VD-16 [47] 87.18 138M 15.5G

MobileNetV2 [34] 94.71 3.5M 334M
SE-MDPMNet [34] 92.46 5.17M 3.27G

Contourlet CNN [50] 95.54 12.6M 2.1G
BMDF-LCNN (Proposed) 97.86 6M 24M

4. Discussions

In order to show the performance of the proposed method more intuitively, in this
section, three kinds of visualization including grad cam, t-distribution random neighbor
embedding (T-SNE), and randomly selected and tested are discussed and analyzed. The
grad cam displays the extracted features according to the degree of significance through the
visual thermal map. The last layer of convolution neural network contains the richest spatial
and semantic information. Therefore, grad cam makes full use of the features of the last
layer of convolution to generate an attention map to display important areas of an image.
In this experiment, some remote sensing scene images ‘Industries’, ‘Fields’, ‘Residence’,
‘Grass’, ‘Forests’ in the RSSCN dataset are randomly selected. The visualization results of
thermal diagrams of the improved BMDF-LCNN method with the original LCNN-BFF
method are shown in Figure 7.

We can see that from Figure 7, for ‘Industries’ scenarios, the LCNN-BFF method does
not accurately focus on the factory area but instead shifts the focus to the highway, whereas
the proposed BMDF-LCNN method is well focused on the factory area. For both ‘Fields’
and ‘Grass’ scenarios, there was a partial deviation in the focused areas predicted by the
LCNN-BFF model, ignoring the similar surrounding targets and searching with limited
targets, while the BMDF-LCNN method is well focused on the target area. In addition,
for scenario areas such as ‘Residence’ and ‘Forests’, the LCNN-BFF method has limited
coverage and cannot extract the target completely, thus affecting the classification accuracy.
However, the proposed BMDF-LCNN method can obtain a complete area of interest in
these scenarios.
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Next, we visualize the classification results on UC (8/2) and RSSCN (5/5) datasets
using t-distribution random neighbor embedding (T-SNE). T-SNE maps high-latitude fea-
tures to two-dimensional or three-dimensional space for visualization, which can evaluate
the classification effect of the model very well. The result of the T-SNE visualization is
shown in Figure 8.
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From Figure 8, it can be seen that the proposed model has better global feature repre-
sentation ability and increases the separability and relative distance between individual
semantic clusters, which can more accurately distinguish different scene categories and
improve the classification performance of the method.

In addition, some scene images of the UCM21 dataset were randomly selected and
tested by the proposed BMDF-LCNN method. The experimental results are shown in
Figure 9. As shown in Figure 9, for these test images, the predictive confidences of the
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proposed model are all more than 99%; some even reach 100%. This demonstrates that the
proposed method can extract significantly discriminative features from input images more
effectively and improve the classification accuracy of remote sensing scene images.
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5. Conclusions

For the classification of remote sensing scene images, a lightweight network based
on the dense fusion of dual-branch, multi-level features is presented. In addition, a
new downsampling method was designed to obtain more representative feature informa-
tion. The network through the three branches of 3 × 3 depthwise separable convolution,
1 × 1 standard convolution, and identity, the information of the current layer can be fully
extracted and fused with the features extracted by 1 × 1 standard convolution in the previ-
ous layer, which realizes the information interaction between different levels of features,
and effectively improves the classification performance and computational speed of the
model. The proposed method is compared with the other most advanced methods on four
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data sets of remote sensing scene images. Experiments show that the proposed method
can provide better classification accuracy and achieve a balance of speed and classification
performance.

The proposed model still needs to be improved. When multi-level feature intensive
fusion occurs, some redundant data will be generated, which increases the computational
complexity. Future work should find a method that can selectively fuse, reduce the
generation of redundant data, and further construct a lightweight model that incorporates
both speed and precision.
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